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Last time

• heat capacities for monatomic ideal gases



Overview

• heat capacities for diatomic ideal gases

• adiabatic processes



Quick Recap
For all ideal gases:

Ktot,trans = NK̄trans =
3

2
NkBT =

3

2
nRT

and
∆Eint = nCV ∆T

For monatomic gases:

Eint = Ktot,trans =
3

2
nRT

and so,

CV =
3

2
R

and

CP =
5

2
R



Reminder: Kinetic Energy and Internal Energy

In a monatomic gas the three translational motions are the only
degrees of freedom. We can choose

Eint = Ktot,trans = N

(
3

2
kBT

)
=

3

2
nRT

(This is the thermal energy, so the bond energy is zero – if we
liquify the gas the bond energy becomes negative.)



Equipartition Consequences in Diatomic Gases

Reminder:

Equipartition of energy theorem

Each degree of freedom for each molecule contributes an and
additional 1

2kBT of energy to the system.

A monatomic gas has 3 degrees of freedom: it can have
translational KE due to motion in 3 independent directions.

A diatomic gas has more ways to move and store energy.

It can:

• translate

• rotate

• vibrate



Equipartition Consequences in Diatomic Gases
Contribution to internal energy:

3

(
1

2
kBT

)
−→

(3 directions of motion)

2

(
1

2
kBT

)
−→

(rotations about x and z axes)

2

(
1

2
kBT

)
−→

(KE and PE of harmonic oscillator)
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21.3 The Equipartition of Energy
Predictions based on our model for molar specific heat agree quite well with the 
behavior of monatomic gases, but not with the behavior of complex gases (see Table 
21.2). The value predicted by the model for the quantity CP 2 CV 5 R, however, is 
the same for all gases. This similarity is not surprising because this difference is the 
result of the work done on the gas, which is independent of its molecular structure.
 To clarify the variations in CV and CP in gases more complex than monatomic 
gases, let’s explore further the origin of molar specific heat. So far, we have 
assumed the sole contribution to the internal energy of a gas is the translational 
kinetic energy of the molecules. The internal energy of a gas, however, includes 
contributions from the translational, vibrational, and rotational motion of the mol-
ecules. The rotational and vibrational motions of molecules can be activated by 
collisions and therefore are “coupled” to the translational motion of the molecules. 
The branch of physics known as statistical mechanics has shown that, for a large num-
ber of particles obeying the laws of Newtonian mechanics, the available energy is, 
on average, shared equally by each independent degree of freedom. Recall from 
Section 21.1 that the equipartition theorem states that, at equilibrium, each degree 
of freedom contributes 1

2 kBT  of energy per molecule.
 Let’s consider a diatomic gas whose molecules have the shape of a dumbbell (Fig. 
21.5). In this model, the center of mass of the molecule can translate in the x, y, and 
z directions (Fig. 21.5a). In addition, the molecule can rotate about three mutually 
perpendicular axes (Fig. 21.5b). The rotation about the y axis can be neglected 
because the molecule’s moment of inertia Iy and its rotational energy 1

2 Iyv
2 about 

this axis are negligible compared with those associated with the x and z axes. (If 
the two atoms are modeled as particles, then Iy is identically zero.) Therefore, there 
are five degrees of freedom for translation and rotation: three associated with the 
translational motion and two associated with the rotational motion. Because each 
degree of freedom contributes, on average, 1

2kBT  of energy per molecule, the inter-
nal energy for a system of N molecules, ignoring vibration for now, is

 E int 5 3N 11
2kBT 2 1 2N 11

2kBT 2 5 5
2 NkBT 5 5

2nRT  

We can use this result and Equation 21.28 to find the molar specific heat at con-
stant volume:

 CV 5
1
n  

dE int

dT
5

1
n  

d
dT

15
2nRT 2 5 5

2R  5 20.8 J/mol ? K (21.33)

From Equations 21.31 and 21.32, we find that

 CP 5 CV 1 R 5 7
2 R  5 29.1 J/mol ? K 

 g 5
CP

CV
5

7
2R
5
2R

5
7
5

5 1.40 

These results agree quite well with most of the data for diatomic molecules given 
in Table 21.2. That is rather surprising because we have not yet accounted for the 
possible vibrations of the molecule.
 In the model for vibration, the two atoms are joined by an imaginary spring (see 
Fig. 21.5c). The vibrational motion adds two more degrees of freedom, which cor-
respond to the kinetic energy and the potential energy associated with vibrations 
along the length of the molecule. Hence, a model that includes all three types of 
motion predicts a total internal energy of

