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Last time

• modeling an ideal gas at the microscopic level

• rms speed of molecules

• equipartition of energy



Warm Up Questions
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For the constant-volume 
path, all the energy input 
goes into increasing the 
internal energy of the gas 
because no work is done.

Along the constant-pressure 
path, part of the energy 
transferred in by heat is 
transferred out by work.

Figure 21.4 Energy is trans-
ferred by heat to an ideal gas in 
two ways.

Let’s now apply the results of this discussion to a monatomic gas. Substituting the 
internal energy from Equation 21.25 into Equation 21.28 gives

 CV 5 3
2R 5 12.5 J/mol # K  (21.29)

This expression predicts a value of CV 5 3
2R  for all monatomic gases. This predic-

tion is in excellent agreement with measured values of molar specific heats for such 
gases as helium, neon, argon, and xenon over a wide range of temperatures (Table 
21.2). Small variations in Table 21.2 from the predicted values are because real 
gases are not ideal gases. In real gases, weak intermolecular interactions occur, 
which are not addressed in our ideal gas model.
 Now suppose the gas is taken along the constant-pressure path i S f 9 shown in 
Figure 21.4. Along this path, the temperature again increases by DT. The energy 
that must be transferred by heat to the gas in this process is Q 5 nCP DT. Because 
the volume changes in this process, the work done on the gas is W 5 2P DV, where 
P is the constant pressure at which the process occurs. Applying the first law of 
thermodynamics to this process, we have

 DE int 5 Q 1 W 5 nCP DT 1 (2P DV) (21.30)

In this case, the energy added to the gas by heat is channeled as follows. Part of it 
leaves the system by work (that is, the gas moves a piston through a displacement), 
and the remainder appears as an increase in the internal energy of the gas. The 
change in internal energy for the process i S f 9, however, is equal to that for the pro-
cess i S f because E int depends only on temperature for an ideal gas and DT is the 
same for both processes. In addition, because PV 5 nRT, note that for a constant- 
pressure process, P DV 5 nR DT. Substituting this value for P DV into Equation 
21.30 with DE int 5 nCV DT (Eq. 21.27) gives

 nCV DT 5 nCP DT 2 nR DT 

 CP 2 CV 5 R (21.31)

This expression applies to any ideal gas. It predicts that the molar specific heat of an 
ideal gas at constant pressure is greater than the molar specific heat at constant vol-
ume by an amount R, the universal gas constant (which has the value 8.31 J/mol ? K). 
This expression is applicable to real gases as the data in Table 21.2 show.

Table 21.2 Molar Specific Heats of Various Gases
Molar Specific Heat ( J/mol ? K)a

Gas CP CV CP  2 CV g 5 CP/CV

Monatomic gases
He 20.8 12.5 8.33 1.67
Ar 20.8 12.5 8.33 1.67
Ne 20.8 12.7 8.12 1.64
Kr 20.8 12.3 8.49 1.69

Diatomic gases
H2 28.8 20.4 8.33 1.41
N2 29.1 20.8 8.33 1.40
O2 29.4 21.1 8.33 1.40
CO 29.3 21.0 8.33 1.40
Cl2 34.7 25.7 8.96 1.35

Polyatomic gases
CO2 37.0 28.5 8.50 1.30
SO2 40.4 31.4 9.00 1.29
H2O 35.4 27.0 8.37 1.30
CH4 35.5 27.1 8.41 1.31

a All values except that for water were obtained at 300 K.

Quick Quiz 21.21 (i) How does the internal energy of an ideal gas
change as it follows path i → f ?

(A) Eint increases.

(B) Eint decreases.

(C) Eint stays the same.

(D) There is not enough information to determine how Eint

changes.
1Serway & Jewett, page 631.
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Overview

• molar heat capacities

• values of heat capacities for monatomic ideal gases



Another Look at Heat Capacity

Paths with the same ∆T ,
∆Eint:
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A change in the internal energy Eint of a confined ideal gas depends on only the
change in the temperature, not on what type of process produces the change.

Fig. 19-10 Three paths representing
three different processes that take an ideal
gas from an initial state i at temperature T
to some final state f at temperature T #
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of the gas is the same for these three
processes and for any others that result in
the same change of temperature.

