Thermodynamics
 Heat \& Work
 The First Law of Thermodynamics

Lana Sheridan
De Anza College

April 29, 2020

Last time

- work, heat, and the first law of thermodynamics
- work done on a gas
- $P-V$ diagrams

Overview

- more P - V diagrams
- new vocabulary for describing processes
- applying the first law in various cases

First Law of Thermodynamics

Reminder:

Internal energy, $E_{\text {int }}$ or U
The energy that a system has as a result of its temperature and all other molecular motions, effects, and configurations, when viewed from a reference frame at rest with respect to the center of mass of the system.

1st Law

The change in the internal energy of a system is equal to the sum of the heat added to the system and the work done on the system.

$$
W+Q=\Delta E_{\mathrm{int}}
$$

This is just the conservation of energy assuming only the internal energy changes.

Applying the 1st Law

Some special cases of interest:

- for an isolated system,

$$
W=Q=0 \Rightarrow \Delta E_{\mathrm{int}}=0
$$

- for a process $\left(V_{i}, P_{i}\right)$ to $\left(V_{i}, P_{i}\right)$, a cycle, $\Delta E_{\text {int }}=0 \Rightarrow Q=-W$

Applying the 1st Law \& $P-V$ diagrams questions

The figure shows four paths on a $\mathrm{p}-\mathrm{V}$ diagram along which a gas can be taken from state i to state f. Rank the paths, greatest to least, according to
(a) the change $\Delta E_{\text {int }}$ in the internal energy of the gas,

A $1,2,3,4$
B 4, 3, 2, 1
C $1,4,3,2$
D all the same
${ }^{1}$ Based on question from Halliday, Resnick, and Walker, page 491.

Applying the 1st Law \& P-V diagrams questions

The figure shows four paths on a $\mathrm{p}-\mathrm{V}$ diagram along which a gas can be taken from state i to state f. Rank the paths, greatest to least, according to
(a) the change $\Delta E_{\text {int }}$ in the internal energy of the gas,

A $1,2,3,4$
B 4, 3, 2, 1
C $1,4,3,2$
D all the same \leftarrow
${ }^{1}$ Based on question from Halliday, Resnick, and Walker, page 491.

Applying the 1st Law \& $P-V$ diagrams questions

The figure shows four paths on a $\mathrm{p}-\mathrm{V}$ diagram along which a gas can be taken from state i to state f. Rank the paths, greatest to least, according to
(b) the work W done on the gas,

A $1,2,3,4$
B 4, 3, 2, 1
C $1,4,3,2$
D all the same
${ }^{1}$ Based on question from Halliday, Resnick, and Walker, page 491.

Applying the 1st Law \& P-V diagrams questions

The figure shows four paths on a $\mathrm{p}-\mathrm{V}$ diagram along which a gas can be taken from state i to state f. Rank the paths, greatest to least, according to
(b) the work W done on the gas, W is negative for them all.

A $1,2,3,4 \leftarrow$
B 4, 3, 2, 1
C $1,4,3,2$
D all the same
${ }^{1}$ Based on question from Halliday, Resnick, and Walker, page 491.

Applying the 1st Law \& $P-V$ diagrams questions

The figure shows four paths on a $\mathrm{p}-\mathrm{V}$ diagram along which a gas can be taken from state i to state f. Rank the paths, greatest to least, according to
(c) the energy transferred to the gas as heat Q.

A $1,2,3,4$
B 4, 3, 2, 1
C $1,4,3,2$
D all the same
${ }^{1}$ Based on question from Halliday, Resnick, and Walker, page 491.

Applying the 1st Law \& $P-V$ diagrams questions

The figure shows four paths on a $\mathrm{p}-\mathrm{V}$ diagram along which a gas can be taken from state i to state f. Rank the paths, greatest to least, according to
(c) the energy transferred to the gas as heat Q.

A $1,2,3,4$
B 4, 3, 2, $1 \leftarrow$
C $1,4,3,2$
D all the same
${ }^{1}$ Based on question from Halliday, Resnick, and Walker, page 491.

Applying the 1st Law: new Vocabulary

There are infinitely many paths (V_{i}, P_{i}) to (V_{f}, P_{f}) that we might consider.

Ones that are of particular interest for modeling systems in engines, etc. are processes that keep one of the variables constant.

There is a technical name for each kind of process that keeps a variable constant.

Applying the 1st Law: new Vocabulary

Adiabatic process

is a process where no heat is transferred into or out of the system.

$$
Q=0
$$

This type of transformation occurs when the gas is in a thermally insulated container, or the process is very rapid, so there is no time for heat transfer.

Since $Q=0$:

$$
\Delta E_{\mathrm{int}}=W
$$

Applying the 1st Law: new Vocabulary

Isobaric process

is a process that occurs at constant pressure.

$$
P_{i}=P=P_{f}
$$

This type of transformation occurs when the gas is free to expand or contract by coming into force equilibrium with a constant external environmental pressure.

In this case, the expression for work simplifies:

$$
W=-\int_{V_{i}}^{V_{f}} P \mathrm{dV}=-P\left(V_{f}-V_{i}\right)
$$

Applying the 1st Law: new Vocabulary

Isovolumetric process

is a process that occurs at constant volume.

$$
V_{i}=V=V_{f}
$$

In an isovolumetric process the work done is zero, since the volume never changes.

$$
W=0 \Rightarrow \Delta E_{\mathrm{int}}=Q
$$

(An isovolumetric process can also be called an "isochoric process".)

