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Last time

• work, heat, and the first law of thermodynamics

• P-V diagrams

• applying the first law in various cases



Warm Up Question

49318-11 SOM E S PECIAL CAS E S OF TH E F I RST LAW OF TH E R MODYNAM ICS
PART 2

HALLIDAY REVISED

in thermal equilibrium within itself, is initially confined by a closed stopcock
to one half of an insulated double chamber; the other half is evacuated. The
stopcock is opened, and the gas expands freely to fill both halves of the
chamber. No heat is transferred to or from the gas because of the insulation.
No work is done by the gas because it rushes into a vacuum and thus does
not meet any pressure.

A free expansion differs from all other processes we have considered
because it cannot be done slowly and in a controlled way. As a result, at any
given instant during the sudden expansion, the gas is not in thermal equilib-
rium and its pressure is not uniform. Thus, although we can plot the initial and
final states on a p-V diagram, we cannot plot the expansion itself.

CHECKPOINT 6

For one complete cycle as shown in the
p-V diagram here, are (a) !Eint for the
gas and (b) the net energy transferred
as heat Q positive, negative, or zero?

p

V

Sample Problem

First law of thermodynamics: work, heat, internal energy change

Let 1.00 kg of liquid water at 100°C be converted to steam
at 100°C by boiling at standard atmospheric pressure (which
is 1.00 atm or 1.01 " 105 Pa) in the arrangement of Fig.
18-17. The volume of that water changes from an initial
value of 1.00 " 10#3 m3 as a liquid to 1.671 m3 as steam.

(a) How much work is done by the system during this
process?

(1) The system must do positive work because the volume
increases. (2) We calculate the work W done by integrating
the pressure with respect to the volume (Eq. 18-25).

Calculation: Because here the pressure is constant at
1.01 " 105 Pa, we can take p outside the integral.Thus,

$ (1.01 " 105 Pa)(1.671 m3 # 1.00 " 10#3 m3)

$ 1.69 " 105 J $ 169 kJ. (Answer)

(b) How much energy is transferred as heat during the
process?

Because the heat causes only a phase change and not a change
in temperature, it is given fully by Eq. 18-16 (Q $ Lm).

Calculation: Because the change is from liquid to gaseous
phase, L is the heat of vaporization LV, with the value given
in Eq. 18-17 and Table 18-4.We find

Q $ LVm $ (2256 kJ/kg)(1.00 kg)

$ 2256 kJ ! 2260 kJ. (Answer)

(c) What is the change in the system’s internal energy dur-
ing the process?

W $ "Vf

Vi

 p dV $ p "Vf

Vi

 dV $ p(Vf # Vi )

The change in the system’s internal energy is related to the
heat (here, this is energy transferred into the system) and
the work (here, this is energy transferred out of the system)
by the first law of thermodynamics (Eq. 18-26).

Calculation: We write the first law as

!Eint $ Q # W $ 2256 kJ # 169 kJ

! 2090 kJ $ 2.09 MJ. (Answer)

This quantity is positive, indicating that the internal energy
of the system has increased during the boiling process. This
energy goes into separating the H2O molecules, which
strongly attract one another in the liquid state. We see that,
when water is boiled, about 7.5% ($ 169 kJ/2260 kJ) of the
heat goes into the work of pushing back the atmosphere.
The rest of the heat goes into the system’s internal energy.

KEY I DEAS

Additional examples, video, and practice available at WileyPLUS
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Fig. 18-17 Water boiling at constant pressure. Energy is
transferred from the thermal reservoir as heat until the liquid
water has changed completely into steam.Work is done by the
expanding gas as it lifts the loaded piston.
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For one complete cycle as shown in the P-V diagram here, ∆Eint

for the gas is

(A) positive

(B) negative

(C) zero

1Halliday, Resnick, Walker, page 495.
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For one complete cycle as shown in the P-V diagram here, the
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Overview

• first law and ideal gas example

• heat transfer

• (Newton’s law of cooling - Skipping)

• thermal conduction



Example 20.6: Boiling water

This example illustrates how we can apply these ideas to liquids
and solids also, and even around phase changes, as long as we are
careful.