 E int 5 3N 11
2kBT 2 1 2N 11

2kBT 2 1 2N 11
2kBT 2 5 7

2Nk BT 5 7
2nRT  

and a molar specific heat at constant volume of

 CV 5
1
n  

dE int

dT
5

1
n  

d
dT

1 7
2nRT 2 5 7

2R  5 29.1 J/mol ? K (21.34)
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Figure 21.5  Possible motions of 
a diatomic molecule.



(Classical) Equipartition Prediction for Diatomic
Gases

In total:

Eint = N

(
7

2
kBT

)
We can also write the internal energy:

Eint =
7

2
nRT

And so,

CV =
7

2
R

This is what we would expect for a diatomic gas based on the
equipartition theorem.

It is not quite what is observed, however.



What Actually Happens in Diatomic Gases

Prediction:

CV =
7

2
R

For most diatomic gases, such as H2 and N2,

CV =
5

2
R

at moderate temperatures (around room temperature).

And at low temperatures for these gases CV = 3
2R.

It is almost as if degrees of freedom become “activated” once
there is enough energy...



What Actually Happens in Diatomic Gases

Prediction:

CV =
7

2
R

For most diatomic gases, such as H2 and N2,

CV =
5

2
R

at moderate temperatures (around room temperature).

And at low temperatures for these gases CV = 3
2R.

It is almost as if degrees of freedom become “activated” once
there is enough energy...



What Actually Happens in Diatomic Gases

Hydrogen gas:

52519-10 A  H I NT OF QUANTU M TH EORY
PART 2

HALLIDAY REVISEDHALLIDAY

19-10 A Hint of Quantum Theory
We can improve the agreement of kinetic theory with experiment by including
the oscillations of the atoms in a gas of diatomic or polyatomic molecules. For
example, the two atoms in the O2 molecule of Fig. 19-13b can oscillate toward
and away from each other, with the interconnecting bond acting like a spring.
However, experiment shows that such oscillations occur only at relatively high
temperatures of the gas—the motion is “turned on” only when the gas molecules
have relatively large energies. Rotational motion is also subject to such “turning
on,” but at a lower temperature.

Figure 19-14 is of help in seeing this turning on of rotational motion and
oscillatory motion. The ratio CV/R for diatomic hydrogen gas (H2) is plotted there
against temperature, with the temperature scale logarithmic to cover several orders
of magnitude. Below about 80 K, we find that CV/R ! 1.5. This result implies that
only the three translational degrees of freedom of hydrogen are involved in the spe-
cific heat.

As the temperature increases, the value of CV /R gradually increases to 2.5,
implying that two additional degrees of freedom have become involved.
Quantum theory shows that these two degrees of freedom are associated with the
rotational motion of the hydrogen molecules and that this motion requires a
certain minimum amount of energy. At very low temperatures (below 80 K), the
molecules do not have enough energy to rotate. As the temperature increases
from 80 K, first a few molecules and then more and more of them obtain enough
energy to rotate, and the value of CV /R increases, until all of the molecules are ro-
tating and CV /R ! 2.5.

