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Last time

• heat transfer mechanisms: radiation

• modeling an ideal gas at the microscopic level

• pressure from the microscopic model



Overview

• pressure, temperature, and internal energy from the
microscopic model

• rms speed of molecules

• equipartition of energy



Kinetic Theory of Gases

Previously, we studied what happens in thermodynamic systems to
bulk properties in various transformations.

Now we want to understand how these macroscopic quantities
arise from the microscopic behavior of particles, on average.

We cannot model every the motion of every single particle in a
substance, but we can say a lot about the ensemble of particles
statistically.



Reminder: Molecular Model of an Ideal Gas
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21.1 Molecular Model of an Ideal Gas
In this chapter, we will investigate a structural model for an ideal gas. A structural 
model is a theoretical construct designed to represent a system that cannot be 
observed directly because it is too large or too small. For example, we can only 
observe the solar system from the inside; we cannot travel outside the solar system 
and look back to see how it works. This restricted vantage point has led to different 
historical structural models of the solar system: the geocentric model, with the Earth at 
the center, and the heliocentric model, with the Sun at the center. Of course, the latter 
has been shown to be correct. An example of a system too small to observe directly 
is the hydrogen atom. Various structural models of this system have been devel-
oped, including the Bohr model (Section 42.3) and the quantum model (Section 42.4). 
Once a structural model is developed, various predictions are made for experimen-
tal observations. For example, the geocentric model of the solar system makes pre-
dictions of how the movement of Mars should appear from the Earth. It turns out 
that those predictions do not match the actual observations. When that occurs with 
a structural model, the model must be modified or replaced with another model.
 The structural model that we will develop for an ideal gas is called kinetic the-
ory. This model treats an ideal gas as a collection of molecules with the following 
properties:

 1. Physical components: 
  The gas consists of a number of identical molecules within a cubic con-

tainer of side length d. The number of molecules in the gas is large, and the 
average separation between them is large compared with their dimensions. 
Therefore, the molecules occupy a negligible volume in the container. This 
assumption is consistent with the ideal gas model, in which we imagine the 
molecules to be point-like.

 2. Behavior of the components: 
  (a)  The molecules obey Newton’s laws of motion, but as a whole their motion 

is isotropic: any molecule can move in any direction with any speed. 
  (b)  The molecules interact only by short-range forces during elastic colli-

sions. This assumption is consistent with the ideal gas model, in which 
the molecules exert no long-range forces on one another. 

  (c)  The molecules make elastic collisions with the walls.

Although we often picture an ideal gas as consisting of single atoms, the behavior of 
molecular gases approximates that of ideal gases rather well at low pressures. Usu-
ally, molecular rotations or vibrations have no effect on the motions considered here.
 For our first application of kinetic theory, let us relate the macroscope variable 
of pressure P to microscopic quantities. Consider a collection of N molecules of an 
ideal gas in a container of volume V. As indicated above, the container is a cube 
with edges of length d (Fig. 21.1). We shall first focus our attention on one of these 
molecules of mass m0 and assume it is moving so that its component of velocity in 
the x direction is vxi as in Figure 21.2. (The subscript i here refers to the ith mol-
ecule in the collection, not to an initial value. We will combine the effects of all the 
molecules shortly.) As the molecule collides elastically with any wall (property 2(c) 
above), its velocity component perpendicular to the wall is reversed because the 
mass of the wall is far greater than the mass of the molecule. The molecule is mod-
eled as a nonisolated system for which the impulse from the wall causes a change in 
the molecule’s momentum. Because the momentum component pxi of the molecule 
is m0vxi before the collision and 2m0vxi after the collision, the change in the x com-
ponent of the momentum of the molecule is

 Dpxi 5 2m0vxi 2 (m0vxi) 5 22m0vxi (21.1)

d

d d
z x

y

m 0

vxi

vi
S

One molecule of the gas 
moves with velocity v on 
its way toward a collision 
with the wall.

S

Figure 21.1  A cubical box with 
sides of length d containing an 
ideal gas. 

Figure 21.2 A molecule makes 
an elastic collision with the wall 
of the container. In this construc-
tion, we assume the molecule 
moves in the xy plane.
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The molecule’s x 
component of 
momentum is 
reversed, whereas 
its y component 
remains 
unchanged.

We modeled the particles of gas as small, identical, and obeying
Newton’s laws, with no long range interactions.

We assumed all collisions are elastic.

1Figure from Serway & Jewett.



Reminder: Molecular Model of an Ideal Gas

Yesterday, we arrived at this expression for the force on a wall from
particle collisions:

F =
m0

d
N v2x

We can already relate this force to a pressure, P = F/A, since
V = Ad = d3:

P =
m0

V
N v2x

and next, we will relate it to the average translational kinetic
energy of a particle.