Pr
es

su
re

 

Volume 

i 

f 

T +    T ∆ 

T  

f 

f 

1 

2 

3 

The paths are different,
but the change in the
internal energy is the
same.

As examples, consider the three paths between the two isotherms in the p-V dia-
gram of Fig. 19-10. Path 1 represents a constant-volume process. Path 2 represents a
constant-pressure process (that we are about to examine). Path 3 represents a process
in which no heat is exchanged with the system’s environment (we discuss this in Section
19-11). Although the values of heat Q and work W associated with these three paths
differ, as do pf and Vf , the values of $Eint associated with the three paths are identical
and are all given by Eq. 19-45, because they all involve the same temperature change
$T.Therefore,no matter what path is actually taken between T and T # $T,we can al-
ways use path 1 and Eq.19-45 to compute $Eint easily.

energy to the gas as heat Q by slowly turning up the temperature of the thermal
reservoir. The gas temperature rises a small amount to T # $T, and its pressure
rises to p # $p, bringing the gas to final state f. In such experiments, we would
find that the heat Q is related to the temperature change $T by

Q " nCV $T (constant volume), (19-39)

where CV is a constant called the molar specific heat at constant volume. Substi-
tuting this expression for Q into the first law of thermodynamics as given by Eq. 18-
26 ($Eint " Q % W ) yields

$Eint " nCV $T % W. (19-40)

With the volume held constant, the gas cannot expand and thus cannot do any
work.Therefore, W " 0, and Eq. 19-40 gives us

(19-41)

From Eq. 19-38, the change in internal energy must be

(19-42)

Substituting this result into Eq. 19-41 yields

(monatomic gas). (19-43)

As Table 19-2 shows, this prediction of the kinetic theory (for ideal gases) agrees
very well with experiment for real monatomic gases, the case that we have
assumed. The (predicted and) experimental values of CV for diatomic gases
(which have molecules with two atoms) and polyatomic gases (which have mole-
cules with more than two atoms) are greater than those for monatomic gases for
reasons that will be suggested in Section 19-9.

We can now generalize Eq. 19-38 for the internal energy of any ideal gas by
substituting CV for R; we get

Eint " nCVT (any ideal gas). (19-44)

This equation applies not only to an ideal monatomic gas but also to diatomic
and polyatomic ideal gases, provided the appropriate value of CV is used. Just as
with Eq. 19-38, we see that the internal energy of a gas depends on the temper-
ature of the gas but not on its pressure or density.

When a confined ideal gas undergoes temperature change $T, then from ei-
ther Eq. 19-41 or Eq. 19-44 the resulting change in its internal energy is

$Eint " nCV $T (ideal gas, any process). (19-45)

This equation tells us:

3
2

CV " 3
2R " 12.5 J/mol!K

$Eint " 3
2nR $T.

CV "
$Eint

n $T
.
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We have related internal energy
to temperature through KE
(monatomic gas):

Eint = Ktot,trans =
3

2
nRT

and from the first law of
thermodynamics:

∆Eint = Q +W

Since W is different for the
different processes shown, so is
Q.



Another Look at Heat Capacity
We already studied specific heat, c = Q

m∆T , particularly for solids
and liquids.

Now we must revisit this concept, because for gases there are
many ways to change the temperature of a gas by ∆T , with
different ways requiring different amounts of heat, Q.
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1Diagram from Halliday, Resnick, Walker, 9th ed, page 520.
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For processes 1, 2, and 3:

Q1 = c1m∆T

Q2 = c2m∆T

Q3 = c3m∆T

Each process has a different value of c!



Molar Specific Heat of an Ideal Gas

For solids and liquids, heat capacity, C , and specific heat capacity,
c , are defined to be for constant pressure processes.

This is purely because it is very difficult to stop a solid or liquid
from expanding and maintain it at a constant volume!
(∆V = βVi∆T )

However, it is possible to measure the heat capacities of solids and
liquids at constant volume instead of constant pressure.

When that is done, small differences in the values of the heat
capacity are obtained.



Molar Specific Heat of an Ideal Gas

In gases, the variation of the heat capacity obtained for different
paths is quite big.

