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Last time

• heat capacities for ideal gases

• adiabatic processes



Overview

• adiabatic process in weather

• the Boltzmann distribution (distribution of energies)

• the Maxwell-Boltzmann distribution (distribution of speeds)



Reminder: Adiabatic Process in Ideal Gases

For an adiabatic process (Q = 0):

PVγ = const.

and:

TVγ−1 = const.

(Given the first one is true, the second follows immediately from
the ideal gas equation, P = nRT

V .)



Weather and Adiabatic Process in a Gas

On the eastern side of the Rocky Mountains there is a
phenomenon called chinooks.

These eastward moving wind patterns cause distinctive cloud
patterns (chinook arches) and sudden increases in temperature.



Weather and Adiabatic Process in a Gas
As the air rises from the ocean it expands in the lower pressure at
altitude and cools. The water vapor condenses out of the air and
falls as precipitation.

As the air passes over the mountain it absorbs the latent heat from
the water condensation, then it stops cooling. As it descends, it is
compressed (nearly) adiabatically as the ambient pressure
increases. The air temperature rises!



Temperature and the Distribution of Particles’
Energies

In a gas at temperature T , we know the average translational KE
of the molecules.

However, not all of the molecules have the same energy, that’s just
the average.

How is the total energy of the gas distributed amongst the
molecules?



Temperature and the Distribution of Particles’
Energies

Ludwig Boltzmann first found the distribution of the number of
particles at a given energy given a thermodynamic system at a
fixed temperature.

Assuming that energy takes continuous values we can say that the
number of molecules per unit volume with energies in the range E
to E + dE is:

N[E ,E+dE] =

∫E+dE

E
nV (E ) dE

Where
nV (E ) = n0e

−E/kBT

and n0 is a constant setting the scale: when E = 0, nV (E ) = n0.



The Boltzmann Distribution
This particular frequency distribution:

nV (E ) ∝ e−E/kBT

is called the Boltzmann distribution or sometimes the Gibbs
distribution (after Josiah Willard Gibbs, who studied the behavior
of this distribution in-depth).

This distribution is even easier to understand for discrete energy
levels.

The probability for a given particle to be found in a state with
energy Ei drawn from a sample at temperature T :

p(Ei ) =
1

Z
e−Ei/kBT

where Z is simply a normalization constant to allow the total
probability to be 1. (The partition function.)
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The Boltzmann Distribution

p(Ei ) =
1

Z
e−Ei/kBT

If we know the energies of two states E1 and E2, E2 > E1, we can
find the ratio of the number of particles in each:

nV (E2)

nV (E1)
= e−(E2−E1)/kBT

States with lower energies have more particles occupying them.



The Boltzmann Distribution

Lower temperature Higher temperature

1Figure from the website of Dr. Joseph N. Grima, University of Malta.



(Somewhat Contrived) Example
Suppose a type of atom has only 2 energy states, separated in
energy by 12.0 eV.1 For a very large sample of these atoms, at
what temperature would 1% of the atoms in the sample be in the
excited (higher energy) state?

∆E = E2 − E1 = 12 eV

nV (E2)

nV (E1)
=

1

99

e−(E2−E1)/kBT =
1

99
−(E2 − E1)

kBT
= − ln(99)

T =
(E2 − E1)

kB ln 99

=
12 eV× 1.602× 10−19 J/eV

(1.38× 10−23) ln 99

= 30, 300 K (3 sig figs)

1This does not describe any real atom.
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Suppose a type of atom has only 2 energy states, separated in
energy by 12.0 eV.2 For a very large sample of these atoms,
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Aside: Lasers

Lasers emit coherent light. One photon interacts with an atom and
causes another to be emitted with the same phase.

This starts a cascade.

Inside a laser cavity there are atoms that are in a very strange
state: a higher energy level is more populated than a lower one.
This is called a “population inversion”.



Aside: Lasers

This is necessary for the photon cascade. Since:

nV (E2)

nV (E1)
= e−(E2−E1)/kBT , E2 > E1

we can associate a “negative temperature”, T , to these two energy
states in the atoms.



Maxwell-Boltzmann speed distribution

The Boltzmann distribution for energy can be leveraged to find a
distribution of the speeds of the molecules.

This is the Maxwell-Boltzmann speed distribution.

The number of molecules with speeds between v and v + dv is∫ v+dv

v
Nv dv =

∫ v+dv

v
4πN

(
m0

2πkBT

)3/2

v2e−m0v
2/2kBT dv



Maxwell-Boltzmann speed distribution
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 21.5 Distribution of Molecular Speeds 641

 The fundamental expression that describes the distribution of speeds of N gas 
molecules is

 Nv 5 4pN a m0 
2pkBT

b3/2

v2e2m 0v 2/2kBT  (21.41)

where m0 is the mass of a gas molecule, k B is Boltzmann’s constant, and T is the 
absolute temperature.3 Observe the appearance of the Boltzmann factor e2E/kBT  
with E 5 1