Suppose 1.00 g of water vaporizes isobarically at atmospheric
pressure (1.013 × 105 Pa).

Its volume in the liquid state is Vi = Vliq = 1.00 cm3, and its
volume in the vapor state is Vf = Vvap = 1671 cm3.

Find the work done in the expansion and the change in internal
energy of the system. Ignore any mixing of the steam and the
surrounding air; imagine that the steam simply pushes the
surrounding air out of the way.



Example 20.6: Boiling water
Vi = Vliq = 1.00 cm3

Vf = Vvap = 1671 cm3

Lv = 2.26 × 106 J/kg

Work done,

W = −P(Vf − Vi )

= −(1.013 × 105 Pa)(1671 − 1.00)× 10−6 m3

= −169 J

Internal energy, ∆Eint? Know W , must find Q:

Q = Lvm

= (2.26 × 106 J/kg)(1−3 kg)

= 2260 J

So,
∆Eint = W + Q = 2.09 kJ
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Heat Transfer

We are now changing gears.

We are still thinking about heat in more detail, but we are not
necessarily talking about ideal gases.

(Section 20.7 of the textbook.)



Heat Transfer Mechanisms

When objects are in thermal contact, heat is transferred from the
hotter object to the cooler object

There are various mechanisms by which this happens:

• conduction

• convection

• radiation



Conduction

Heat can “flow” along a substance.

When it does, heat is said to be transferred by conduction from
one part of the substance to another.

Some materials allow more heat to flow through them in a shorter
time than others.

These materials are called “good conductors” of heat:

• metals (copper, aluminum, etc)
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Conduction

In solids, conduction happens via

• vibrations

• collisions of molecules

• collective wavelike oscillations (phonons)

• diffusion and collisions of free electrons

In liquids and gases, conduction happens through diffusion and
collisions of molecules.



Conduction

Some materials are not good conductors and are referred to as
thermal insulators.

Examples:

• air (and hence down feathers, wool)

• styrofoam

• wood

• snow
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Newton’s Law of Cooling (Applies for thermal
conduction) - Skipping

Newton found a relation between the rate that an object cools and
its temperature difference from its surroundings.

Objects that are much hotter than their surroundings lose heat
much faster than objects that are only a bit hotter than their
surroundings.

Using Q for heat:
dQ

dt
= hA∆T

where A is the heat transfer surface area and h is the heat transfer
coefficient



Newton’s Law of Cooling (Applies for thermal
conduction) - Skipping

dQ

dt
= hA∆T

If there is no phase change in the substance and the cooling object
remains in thermal equilibrium, then we can use the relation for
heat capacity:

Q = −C ∆T

where in this case the heat is transferred out of the hot object to
the environment.
to get:

d(∆T)

dt
= −r ∆T

where the constant r = hA/C .



Newton’s Law of Cooling Example - Skipping

Hot leftover soup must be cooled before it can be put in the
refrigerator. To speed this process, you put the pot in a sink with
cool, running water, that is maintained at 5◦C. The hot soup cools
from 75◦C to 40◦C in 8 minutes. Why might you predict that its
temperature after another 8 minutes will be 22.5◦C?



Newton’s Law of Cooling Example - Skipping
Let y = ∆T , then the solution to the differential equation is:

y = Ae−rt

where r = ln 2/(8min) and A = yi = 75 − 5 = 70◦C.
We call the time t = 8 min the “half life” of the process, because
after 8 min y has fallen by 1

2 :
At t = 8 min, y = 40 − 5 = 35◦C.
After another 8 min (t=16 min):

y = (70)e− ln 2t/(8 min)

= (70)e−16 ln 2/8

= (70)e−2 ln 2

= (70)e ln(1/4)

= 70/4

= 17.5◦C

And so the soup is at a temperature 17.5 + 5 = 22.5◦C.



Thermal Conduction over distance

For Newton’s law of cooling, we assumed we have a system at one
temperature throughout, T , and an environment at another
temperature T ′.

What if we have a system that is in contact with two different
environments (thermal reservoirs) at different temperatures?

