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Last time

e heat capacities for ideal gases

e adiabatic processes



Overview

e adiabatic process in weather
e the Boltzmann distribution (distribution of energies)

o the Maxwell-Boltzmann distribution (distribution of speeds)



Reminder: Adiabatic Process in Ideal Gases

For an adiabatic process (Q = 0):

and:

(Given the first one is true, the second follows immediately from

the ideal gas equation, P = ”'57.)




Weather and Adiabatic Process in a Gas

On the eastern side of the Rocky Mountains there is a
phenomenon called chinooks.

These eastward moving wind patterns cause distinctive cloud
patterns (chinook arches) and sudden increases in temperature.



Weather and Adiabatic Process in a Gas

As the air rises from the ocean it expands in the lower pressure at
altitude and cools. The water vapor condenses out of the air and
falls as precipitation.
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As the air passes over the mountain it absorbs the latent heat from
the water condensation, then it stops cooling. As it descends, it is
compressed (nearly) adiabatically as the ambient pressure
increases. The air temperature rises!



Temperature and the Distribution of Particles’
Energies

In a gas at temperature T, we know the average translational KE
of the molecules.

However, not all of the molecules have the same energy, that's just
the average.

How is the total energy of the gas distributed amongst the
molecules?



Temperature and the Distribution of Particles’
Energies

Ludwig Boltzmann first found the distribution of the number of
particles at a given energy given a thermodynamic system at a
fixed temperature.

Assuming that energy takes continuous values we can say that the
number of molecules per unit volume with energies in the range E
to E+ dE is:

E+dE
N EvdE) = JE ny(E) dE

Where

ny(E) = nge E/k8T

and ng is a constant setting the scale: when E =0, ny(E) = no.



The Boltzmann Distribution
This particular frequency distribution:

nv(E) X e_E/kBT

is called the Boltzmann distribution or sometimes the Gibbs
distribution (after Josiah Willard Gibbs, who studied the behavior
of this distribution in-depth).

This distribution is even easier to understand for discrete energy
levels.



The Boltzmann Distribution
This particular frequency distribution:

n\/(E) X e_E/kBT

is called the Boltzmann distribution or sometimes the Gibbs
distribution (after Josiah Willard Gibbs, who studied the behavior
of this distribution in-depth).

This distribution is even easier to understand for discrete energy
levels.

The probability for a given particle to be found in a state with
energy E; drawn from a sample at temperature T:

1
plE) = e E/kaT

where Z is simply a normalization constant to allow the total
probability to be 1. (The partition function.)



The Boltzmann Distribution

If we know the energies of two states E; and E,, E» > E;, we can
find the ratio of the number of particles in each:

nv(E2) _ (B-E)/keT
ny(Ey)

States with lower energies have more particles occupying them.



The Boltzmann Distribution

Energy

— Population
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'Figure from the website of Dr. Joseph N. Grima, University of Malta.



(Somewhat Contrived) Example
Suppose a type of atom has only 2 energy states, separated in
energy by 12.0 eV.! For a very large sample of these atoms, at
what temperature would 1% of the atoms in the sample be in the
excited (higher energy) state?

AE=E,—E =12¢eV



(Somewhat Contrived) Example
Suppose a type of atom has only 2 energy states, separated in
energy by 12.0 eV.! For a very large sample of these atoms, at
what temperature would 1% of the atoms in the sample be in the
excited (higher energy) state?

1This does not describe any real atom.



(Somewhat Contrived) Example

Suppose a type of atom has only 2 energy states, separated in
energy by 12.0 eV.! For a very large sample of these atoms, at
what temperature would 1% of the atoms in the sample be in the
excited (higher energy) state?

nv(E2) 1
ny(Ep) 99
e (BB T _ L
99
—(E2—Ey)
o = ()
_ (B2—hF)
T = kg In99

12 eV x 1.602 x 1071 J/eV
(1.38 x 10~23)In 99
= 30,300 K (3 sig figs)

1This does not describe any real atom.




(Somewhat Contrived) Example

Suppose a type of atom has only 2 energy states, separated in
energy by 12.0 eV.2 For a very large sample of these atoms,

AE:EQ—E1:12GV

At what temperature would the number of atoms in each state be
equal?

2This does not describe any real atom.



(Somewhat Contrived) Example

Suppose a type of atom has only 2 energy states, separated in
energy by 12.0 eV.2 For a very large sample of these atoms,

AE:EQ—E1:12GV

At what temperature would the number of atoms in each state be
equal?

ny(E2)

nvi(E) !

2This does not describe any real atom.



(Somewhat Contrived) Example

Suppose a type of atom has only 2 energy states, separated in
energy by 12.0 eV.2 For a very large sample of these atoms,

AE:EQ—E1:12GV

At what temperature would the number of atoms in each state be
equal?

ny(E) 1
ny(E1)
e (B2=E)/ke T _ 1
—(E2—E) 0
kg T
T —- o

2This does not describe any real atom.



Aside: Lasers

Lasers emit coherent light. One photon interacts with an atom and
causes another to be emitted with the same phase.

Before During After
emission emission emission
Bxitedlevel Ey —— -
hy
hy hy AN
i hy
Inident photon AFE .
Guudied Fy ——
Atom in Atom in
excited state ground state

EQ—EleE:hV

This starts a cascade.

