

Thermodynamics Heat & Work The First Law of Thermodynamics

Lana Sheridan

De Anza College

April 29, 2020

Last time

- work, heat, and the first law of thermodynamics
- work done on a gas
- P-V diagrams

Overview

- more *P*-*V* diagrams
- new vocabulary for describing processes
- applying the first law in various cases

First Law of Thermodynamics

Reminder:

Internal energy, E_{int} or U

The energy that a system has as a result of its temperature and all other molecular motions, effects, and configurations, when viewed from a reference frame at rest with respect to the center of mass of the system.

1st Law

The change in the internal energy of a system is equal to the sum of the heat added to the system and the work done on the system.

$$W + Q = \Delta E_{int}$$

This is just the conservation of energy assuming only the internal energy changes.

Applying the 1st Law

Some special cases of interest:

• for an isolated system, $W = Q = 0 \Rightarrow \Delta E_{int} = 0$

• for a process (V_i, P_i) to (V_i, P_i) , a cycle, $\Delta E_{int} = 0 \Rightarrow Q = -W$

The figure shows four paths on a p-V diagram along which a gas can be taken from state i to state f. Rank the paths, greatest to least, according to

(a) the change $\Delta E_{\rm int}$ in the internal energy of the gas,

- A 1, 2, 3, 4
- **B** 4, 3, 2, 1
- C 1, 4, 3, 2

D all the same

The figure shows four paths on a p-V diagram along which a gas can be taken from state i to state f. Rank the paths, greatest to least, according to

(a) the change $\Delta E_{\rm int}$ in the internal energy of the gas,

The figure shows four paths on a p-V diagram along which a gas can be taken from state i to state f. Rank the paths, greatest to least, according to

(b) the work W done **on** the gas,

- A 1, 2, 3, 4
- **B** 4, 3, 2, 1
- C 1, 4, 3, 2

D all the same

The figure shows four paths on a p-V diagram along which a gas can be taken from state *i* to state *f*. Rank the paths, greatest to least, according to

(b) the work W done **on** the gas, W is negative for them all.

all the same

B 4, 3, 2, 1

The figure shows four paths on a p-V diagram along which a gas can be taken from state i to state f. Rank the paths, greatest to least, according to

(c) the energy transferred to the gas as heat Q.

- A 1, 2, 3, 4
- **B** 4, 3, 2, 1
- C 1, 4, 3, 2

D all the same

The figure shows four paths on a p-V diagram along which a gas can be taken from state i to state f. Rank the paths, greatest to least, according to

(c) the energy transferred to the gas as heat Q.

- **A** 1, 2, 3, 4
- **B** 4, 3, 2, 1 ←
- C 1, 4, 3, 2

D all the same

There are infinitely many paths (V_i, P_i) to (V_f, P_f) that we might consider.

Ones that are of particular interest for modeling systems in engines, *etc.* are processes that keep one of the variables constant.

There is a technical name for each kind of process that keeps a variable constant.

This type of transformation occurs when the gas is in a thermally insulated container, or the process is very rapid, so there is no time for heat transfer.

Since Q = 0:

$$\Delta E_{\rm int} = W$$

This type of transformation occurs when the gas is free to expand or contract by coming into force equilibrium with a constant external environmental pressure.

In this case, the expression for work simplifies:

$$W = -\int_{V_i}^{V_f} P \,\mathrm{dV} = -P(V_f - V_i)$$

Isovolumetric process

is a process that occurs at constant volume.

$$V_i = V = V_f$$

In an isovolumetric process the work done is zero, since the volume never changes.

$$W = 0 \Rightarrow \Delta E_{int} = Q$$

(An isovolumetric process can also be called an "isochoric process".)

This kind of transformation is achieved by putting the system in thermal contact with a large constant-temperature reservoir.

In an isothermal process, assuming no change of phase (staying an ideal gas!):

$$\Delta E_{\rm int} = 0$$

Isothermal Expansion of an Ideal Gas

Since $\Delta T = 0$, PV = nRT reduces to:

PV = a

where a is a constant. We could also write this as:

$$P = \frac{a}{V}$$

Plotting this function:

Isothermal Expansion of an Ideal Gas

Since nRT is constant, the work done on the gas in an isothermal expansion is:

$$W = -\int_{V_i}^{V_f} P \, \mathrm{dV}$$
$$= -\int_{V_i}^{V_f} \frac{nRT}{V} \, \mathrm{dV}$$
$$= -nRT \ln\left(\frac{V_f}{V_i}\right)$$

$$W = nRT \ln\left(\frac{V_i}{V_f}\right)$$

Which path is isobaric?

¹Based on Quick Quiz 20.4, Serway & Jewett, page 606.

Which path is isobaric?

Path D.

¹Based on Quick Quiz 20.4, Serway & Jewett, page 606.

Which path is isothermal?

¹Based on Quick Quiz 20.4, Serway & Jewett, page 606.

Which path is isothermal?

Path C.

¹Based on Quick Quiz 20.4, Serway & Jewett, page 606.

Which path is isovolumetric?

¹Based on Quick Quiz 20.4, Serway & Jewett, page 606.

Which path is isovolumetric?

Path A.

¹Based on Quick Quiz 20.4, Serway & Jewett, page 606.

Which path is adiabatic?

¹Based on Quick Quiz 20.4, Serway & Jewett, page 606.

Which path is adiabatic?

Path B.

¹Based on Quick Quiz 20.4, Serway & Jewett, page 606.

This example illustrates how we can apply these ideas to liquids and solids also, and even around phase changes, as long as we are careful.

Suppose 1.00 g of water vaporizes isobarically at atmospheric pressure (1.013 \times 10 5 Pa).

Its volume in the liquid state is $V_i = V_{\text{liq}} = 1.00 \text{ cm}^3$, and its volume in the vapor state is $V_f = V_{\text{vap}} = 1671 \text{ cm}^3$.

Find the work done in the expansion and the change in internal energy of the system. Ignore any mixing of the steam and the surrounding air; imagine that the steam simply pushes the surrounding air out of the way.

$$V_i = V_{liq} = 1.00 \text{ cm}^3$$

 $V_f = V_{vap} = 1671 \text{ cm}^3$
 $L_v = 2.26 \times 10^6 \text{ J/kg}$

Work done,

$$V_i = V_{liq} = 1.00 \text{ cm}^3$$

 $V_f = V_{vap} = 1671 \text{ cm}^3$
 $L_v = 2.26 \times 10^6 \text{ J/kg}$

Work done, $(W = \int P \, \mathrm{dV})$

$$W = -P(V_f - V_i)$$

= -(1.013 × 10⁵ Pa)(1671 - 1.00) × 10⁻⁶ m³
= -169 J

Internal energy, ΔE_{int} ?

$$V_i = V_{liq} = 1.00 \text{ cm}^3$$

 $V_f = V_{vap} = 1671 \text{ cm}^3$
 $L_v = 2.26 \times 10^6 \text{ J/kg}$

Work done, $(W = \int P \, \mathrm{dV})$

$$W = -P(V_f - V_i)$$

= -(1.013 × 10⁵ Pa)(1671 - 1.00) × 10⁻⁶ m³
= -169 J

Internal energy, ΔE_{int} ? Know W, must find Q:

$$Q = L_{v}m$$

= (2.26 × 10⁶ J/kg)(1⁻³ kg)
= 2260 J

So,

$$\Delta E_{\rm int} = W + Q = 2.09 \ \rm kJ$$

• P-V diagrams

Next Test Tuesday, May 5 (? TBC), on Ch19, 20.

Homework Serway & Jewett:

• Read chapter 20 and look at the examples.