Molecular Model of an Ideal Gas
For a particle in 3-dimensions:

v2i = v2xi + v2yi + v2zi

If this is true for each individual particle, it is true for averages over
many particles automatically:

v2 = v2x + v2y + v2z

Is there any reason why the particles should have different motion
in the y , z directions than the x direction? (We neglect long range
forces, like gravity.)

No! We assume isotropy: the gas behaves the same way in each
direction.

v2x = v2y = v2z

and
v2 = 3v2x
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Molecular Model of an Ideal Gas

P =
m0

V
N v2x

becomes:

P =
1

3

m0

V
N v2

=
2

3

N

V
K̄trans

where K̄trans =
1
2m0v2 is the average translational kinetic energy of

a particle.



Pressure from the Molecular Model

P =
2

3

N

V
K̄trans

This relates the pressure in the gas to the average translational
kinetic energy of a particle in the gas.

More K.E., or less volume ⇒ higher pressure.



Relation to Macroscopic view of an Ideal Gas

Ideal gas equation:
PV = nRT

or equivalently:
PV = NkBT

If we put our new expression for pressure into this equation:

2

3
NK̄trans = NkBT

We can cancel N from both sides and re-arrange:

K̄trans =
1

2
m0v2 =

3

2
kBT



Temperature from the Molecular Model

We can also relate temperature to molecular motion!

T =
2

3kb
K̄trans

Temperature is directly proportional to the average translational
kinetic energy of a particle in the gas.



RMS Speed and Temperature

K̄ =
1

2
m0v2 =

3

2
kBT

It would also be useful to express the average molecular speed in
terms of the temperature.

Since the motion of the gas molecules are isotropic, the average
velocity is zero.

However, we can instead consider the root-mean-square (rms)
speed.

That is convenient here because, at the top of the slide, we have
the average of the squares of the speed, not the average speed
itself.
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RMS Speed and Temperature

root-mean-square (rms) speed:

vrms =
√

v2 =

√
3kBT

m0

Alternatively, it can be expressed

vrms =

√
3RT

M

where M is the molar mass. (nR = NkB and m = nM = Nm0)

rms speed is higher for less massive molecules for a given
temperature.



RMS Speed Question

An ideal gas is maintained at constant pressure. If the temperature
of the gas is increased from 200 K to 600 K, what happens to the
rms speed of the molecules?

(A) It increases by a factor of 3.

(B) It remains the same.

(C) It is one-third the original speed.

(D) It is
√

3 times the original speed.

1Serway & Jewett, page 644, question 2.
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Kinetic Energy and Internal Energy

We have shown:

K̄trans =
1

2
m0v2 =

3

2
kBT

So the total translational kinetic energy of an ideal gas of N
particles is:

Ktot,trans =
3

2
NkBT =

3

2
nRT

This is also the total kinetic energy of an ideal monatomic gas
because in a monatomic gas the three translational motions are
the only degrees of freedom.
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Equipartition of Energy
In physics, the number of degrees of freedom a system has is the
number of real number variables we need to specify to describe a
system.

For our purposes here, we can say that each degree of freedom
counts another way that a particle can possess energy.

It can move in the x-direction, having kinetic energy, but also in
the y and z directions. That’s 3 ways. 3 degrees of freedom.

Degrees of freedom count rotational and vibrational motion as well
as translational K.E.

Equipartition of energy theorem

Each degree of freedom for a molecule contributes an additional
1
2kBT of energy to the system.
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Equipartition of Energy

Equipartition of energy theorem

Each degree of freedom for a molecule contributes an additional
1
2kBT of energy to the system.

Strictly, this only is proven to hold for systems in thermal
equilibrium that are ergodic, meaning all microstates (states of all
the particles) are equally probable over long periods of time.

It can be proven starting from the Boltzmann distribution of
energies (to come).

This assumes a continuum of possible energies, so we expect
problems when we are in settings where the thermal energy kBT is
much less than the energy spacing between energy levels predicted
by quantum mechanics.
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Kinetic Energy and Internal Energy

The total kinetic energy of an ideal monatomic gas of N particles
is the total translational K.E.

Ktot,trans =
3

2
NkBT =

3

2
nRT

In a monatomic gas these are the three translational motions are
the only degrees of freedom. We can choose

Eint = Ktot,trans = N

(
3

2
kBT

)
=

3

2
nRT

(This is the thermal energy, so we choose do define the bond
energy as zero – if we liquify the gas the bond energy becomes
negative.)



Question

Quick Quiz 21.11 Two containers hold an ideal gas at the same
temperature and pressure. Both containers hold the same type of
gas, but container B has twice the volume of container A.

(i) What is the average translational kinetic energy per molecule in
container B?

(A) twice that of container A

(B) the same as that of container A

(C) half that of container A

(D) impossible to determine

1Serway & Jewett, page 631.
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Summary

• molecular models

• rms speed of molecules

• equipartition of energy

Test on Ch 19&20, tomorrow.

Homework Serway & Jewett:

• Ch 21, CQs: 7; Probs: 47