The system will conduct heat from one reservoir to the other.

The system will not be the same temperature throughout. (The
system is not in thermal equilibrium!)



Thermal Conduction over distance 20.7 Energy Transfer Mechanisms in Thermal Processes 609

of the metal in your hand soon increases. The energy reaches your hand by means 
of conduction. Initially, before the rod is inserted into the flame, the microscopic 
particles in the metal are vibrating about their equilibrium positions. As the flame 
raises the temperature of the rod, the particles near the flame begin to vibrate with 
greater and greater amplitudes. These particles, in turn, collide with their neigh-
bors and transfer some of their energy in the collisions. Slowly, the amplitudes of 
vibration of metal atoms and electrons farther and farther from the flame increase 
until eventually those in the metal near your hand are affected. This increased 
vibration is detected by an increase in the temperature of the metal and of your 
potentially burned hand.
 The rate of thermal conduction depends on the properties of the substance 
being heated. For example, it is possible to hold a piece of asbestos in a flame indef-
initely, which implies that very little energy is conducted through the asbestos. In 
general, metals are good thermal conductors and materials such as asbestos, cork, 
paper, and fiberglass are poor conductors. Gases also are poor conductors because 
the separation distance between the particles is so great. Metals are good thermal 
conductors because they contain large numbers of electrons that are relatively free 
to move through the metal and so can transport energy over large distances. There-
fore, in a good conductor such as copper, conduction takes place by means of both 
the vibration of atoms and the motion of free electrons.
 Conduction occurs only if there is a difference in temperature between two 
parts of the conducting medium. Consider a slab of material of thickness Dx and 
cross-sectional area A. One face of the slab is at a temperature Tc , and the other 
face is at a temperature Th . Tc (Fig. 20.11). Experimentally, it is found that energy 
Q transfers in a time interval Dt from the hotter face to the colder one. The rate P 5 
Q /Dt at which this energy transfer occurs is found to be proportional to the cross-
sectional area and the temperature difference DT 5 Th 2 Tc and inversely propor-
tional to the thickness:

 P 5
Q
Dt

~ A 
DT
Dx

 

 Notice that P has units of watts when Q is in joules and Dt is in seconds. That is 
not surprising because P is power, the rate of energy transfer by heat. For a slab of 
infinitesimal thickness dx and temperature difference dT, we can write the law of 
thermal conduction as

 P 5 kA ` dT
dx

`  (20.15)

where the proportionality constant k is the thermal conductivity of the material 
and |dT/dx | is the temperature gradient (the rate at which temperature varies with 
position).
 Substances that are good thermal conductors have large thermal conductiv-
ity values, whereas good thermal insulators have low thermal conductivity values. 
Table 20.3 lists thermal conductivities for various substances. Notice that metals are 
generally better thermal conductors than nonmetals.
 Suppose a long, uniform rod of length L is thermally insulated so that energy 
cannot escape by heat from its surface except at the ends as shown in Figure 20.12 
(page 610). One end is in thermal contact with an energy reservoir at temperature 
Tc , and the other end is in thermal contact with a reservoir at temperature Th . Tc . 
When a steady state has been reached, the temperature at each point along the rod 
is constant in time. In this case, if we assume k is not a function of temperature, the 
temperature gradient is the same everywhere along the rod and is

 ` dT
dx

` 5
Th 2 Tc

L
 

Table 20.3  
Thermal Conductivities
 Thermal
 Conductivity
Substance (W/m ? °C)

Metals (at 25°C)
Aluminum 238
Copper 397
Gold 314
Iron 79.5
Lead 34.7
Silver 427

Nonmetals (approximate values)
Asbestos 0.08
Concrete 0.8
Diamond 2 300
Glass 0.8
Ice 2
Rubber 0.2
Water 0.6
Wood 0.08

Gases (at 20°C)
Air 0.023 4
Helium 0.138
Hydrogen 0.172
Nitrogen 0.023 4
Oxygen 0.023 8

The opposite faces are at different 
temperatures where Th ! Tc .

