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Last time

e work, heat, and the first law of thermodynamics
e P-V diagrams

e applying the first law in various cases



Warm Up Question

—

Vv

For one complete cycle as shown in the P-V diagram here, AEj,:
for the gas is

(A) positive

(B) negative

(C) zero

'Halliday, Resnick, Walker, page 495.
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Overview

first law and ideal gas example

heat transfer

(Newton's law of cooling - Skipping)

thermal conduction



Example 20.6: Boiling water

This example illustrates how we can apply these ideas to liquids
and solids also, and even around phase changes, as long as we are
careful.

Suppose 1.00 g of water vaporizes isobarically at atmospheric
pressure (1.013 x 10° Pa).

Its volume in the liquid state is V; = Vjiq = 1.00 cm3, and its
volume in the vapor state is Vf = V,p = 1671 cm3.

Find the work done in the expansion and the change in internal
energy of the system. Ignore any mixing of the steam and the
surrounding air; imagine that the steam simply pushes the
surrounding air out of the way.



Example 20.6: Boiling water
Vi = Vjiq = 1.00 cm3
Vi = Wap = 1671 cm3
L, =226 x 10° J/kg

Work done,
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Example 20.6: Boiling water
Vi = Vjiq = 1.00 cm3
Vi = Wap = 1671 cm3
L, =226 x 10° J/kg

Work done,

W = —P(V¢r—Vj)

— —(1.013 x 10° Pa)(1671 —1.00) x 107® m3

= —169 J
Internal energy, AE;n+? Know W, must find Q:

QR = Lym
= (2.26 x 10° J/kg)(173 kg)
— 2260 J

So,
AEnw =W+ Q@ =2.09 kJ



Heat Transfer

We are now changing gears.

We are still thinking about heat in more detail, but we are not
necessarily talking about ideal gases.

(Section 20.7 of the textbook.)



Heat Transfer Mechanisms

When objects are in thermal contact, heat is transferred from the
hotter object to the cooler object

There are various mechanisms by which this happens:
e conduction
e convection

e radiation



Conduction

Heat can “flow” along a substance.

When it does, heat is said to be transferred by conduction from
one part of the substance to another.

Some materials allow more heat to flow through them in a shorter
time than others.



Conduction

Heat can “flow” along a substance.

When it does, heat is said to be transferred by conduction from
one part of the substance to another.

Some materials allow more heat to flow through them in a shorter
time than others.

These materials are called “good conductors” of heat:

e metals (copper, aluminum, etc)



Conduction

In solids, conduction happens via

e vibrations
e collisions of molecules
e collective wavelike oscillations (phonons)

e diffusion and collisions of free electrons

In liquids and gases, conduction happens through diffusion and
collisions of molecules.



Conduction

Some materials are not good conductors and are referred to as
thermal insulators.



Conduction

Some materials are not good conductors and are referred to as
thermal insulators.

Examples:

e air (and hence down feathers, wool)
e styrofoam
e wood

® snow



Newton’s Law of Cooling (Applies for thermal
conduction) - Skipping

Newton found a relation between the rate that an object cools and
its temperature difference from its surroundings.

Objects that are much hotter than their surroundings lose heat
much faster than objects that are only a bit hotter than their
surroundings.

Using Q for heat:

dQ = hAAT
dt

where A is the heat transfer surface area and h is the heat transfer
coefficient



Newton’s Law of Cooling (Applies for thermal
conduction) - Skipping

dQ = hAAT
dt

If there is no phase change in the substance and the cooling object
remains in thermal equilibrium, then we can use the relation for

heat capacity:
Q=—-CAT

where in this case the heat is transferred out of the hot object to
the environment.
to get:

d(AT)

ALl AT
dt r

where the constant r = hA/C.



Newton’s Law of Cooling Example - Skipping

Hot leftover soup must be cooled before it can be put in the
refrigerator. To speed this process, you put the pot in a sink with
cool, running water, that is maintained at 5°C. The hot soup cools
from 75°C to 40°C in 8 minutes. Why might you predict that its
temperature after another 8 minutes will be 22.5°C?