Define:

Molar heat capacity at constant volume, CV

Along an isovolumetric process (constant volume):

Q = nCV ∆T

Molar heat capacity at constant pressure, CP

Along an isobaric process (constant pressure):

Q = nCP ∆T

(These are both intensive quantities, like specific heat.)



Molar Specific Heat of an Ideal Gas

We have defined molar heat capacities (cap. per mole) here and
not specific heat capacities (cap. per mass).

Why?

Using “per mole” as the reference for heat capacity allows us to
talk about many different gases with the same relationships, since
we will always be talking about the same number of molecules.

It is just more convenient.



Molar Specific Heat of an Ideal Gas

We have defined molar heat capacities (cap. per mole) here and
not specific heat capacities (cap. per mass).

Why?

Using “per mole” as the reference for heat capacity allows us to
talk about many different gases with the same relationships, since
we will always be talking about the same number of molecules.

It is just more convenient.



Heat Capacity for Constant Volume Processes
In a constant volume process, no work is done: ∆Eint = Q
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19-8 The Molar Specific Heats of an Ideal Gas
In this section, we want to derive from molecular considerations an expression for
the internal energy Eint of an ideal gas. In other words, we want an expression for the
energy associated with the random motions of the atoms or molecules in the gas.We
shall then use that expression to derive the molar specific heats of an ideal gas.

Internal Energy Eint
Let us first assume that our ideal gas is a monatomic gas (which has individual
atoms rather than molecules), such as helium, neon, or argon. Let us also assume
that the internal energy Eint of our ideal gas is simply the sum of the translational
kinetic energies of its atoms. (As explained by quantum theory, individual atoms
do not have rotational kinetic energy.)

The average translational kinetic energy of a single atom depends only on
the gas temperature and is given by Eq. 19-24 as . A sample of n
moles of such a gas contains nNA atoms.The internal energy Eint of the sample is then

(19-37)

Using Eq. 19-7 (k ! R/NA), we can rewrite this as

(monatomic ideal gas). (19-38)Eint ! 3
2nRT

Eint ! (nNA)Kavg ! (nNA)(3
2kT ).

Kavg ! 3
2 kT

KEY I DEA

Additional examples, video, and practice available at WileyPLUS

(c) What is the most probable speed vP at 300 K?

Speed vP corresponds to the maximum of the distribution
function P(v), which we obtain by setting the derivative
dP/dv ! 0 and solving the result for v.

Calculation: We end up with Eq. 19-35, which gives us
(Answer)

This result is also plotted in Fig. 19-8a.

! 395 m/s.

! A 2(8.31 J/mol "K)(300 K)
0.0320 kg/mol

vP ! A 2RT
M

The internal energy Eint of an ideal gas is a function of the gas temperature only; it
does not depend on any other variable.

Fig. 19-9 (a) The temperature of an
ideal gas is raised from T to T # $T in a
constant-volume process. Heat is added,
but no work is done. (b) The process on a 
p-V diagram.

T Q 

Pin 

(a) 

(b) 
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Volume 

V 

i 

p 

f p +    p ∆ 

T +    T ∆ 

T  

Pin 

Thermal reservoir 

The temperature 
increase is done 
without changing
the volume.

With Eq.19-38 in hand,we are now able to derive an expression for the molar spe-
cific heat of an ideal gas.Actually,we shall derive two expressions.One is for the case in
which the volume of the gas remains constant as energy is transferred to or from it as
heat.The other is for the case in which the pressure of the gas remains constant as en-
ergy is transferred to or from it as heat.The symbols for these two molar specific heats
are CV and Cp, respectively. (By convention, the capital letter C is used in both cases,
even though CV and Cp represent types of specific heat and not heat capacities.)

Molar Specific Heat at Constant Volume
Figure 19-9a shows n moles of an ideal gas at pressure p and temperature T,
confined to a cylinder of fixed volume V.This initial state i of the gas is marked on
the p-V diagram of Fig. 19-9b. Suppose now that you add a small amount of
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Therefore,

∆Eint = nCV ∆T

and

CV =
1

n

(
∂Eint

∂T

)
V

(the subscipt V means const volume)



Heat Capacity for Constant Volume Processes

CV =
1

n

(
∂Eint

∂T

)
V

(the subscipt V means const volume)

Putting in our value for internal energy (monatomic gas):

CV =
1

n

(
∂

∂T

(
3

2
nRT

))
V

CV =
3

2
R

This is the value for CV for all monatomic gases.