Tc

Energy transfer
for Th ! Tc 

Th
A

"x

Figure 20.11  Energy transfer 
through a conducting slab with a 
cross-sectional area A and a thick-
ness Dx.

Rate of heat transfer between surfaces:

power, P =
Q

∆t
= kA

∆T

∆x



Thermal Conduction over distance

Fourier’s Law

Imagining a subsection of the slab with an area A and an
infinitesimal thickness dx:

P = kA

∣∣∣∣dT

dx

∣∣∣∣
where k is the thermal conductivity and

∣∣dT
dx

∣∣ is called the
temperature gradient.

If k is large for a substance, the substance is a good conductor of
heat.

The units of k are W m−1 K−1.



Thermal Conduction over distance

Imagine a uniform rod of length L, that has been placed between
two thermal reservoirs for a long time. Assume for this bar k does
not depend on temperature or position.

610 Chapter 20 The First Law of Thermodynamics

Therefore, the rate of energy transfer by conduction through the rod is

 P 5 kA aTh 2 Tc

L
b  (20.16)

 For a compound slab containing several materials of thicknesses L1, L2, . . . and 
thermal conductivities k1, k2, . . . , the rate of energy transfer through the slab at 
steady state is

 P 5
A 1Th 2 Tc 2
a

i
1Li /ki 2  (20.17)

where Th and Tc are the temperatures of the outer surfaces (which are held con-
stant) and the summation is over all slabs. Example 20.8 shows how Equation 20.17 
results from a consideration of two thicknesses of materials.

Q uick Quiz 20.5  You have two rods of the same length and diameter, but they are 
formed from different materials. The rods are used to connect two regions at 
different temperatures so that energy transfers through the rods by heat. They 
can be connected in series as in Figure 20.13a or in parallel as in Figure 20.13b. 
In which case is the rate of energy transfer by heat larger? (a) The rate is larger 
when the rods are in series. (b) The rate is larger when the rods are in parallel. 
(c) The rate is the same in both cases.

Example 20.8   Energy Transfer Through Two Slabs

Two slabs of thickness L1 and L2 and thermal conductivities k1 and k2 are in 
thermal contact with each other as shown in Figure 20.14. The temperatures of 
their outer surfaces are Tc and Th, respectively, and Th . Tc. Determine the tem-
perature at the interface and the rate of energy transfer by conduction through 
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Figure 20.13  (Quick Quiz 20.5) 
In which case is the rate of energy 
transfer larger?

The temperature at each point is constant in time and the
gradient everywhere is ∣∣∣∣dT

dx

∣∣∣∣ = Th − Tc

L
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Therefore, the rate of energy transfer by conduction through the rod is

 P 5 kA aTh 2 Tc

L
b  (20.16)
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thermal conductivities k1, k2, . . . , the rate of energy transfer through the slab at 
steady state is
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A 1Th 2 Tc 2
a

i
1Li /ki 2  (20.17)

where Th and Tc are the temperatures of the outer surfaces (which are held con-
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results from a consideration of two thicknesses of materials.
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ing at some point. Furthermore, the temperature varies with position in the two 
slabs, most likely at different rates in each part of the compound slab. When the 
system is in steady state, the interface is at some fixed temperature T.
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impose the condition that the power is the same in both slabs of material.
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In which case is the rate of energy 
transfer larger?

Then,

P = kA

(
Th − Tc

L

)

What if there are many different bars for heat to be transferred
through?
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Thermal Conduction through multiple materials

610 Chapter 20 The First Law of Thermodynamics
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In which case is the rate of energy 
transfer larger?

For situation (a):

P =
A(Th − Tc)

(L1/k1) + (L2/k2)

(See ex. 20.8)

For situation (b):

P = P1 + P2

=

(
k1A1

L1
+

k2A2

L2

)
(Th − Tc)



Thermal Conduction through multiple materials

Compare:

P =

(
kA

L

)
∆T

I =

(
1

R

)
∆V

On the LHS we have transfer rates, on the RHS differences that
propel a transfer.

You can think of L
kA as a kind of resistance. k is a conductivity,

like σ (electrical conductivity). Recall, R = ρL
A = L

σA .