Applying the 1st Law: new Vocabulary

Isothermal process

is a process that occurs at constant temperature.

$$
T_{i}=T=T_{f}
$$

This kind of transformation is achieved by putting the system in thermal contact with a large constant-temperature reservoir.

In an isothermal process, assuming no change of phase (staying an ideal gas!):

$$
\Delta E_{\text {int }}=0
$$

Isothermal Expansion of an Ideal Gas

Since $\Delta T=0, P V=n R T$ reduces to:

$$
P V=a
$$

where a is a constant. We could also write this as:

$$
P=\frac{a}{V}
$$

Plotting this function:

Isothermal Expansion of an Ideal Gas

Since $n R T$ is constant, the work done on the gas in an isothermal expansion is:

$$
\begin{aligned}
W & =-\int_{V_{i}}^{V_{f}} P \mathrm{dV} \\
& =-\int_{V_{i}}^{V_{f}} \frac{n R T}{V} \mathrm{dV} \\
& =-n R T \ln \left(\frac{V_{f}}{V_{i}}\right)
\end{aligned}
$$

$$
W=n R T \ln \left(\frac{V_{i}}{V_{f}}\right)
$$

Questions

Which path is isobaric?

${ }^{1}$ Based on Quick Quiz 20.4, Serway \& Jewett, page 606.

Questions

Which path is isobaric?

Path D.
${ }^{1}$ Based on Quick Quiz 20.4, Serway \& Jewett, page 606.

Questions

Which path is isothermal?

${ }^{1}$ Based on Quick Quiz 20.4, Serway \& Jewett, page 606.

Questions

Which path is isothermal?

Path C.

${ }^{1}$ Based on Quick Quiz 20.4, Serway \& Jewett, page 606.

Questions

Which path is isovolumetric?

${ }^{1}$ Based on Quick Quiz 20.4, Serway \& Jewett, page 606.

Questions

Which path is isovolumetric?

Path A.
${ }^{1}$ Based on Quick Quiz 20.4, Serway \& Jewett, page 606.

Questions

Which path is adiabatic?

${ }^{1}$ Based on Quick Quiz 20.4, Serway \& Jewett, page 606.

Questions

Which path is adiabatic?

Path B.
${ }^{1}$ Based on Quick Quiz 20.4, Serway \& Jewett, page 606.

Example 20.6: Boiling water

This example illustrates how we can apply these ideas to liquids and solids also, and even around phase changes, as long as we are careful.

Suppose 1.00 g of water vaporizes isobarically at atmospheric pressure $\left(1.013 \times 10^{5} \mathrm{~Pa}\right)$.
Its volume in the liquid state is $V_{i}=V_{\text {liq }}=1.00 \mathrm{~cm}^{3}$, and its volume in the vapor state is $V_{f}=V_{\text {vap }}=1671 \mathrm{~cm}^{3}$.
Find the work done in the expansion and the change in internal energy of the system. Ignore any mixing of the steam and the surrounding air; imagine that the steam simply pushes the surrounding air out of the way.

Example 20.6: Boiling water

$$
\begin{aligned}
& V_{i}=V_{\text {liq }}=1.00 \mathrm{~cm}^{3} \\
& V_{f}=V_{\text {vap }}=1671 \mathrm{~cm}^{3} \\
& L_{v}=2.26 \times 10^{6} \mathrm{~J} / \mathrm{kg}
\end{aligned}
$$

Work done,

Example 20.6: Boiling water

$V_{i}=V_{\text {liq }}=1.00 \mathrm{~cm}^{3}$
$V_{f}=V_{\text {vap }}=1671 \mathrm{~cm}^{3}$
$L_{v}=2.26 \times 10^{6} \mathrm{~J} / \mathrm{kg}$
Work done,
$\left(W=\int P \mathrm{dV}\right)$

$$
\begin{aligned}
W & =-P\left(V_{f}-V_{i}\right) \\
& =-\left(1.013 \times 10^{5} \mathrm{~Pa}\right)(1671-1.00) \times 10^{-6} \mathrm{~m}^{3} \\
& =-169 \mathrm{~J}
\end{aligned}
$$

Internal energy, $\Delta E_{\text {int }}$?

Example 20.6: Boiling water

$V_{i}=V_{\text {liq }}=1.00 \mathrm{~cm}^{3}$
$V_{f}=V_{\text {vap }}=1671 \mathrm{~cm}^{3}$
$L_{v}=2.26 \times 10^{6} \mathrm{~J} / \mathrm{kg}$
Work done,
$\left(W=\int P \mathrm{dV}\right)$

$$
\begin{aligned}
W & =-P\left(V_{f}-V_{i}\right) \\
& =-\left(1.013 \times 10^{5} \mathrm{~Pa}\right)(1671-1.00) \times 10^{-6} \mathrm{~m}^{3} \\
& =-169 \mathrm{~J}
\end{aligned}
$$

Internal energy, $\Delta E_{\text {int }}$? Know W, must find Q :

$$
\begin{aligned}
Q & =L_{v} m \\
& =\left(2.26 \times 10^{6} \mathrm{~J} / \mathrm{kg}\right)\left(1^{-3} \mathrm{~kg}\right) \\
& =2260 \mathrm{~J}
\end{aligned}
$$

So,

$$
\Delta E_{\mathrm{int}}=W+Q=2.09 \mathrm{~kJ}
$$

Summary

- $P-V$ diagrams

Next Test Tuesday, May 5 (? TBC), on Ch19, 20.

Homework Serway \& Jewett:

- Read chapter 20 and look at the examples.