Similarly, quantum theory shows that oscillatory motion of the molecules
requires a certain (higher) minimum amount of energy. This minimum amount is
not met until the molecules reach a temperature of about 1000 K, as shown in
Fig. 19-14. As the temperature increases beyond 1000 K, more and more mole-
cules have enough energy to oscillate and the value of CV /R increases, until all of
the molecules are oscillating and CV /R ! 3.5. (In Fig. 19-14, the plotted curve
stops at 3200 K because there the atoms of a hydrogen molecule oscillate so
much that they overwhelm their bond, and the molecule then dissociates into two
separate atoms.)
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Fig. 19-14 CV/R versus temperature for (diatomic) hydrogen
gas. Because rotational and oscillatory motions begin at certain
energies, only translation is possible at very low temperatures.As
the temperature increases, rotational motion can begin.At still
higher temperatures,oscillatory motion can begin.
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At 3200K the molecules begin to
dissociate.
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and vibrational quantum states of a diatomic molecule. The lowest allowed state 
is called the ground state. The black lines show the energies allowed for the mol-
ecule. Notice that allowed vibrational states are separated by larger energy gaps 
than are rotational states.
 At low temperatures, the energy a molecule gains in collisions with its neighbors 
is generally not large enough to raise it to the first excited state of either rotation or 
vibration. Therefore, even though rotation and vibration are allowed according to 
classical physics, they do not occur in reality at low temperatures. All molecules are 
in the ground state for rotation and vibration. The only contribution to the mol-
ecules’ average energy is from translation, and the specific heat is that predicted by 
Equation 21.29.
 As the temperature is raised, the average energy of the molecules increases. In 
some collisions, a molecule may have enough energy transferred to it from another 
molecule to excite the first rotational state. As the temperature is raised further, 
more molecules can be excited to this state. The result is that rotation begins to 
contribute to the internal energy, and the molar specific heat rises. At about room 
temperature in Figure 21.6, the second plateau has been reached and rotation con-
tributes fully to the molar specific heat. The molar specific heat is now equal to the 
value predicted by Equation 21.33.
 There is no contribution at room temperature from vibration because the mole-
cules are still in the ground vibrational state. The temperature must be raised even 
further to excite the first vibrational state, which happens in Figure 21.6 between 
1 000 K and 10 000 K. At 10 000 K on the right side of the figure, vibration is con-
tributing fully to the internal energy and the molar specific heat has the value pre-
dicted by Equation 21.34.
 The predictions of this model are supportive of the theorem of equipartition of 
energy. In addition, the inclusion in the model of energy quantization from quan-
tum physics allows a full understanding of Figure 21.6.

Q uick Quiz 21.3  The molar specific heat of a diatomic gas is measured at constant 
volume and found to be 29.1 J/mol ? K. What are the types of energy that are con-
tributing to the molar specific heat? (a) translation only (b) translation and rota-
tion only (c) translation and vibration only (d) translation, rotation, and vibration

Q uick Quiz 21.4  The molar specific heat of a gas is measured at constant volume 
and found to be 11R/2. Is the gas most likely to be (a) monatomic, (b) diatomic, 
or (c) polyatomic?

21.4 Adiabatic Processes for an Ideal Gas
As noted in Section 20.6, an adiabatic process is one in which no energy is trans-
ferred by heat between a system and its surroundings. For example, if a gas is com-
pressed (or expanded) rapidly, very little energy is transferred out of (or into) the 
system by heat, so the process is nearly adiabatic. Such processes occur in the cycle 
of a gasoline engine, which is discussed in detail in Chapter 22. Another example 
of an adiabatic process is the slow expansion of a gas that is thermally insulated 
from its surroundings. All three variables in the ideal gas law—P, V, and T—change 
during an adiabatic process.
 Let’s imagine an adiabatic gas process involving an infinitesimal change in 
 volume dV and an accompanying infinitesimal change in temperature dT. The  
work done on the gas is 2P dV. Because the internal energy of an ideal gas depends 
only on temperature, the change in the internal energy in an adiabatic process 
is the same as that for an isovolumetric process between the same temperatures,  
dE int 5 nCV dT (Eq. 21.27). Hence, the first law of thermodynamics, DE int 5 Q 1 W, 
with Q 5 0, becomes the infinitesimal form

 dE int 5 nCV dT 5 2P dV (21.35)

Rotational
states

Rotational
states

Vibrational
states

EN
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G
Y

The rotational states lie closer 
together in energy than do the
vibrational states.

Figure 21.7  An energy-level dia-
gram for vibrational and rotational 
states of a diatomic molecule. 

1Left diagram, Halliday, Resnick, Walker; right diagram Serway & Jewett



Question

Quick Quiz 21.41 The molar specific heat of a gas is measured at
constant volume and found to be 11R/2. Is the gas most likely to
be

(A) monatomic,

(B) diatomic, or

(C) polyatomic?

1Serway & Jewett, page 637.