Newton’s Law of Cooling Example - Skipping
Let y = AT, then the solution to the differential equation is:

y = Aefrt

where r =1In2/(8min) and A=y; =75—5=70°C.

We call the time t = 8 min the “half life" of the process, because
after 8 min y has fallen by %:

At t =8 min, y =40 —5 = 35°C.

After another 8 min (t=16 min):

y = —In2t/(8 min)
—161In2/8
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And so the soup is at a temperature 17.5 4+ 5 = 22.5°C.



Thermal Conduction over distance

For Newton's law of cooling, we assumed we have a system at one
temperature throughout, T, and an environment at another
temperature T'.

What if we have a system that is in contact with two different
environments (thermal reservoirs) at different temperatures?

The system will conduct heat from one reservoir to the other.

The system will not be the same temperature throughout. (The
system is not in thermal equilibrium!)



Thermal Conduction over distance

The opposite faces are at different
temperatures where 7j, > 7T,.

1y, —

Energy transfer \
for T, > T, —d A

>| Ax |<

Rate of heat transfer between surfaces:

Q AT
p—X At
power, At Ax



Thermal Conduction over distance

Fourier’'s Law

Imagining a subsection of the slab with an area A and an
infinitesimal thickness dx:

where k is the thermal conductivity and HTI‘ is called the
temperature gradient.

If k is large for a substance, the substance is a good conductor of
heat.

The units of k are W m—1 K—1.



Thermal Conduction over distance

Imagine a uniform rod of length L, that has been placed between
two thermal reservoirs for a long time. Assume for this bar k does
not depend on temperature or position.

- L

Energy
transfer

T,> T, |
Insulation

The temperature at each point is constant in time and the
gradient everywhere is

dT

dT| _ Th—Tc
dx

L




Thermal Conduction over distance

Then,



Thermal Conduction over distance

Then,

What if there are many different bars for heat to be transferred
through?



Thermal Conduction through multiple materials

For situation (a):

g — _ AT-T)
Rod 1 Rod 2 (Li/ki) + (La/ ko)
] (See ex. 20.8)
. Rodl For situation (b):
7 Rod2 | ¢
od 2 P = Pi+P
— Ll

kiA1= koA
_<11+22

Ll L2 > (Th_ Tc)



Thermal Conduction through multiple materials

Compare:

On the LHS we have transfer rates, on the RHS differences that
propel a transfer.

You can think of ﬁ as a kind of resistance. k is a conductivity,

_el_ L

like o (electrical conductivity). Recall, R = & = .



Thermal Conduction through multiple materials

For multiple thermal transfer slabs in series:

1
P =5y WA ®’

For multiple thermal transfer slabs in parallel:

P = (Z k’Z"’) AT

Now for convenient comparison, let r; = k-L/i\-' Then r; is a thermal
resistance, for the ith slab.



Thermal Conduction through multiple materials
For multiple resistors in series:

1
1= AV
(Z; Ri)
For multiple thermal transfer slabs in series:
1
P=(=——| AT
<Zi r,-)

For multiple resistors in parallel:

(i)

For multiple thermal transfer slabs in parallel:



Thermal Conduction and Ohm’s Law

Fourier's work on thermal conductivity inspired Ohm's model of
electrical conductivity and resistance!



Thermal Conductivity Question

The figure shows the face and interface temperatures of a
composite slab consisting of four materials, of identical
thicknesses, through which the heat transfer is steady. Rank the
materials according to their thermal conductivities, greatest first.

25°C 15°C 10°C -5.0°C -10°C
a b c d

(A) a, b, ¢, d

(B) (bandd), a, c
(C) ¢, a, (band d)
(D) (b, c,and d), a

'Halliday, Resnick, Walker, page 495.
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Thermal Conduction and Insulation

Engineers generally prefer to quote “R-values” for insulation,
rather than using thermal conductivity, k.

For a particular material:

This is its “length-resistivity” to heat transfer.
A high value of R indicates a good insulator.

The units used are ft> °F h / Btu. (h is hours, Btu is British
thermal units, 1 Btu = 1.06 kJ)



Summary

e heat transfer

e Newton's law of cooling