Inside a laser cavity there are atoms that are in a very strange
state: a higher energy level is more populated than a lower one.
This is called a “population inversion”.



Aside: Lasers

This is necessary for the photon cascade. Since:

ny(E)

— o (B2—E1)/kgT E, > E
n(E)  © oo

we can associate a “negative temperature”, T, to these two energy
states in the atoms.



Maxwell-Boltzmann speed distribution

The Boltzmann distribution for energy can be leveraged to find a
distribution of the speeds of the molecules.

This is the Maxwell-Boltzmann speed distribution.
The number of molecules with speeds between v and v + dv is

v+dv v+dv
J N, dv = J 4t (

v v

3/2 .
2 _—mgv /2kBTd
21tk T> Ve Y



Maxwell-Boltzmann speed distribution
The number of molecules with speeds between v and v + dv is

v+dv v+dv mo 3/2 R
J N, dv = J 4ntN v2e—mov:/2ksT 4,
v v 27’[/(3 T

The number of molecules

having speeds ranging from v

to v + dv equals the area of
N the tan rectangle, N, dv.

Ump




Maxwell-Boltzmann speed distribution (Skipping)

The energy of a molecule can be written:

E:Ktrans+€+U

where

. . . 2
e translational kinetic energy, Kirans = 5

mo

e ¢ includes any rotational or oscillational energy

e U is potential energy (if relevant) that depends on the
location of the molecule

Since we only want to know about the distribution of speeds, we
will need to get rid of any dependence on € and U.



Aside: Reminder about probability distributions
(Skipping)
Suppose | have a probability distribution over two variables, x and

y:
p(x,y)

If the two variables are independently distributed then:

p(x,y) = p(x)p(y)



Aside: Reminder about probability distributions
(Skipping)
Suppose | have a probability distribution over two variables, x and

y:
p(x,y)

If the two variables are independently distributed then:

p(x,y) = p(x)p(y)

We can eliminate the dependence on x by just summing over x:

1

Y plxy) =Y plxlply) = p()/)%z oly)

This is how we eliminate rotational and vibrational motion.



Maxwell-Boltzmann speed distribution (Skipping)
Put this expression in the Boltzmann distribution:
p(r,p, e)d3rd3pde = Ae E/%8T d3rd3p de

Eliminate dependence on position, rotation, and oscillation:
J Jp(r, p, e)d3rd3pde
elJp

Ce P /2mokaT g <C/J ee/kBTd€> <CHJ eU/kBTd3r>
€ r



Maxwell-Boltzmann speed distribution (Skipping)

Put this expression in the Boltzmann distribution:
p(r,p, e)d3rd3pde = Ae E/%8T 3¢ d3p de

Eliminate dependence on position, rotation, and oscillation:

J J p(r,p,e)d3rd3pde
eJp

:Ce_p2/2m°kBpoM c"| Y d3r
€ r

1



Maxwell-Boltzmann speed distribution (Skipping)

Put this expression in the Boltzmann distribution:
p(r,p,e)d3rd3pde = Ae E/%8T 3rd3p de

Eliminate dependence on position, rotation, and oscillation:

J J p(r,p, ) d®rd3pde
elJp

:Cep2/2m°kBpoM c"| Y d3r
€ r

p(p) d®p = Ce P /2mokaT ¢3p

1



Maxwell-Boltzmann speed distribution (Skipping)

Put this expression in the Boltzmann distribution:
p(r,p,e)d3rd3pde = Ae E/%8T 3rd3p de

Eliminate dependence on position, rotation, and oscillation:

J J p(r,p, ) d®rd3pde
elJp

:Cep2/2m°kBpoM c"| Y d3r
€ r

p(p) d®p = Ce P /2mokaT ¢3p

1

replace momentum with velocity components:

p(v)d3v = Ce—molwtvy+v2)/2ke T dvy dvy dv,



Maxwell-Boltzmann speed distribution (Skipping)

We can find C.
The total probability must equal one.

j ” CemoE+E+2)/28T gy dy dv, — 1

Using the identity:
J e dx = N

the three integrals can be evaluated separately:

_ 2
e movg /2kg T dVX —
e mo

JOO 27’[/(3 T

There are three integrals, so

3/2
c= ("0
<27‘[k5 T)




Maxwell-Boltzmann speed distribution (Skipping)

Now our distribution is:

3/2
p(V) d3v — <27_[r:0 T) e*mO(V3+Vy2+Vz2)/2kBT dVX dVy dVZ
B

Lastly, we want an expression for how many molecules have speeds
between v and v + dv.

This means we need to get rid of the direction dependence —
transform to spherical coordinates.

dvy, dvy dv, = v?sin 0 dv dO dd



Maxwell-Boltzmann speed distribution (Skipping)

L) Jep(V) &

Mo 32 2 2/2kg T 2 T
= —mov/2kg T ¢ d i
<2TthT> vie VL ¢J0 sin 6d0O

3/2
:47r< Mo > y2e—mov?/2keT g,




Summary

e Boltzmann distribution (energies)

o Maxwell-Boltzmann distribution (speeds)

Homework
e Full-solution HW2, due today
e WebAssign, due today
Serway & Jewett (additional problems you might like to look at):

e Ch 21, onward from page 644. Probs: 52, 58, 65
e new: Ch 21, onward from page 644. Probs: 41, 42, 43