2m0v2.
 As indicated in Figure 21.10, the average speed is somewhat lower than the 
rms speed. The most probable speed vmp is the speed at which the distribution curve 
reaches a peak. Using Equation 21.41, we find that

 vrms 5 " v2 5 Å3kBT
m0

5 1.73Å kBT
m 0

 (21.42)

 vavg 5 Å8kBT
pm 0

5 1.60Å kBT
m0

 (21.43)

 vmp 5 Å2kBT
m0

5 1.41Å kBT
m0

 (21.44)

Equation 21.42 has previously appeared as Equation 21.22. The details of the deri-
vations of these equations from Equation 21.41 are left for the end-of-chapter prob-
lems (see Problems 42 and 69). From these equations, we see that

 vrms . vavg . vmp 

 Figure 21.11 represents speed distribution curves for nitrogen, N2. The curves 
were obtained by using Equation 21.41 to evaluate the distribution function at vari-
ous speeds and at two temperatures. Notice that the peak in each curve shifts to 
the right as T increases, indicating that the average speed increases with increasing 
temperature, as expected. Because the lowest speed possible is zero and the upper 
classical limit of the speed is infinity, the curves are asymmetrical. (In Chapter 39, 
we show that the actual upper limit is the speed of light.)
 Equation 21.41 shows that the distribution of molecular speeds in a gas depends 
both on mass and on temperature. At a given temperature, the fraction of mol-
ecules with speeds exceeding a fixed value increases as the mass decreases. Hence, 

3 For the derivation of this expression, see an advanced textbook on thermodynamics.

vmp

vrms

Nv

v

v avg

Nv

dv

The number of molecules 
having speeds ranging from v 
to v ! dv equals the area of 
the tan rectangle, Nv dv.

Figure 21.10 The speed distri-
bution of gas molecules at some 
temperature. The function Nv 
approaches zero as v approaches 
infinity.

Figure 21.11 The speed distri-
bution function for 105 nitrogen 
molecules at 300 K and 900 K.
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Maxwell-Boltzmann speed distribution (Skipping)

The energy of a molecule can be written:

E = Ktrans + ε+ U

where

• translational kinetic energy, Ktrans =
p2

2m0

• ε includes any rotational or oscillational energy

• U is potential energy (if relevant) that depends on the
location of the molecule

Since we only want to know about the distribution of speeds, we
will need to get rid of any dependence on ε and U.



Aside: Reminder about probability distributions
(Skipping)

Suppose I have a probability distribution over two variables, x and
y :

p(x , y)

If the two variables are independently distributed then:

p(x , y) = p(x)p(y)

We can eliminate the dependence on x by just summing over x :

∑
x

p(x , y) =
∑
x

p(x)p(y) = p(y)

�
�
�
��>

1∑
x

p(x) = p(y)

This is how we eliminate rotational and vibrational motion.
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Maxwell-Boltzmann speed distribution (Skipping)

Put this expression in the Boltzmann distribution:

p(r,p, ε) d3r d3p dε = Ae−E/kBT d3r d3p dε

Eliminate dependence on position, rotation, and oscillation:∫
ε

∫
p
p(r,p, ε) d3r d3p dε

=Ce−p2/2m0kBT dp

(
C ′

∫
ε

e−ε/kBTdε

)(
C ′′

∫
r
e−U/kBT d3r

)

replace momentum with velocity components:

p(v) d3v = Ce−m0(v
2
x+v2

y+v2
z )/2kBT dvx dvy dvz
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Maxwell-Boltzmann speed distribution (Skipping)
We can find C .
The total probability must equal one.∫∫∫

Ce−m0(v
2
x+v2

y+v2
z )/2kBT dvx dvy dvz = 1

Using the identity: ∫∞
−∞ e−x2 dx =

√
π

the three integrals can be evaluated separately:∫∞
−∞ e−m0v

2
x /2kBT dvx =

√
2πkBT

m0

There are three integrals, so

C =

(
m0

2πkBT

)3/2



Maxwell-Boltzmann speed distribution (Skipping)

Now our distribution is:

p(v) d3v =

(
m0

2πkBT

)3/2

e−m0(v
2
x+v2

y+v2
z )/2kBT dvx dvy dvz

Lastly, we want an expression for how many molecules have speeds
between v and v + dv.

This means we need to get rid of the direction dependence –
transform to spherical coordinates.

dvx dvy dvz = v2 sin θ dv dθ dφ



Maxwell-Boltzmann speed distribution (Skipping)

∫
φ

∫
θ

p(v) d3v

=

(
m0

2πkBT

)3/2

v2e−m0v
2/2kBT dv

∫2π
0

dφ

∫π
0

sin θdθ

= 4π

(
m0

2πkBT

)3/2

v2e−m0v
2/2kBT dv

This is the probability density for 1 molecule. For N molecules:

Nv dv = 4πN

(
m0

2πkBT

)3/2

v2 e−m0v
2/2kBT dv



Summary

• Boltzmann distribution (energies)

• Maxwell-Boltzmann distribution (speeds)

Homework
• Full-solution HW2, due today

• WebAssign, due today

Serway & Jewett (additional problems you might like to look at):

• Ch 21, onward from page 644. Probs: 52, 58, 65

• new: Ch 21, onward from page 644. Probs: 41, 42, 43