Question

Quick Quiz 21.41 The molar specific heat of a gas is measured at
constant volume and found to be 11R/2. Is the gas most likely to
be

(A) monatomic,

(B) diatomic, or

(C) polyatomic? ←

1Serway & Jewett, page 637.



A Useful Ratio

The quantity γ is defined as:

γ =
CP

CV

For a monatomic gas:

γ =
5

3

What is γ for a diatomic gas near room temperature?

γ =
7

5
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Summary of Results

For ideal gases at moderate temperatures (around room
temperature):

monatomic gas diatomic gas

CV
3
2R

5
2R

CP
5
2R

7
2R

γ = CP
CV

5
3

7
5



Adiabatic Process in Ideal Gases

For an adiabatic process (Q = 0):

PVγ = const.

and:

TVγ−1 = const.

(Given the first one is true, the second follows immediately from
the ideal gas equation, P = nRT

V .)



Adiabatic Process in Ideal Gases

For an adiabatic process (Q = 0):

PVγ = const.

and:

TVγ−1 = const.

(Given the first one is true, the second follows immediately from
the ideal gas equation, P = nRT

V .)



Adiabatic Process in Ideal Gases
Where this relation comes from:

∆Eint = W

Considering a small volume change in time that produces a small
change in temperature:

dEint

dt
=

dW

dt

nCV
dT

dt
= −P

dV

dt
(1)

The ideal gas law (PV = nRT ) derivative:

P
dV

dt
+V

dP

dt
= nR

dT

dt

n
dT

dt
=

1

R

(
P

dV

dt
+V

dP

dt

)
Substitute n dT

dt into our energy equation (1).



Adiabatic Process in Ideal Gases
Where this relation comes from:

∆Eint = W

Considering a small volume change in time that produces a small
change in temperature:

dEint

dt
=

dW

dt

nCV
dT

dt
= −P

dV

dt
(1)

The ideal gas law (PV = nRT ) derivative:

P
dV

dt
+V

dP

dt
= nR

dT

dt

n
dT

dt
=

1

R

(
P

dV

dt
+V

dP

dt

)
Substitute n dT

dt into our energy equation (1).



Adiabatic Process in Ideal Gases

CV

(
n

dT

dt

)
= −P

dV

dt

CV

R

(
P

dV

dt
+V

dP

dt

)
= −P

dV

dt

V
dP

dt
= −

(
1 +

R

CV

)
P

dV

dt

Notice: γ = 1 +
R

CV

then, dividing by PV :

1

P

dP

dt
= −

γ

V

dV

dt

Integrating both sides:

lnP = −γ lnV + c
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Adiabatic Process in Ideal Gases
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Adiabatic Process in Ideal Gases

lnP = −γ lnV + c

Implies:
PVγ = const.

This equation characterizes an adiabatic process in an ideal gas,
along with this one, which follows from PV = nRT :

TVγ−1 = const.



Example

Based on problem 28, Chapter 21.

How much work is required to compress 5.00 mol of air at 20.0◦C
and 1.00 atm to one-tenth of the original volume in an adiabatic
process? Assume air behaves as an ideal diatomic-type gas.

One way:

PVγ = PiV
γ
i

and

W = −

∫
P dV

Another way:

TiV
γ−1
i = Tf V

γ−1
f

and

W = ∆Eint −��7
0

Q = nCV∆T

W = 46.0 kJ

1Serway & Jewett, page 647.
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Weather and Adiabatic Process in a Gas

On the eastern side of the Rocky Mountains there is a
phenomenon called chinooks.

These eastward moving wind patterns cause distinctive cloud
patterns (chinook arches) and sudden increases in temperature.



Weather and Adiabatic Process in a Gas
As the air rises from the ocean it expands in the lower pressure at
altitude and cools. The water vapor condenses out of the air and
falls as precipitation.

As the air passes over the mountain it absorbs the latent heat from
the water condensation, then it stops cooling. As it descends, it is
compressed (nearly) adiabatically as the ambient pressure
increases. The air temperature rises!



Summary

• more equipartition of energy

• molar heat capacities

• adiabatic processes

Homework
• Full-solution HW2, due tomorrow

• WebAssign, due tomorrow

Serway & Jewett (additional problems you might like to look at):

• Ch 21, Probs: 52, 58, 65