Heat Capacity for Constant Pressure Processes
In a constant pressure process, the work done on the gas is:
W = −P ∆V

52119-8 TH E MOLAR S PECI FIC H EATS OF AN I DEAL GAS
PART 2

HALLIDAY REVISED

Fig. 19-11 (a) The temperature of an
ideal gas is raised from T to T ! "T in a
constant-pressure process. Heat is added
and work is done in lifting the loaded pis-
ton. (b) The process on a p-V diagram.The
work p "V is given by the shaded area.

T Q 

(a) 

(b)

Pr
es

su
re

Volume

V

i
f

V +    V∆

T +    T∆

T 

W 

p

p    V∆

Thermal reservoir 

The temperature 
increase is done 
without changing
the pressure.

Monatomic Diatomic

nR ∆T7__
2

nR ∆T5__
2

nR ∆T Q @ con V

Q @ con p

W

W ∆Eint trans

3__
2

∆Eint trans

Q @ con V

Q @ con p

W
∆Eint trans

rotation

trans
rotation

∆Eint

WFig. 19-12 The rela-
tive values of Q for a
monatomic gas (left side)
and a diatomic gas under-
going a constant-volume
process (labeled “con V”)
and a constant-pressure
process (labeled “con p”).
The transfer of the energy
into work W and internal
energy ("Eint) is noted.

pressure process . Note that for the latter, the value of Q is higher
by the amount W, the work done by the gas in the expansion. Note also that for
the constant-volume process, the energy added as Q goes entirely into the change
in internal energy "Eint and for the constant-pressure process, the energy added
as Q goes into both "Eint and the work W.

(Q # 5
2nR "T )

Molar Specific Heat at Constant Pressure
We now assume that the temperature of our ideal gas is increased by the same
small amount "T as previously but now the necessary energy (heat Q) is added
with the gas under constant pressure. An experiment for doing this is shown in
Fig. 19-11a; the p-V diagram for the process is plotted in Fig. 19-11b. From such
experiments we find that the heat Q is related to the temperature change "T by

Q # nCp "T (constant pressure), (19-46)

where Cp is a constant called the molar specific heat at constant pressure. This
Cp is greater than the molar specific heat at constant volume CV, because energy
must now be supplied not only to raise the temperature of the gas but also for
the gas to do work—that is, to lift the weighted piston of Fig. 19-11a.

To relate molar specific heats Cp and CV, we start with the first law of ther-
modynamics (Eq. 18-26):

"Eint # Q $ W. (19-47)

We next replace each term in Eq. 19-47. For "Eint, we substitute from Eq.
19-45. For Q, we substitute from Eq. 19-46. To replace W, we first note that since
the pressure remains constant, Eq. 19-16 tells us that W # p "V. Then we note
that, using the ideal gas equation (pV # nRT), we can write

W # p "V # nR "T. (19-48)

Making these substitutions in Eq. 19-47 and then dividing through by n "T, we find

CV # Cp $ R
and then

Cp # CV ! R. (19-49)

This prediction of kinetic theory agrees well with experiment, not only for
monatomic gases but also for gases in general, as long as their density is low
enough so that we may treat them as ideal.

The left side of Fig. 19-12 shows the relative values of Q for a monatomic gas
undergoing either a constant-volume process or a constant-(Q # 3

2nR "T )
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From the ideal gas equation:

P ∆V = nR ∆T

So,
W = −nR ∆T



Heat Capacity for Constant Pressure Processes
First law:

∆Eint = Q +W

rearranging:

∆Eint − Q = W

nCV ∆T − nCP ∆T = −nR ∆T

because Q = nCP ∆T . Dividing by −n ∆T :

CP − CV = R

For a monatomic gas:

CP =
5

2
R



Heat Capacity for Constant Pressure Processes
First law:

∆Eint = Q +W

rearranging:

∆Eint − Q = W

nCV ∆T − nCP ∆T = −nR ∆T

because Q = nCP ∆T . Dividing by −n ∆T :

CP − CV = R

For a monatomic gas:

CP =
5

2
R



Summary

• molar heat capacities

• values of heat capacities for monatomic ideal gases