Thermal Conduction through multiple materials

For multiple thermal transfer slabs in series:

P =
1∑

i (Li/(kiA))
∆T

For multiple thermal transfer slabs in parallel:

P =

(∑
i

kiAi

Li

)
∆T

Now for convenient comparison, let ri =
Li
kiAi

. Then ri is a thermal
resistance, for the ith slab.



Thermal Conduction through multiple materials
For multiple resistors in series:

I =

(
1∑
i Ri

)
∆V

For multiple thermal transfer slabs in series:

P =

(
1∑
i ri

)
∆T

For multiple resistors in parallel:

I =

(∑
i

1

Ri

)
∆V

For multiple thermal transfer slabs in parallel:

P =

(∑
i

1

ri

)
∆T



Thermal Conduction and Ohm’s Law

Fourier’s work on thermal conductivity inspired Ohm’s model of
electrical conductivity and resistance!



Thermal Conductivity Question

The figure shows the face and interface temperatures of a
composite slab consisting of four materials, of identical
thicknesses, through which the heat transfer is steady. Rank the
materials according to their thermal conductivities, greatest first.

Convection
When you look at the flame of a candle or a match, you are watching thermal
energy being transported upward by convection. Such energy transfer occurs
when a fluid, such as air or water, comes in contact with an object whose tem-
perature is higher than that of the fluid. The temperature of the part of the fluid
that is in contact with the hot object increases, and (in most cases) that fluid
expands and thus becomes less dense. Because this expanded fluid is now lighter
than the surrounding cooler fluid, buoyant forces cause it to rise. Some of the

In the steady state, the conduction rates through the two materials must be
equal.This is the same as saying that the energy transferred through one material
in a certain time must be equal to that transferred through the other material in
the same time. If this were not true, temperatures in the slab would be changing
and we would not have a steady-state situation. Letting TX be the temperature of
the interface between the two materials, we can now use Eq. 18-32 to write

(18-34)

Solving Eq. 18-34 for TX yields, after a little algebra,

(18-35)

Substituting this expression for TX into either equality of Eq. 18-34 yields

(18-36)

We can extend Eq. 18-36 to apply to any number n of materials making up
a slab:

(18-37)

The summation sign in the denominator tells us to add the values of L/k for all
the materials.

Pcond !
A(TH " TC)

! (L/k)
.

Pcond !
A(TH " TC)

L1/k1 # L2/k2
.

TX !
k1L2TC # k2L1TH

k1L2 # k2L1
.

Pcond !
k2A(TH " TX)

L2
!

k1A(TX " TC)
L1

.

Fig. 18-19 Heat is transferred at a steady rate through a composite slab made up of
two different materials with different thicknesses and different thermal conductivities.
The steady-state temperature at the interface of the two materials is TX.
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Hot reservoir 
at TH 

k1 

L1 
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TX 

k2 

L2 

The energy transfer per
second here ...

... equals the energy
transfer per second here.

CHECKPOINT 7

The figure shows the face and
interface temperatures of a com-
posite slab consisting of four

25°C 15°C 10°C –5.0°C –10°C

a b c d

materials, of identical thicknesses, through which the heat transfer is steady. Rank the ma-
terials according to their thermal conductivities, greatest first.

49518-12 H EAT TRAN S FE R M ECHAN I S M S
PART 2

HALLIDAY REVISED

halliday_c18_476-506v2.qxd  22-10-2009  12:03  Page 495

(A) a, b, c, d

(B) (b and d), a, c

(C) c, a, (b and d)

(D) (b, c, and d), a

1Halliday, Resnick, Walker, page 495.
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Thermal Conduction and Insulation

Engineers generally prefer to quote “R-values” for insulation,
rather than using thermal conductivity, k .

For a particular material:

R =
L

k

This is its “length-resistivity” to heat transfer.

A high value of R indicates a good insulator.

The units used are ft2 ◦F h / Btu. (h is hours, Btu is British
thermal units, 1 Btu = 1.06 kJ)



Summary

• heat transfer

• Newton’s law of cooling


