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Last time

• adiabatic processess

• the Boltzmann distribution (distribution of energies)

• introduced the Maxwell-Boltzmann distribution (distribution
of speeds)



Overview

• the Maxwell-Boltzmann distribution (distribution of speeds)

• the Second Law of thermodynamics

• irreversible processes



Reminder: Maxwell-Boltzmann speed distribution

The Boltzmann distribution for energy can be leveraged to find a
distribution of the speeds of the molecules.

This is the Maxwell-Boltzmann speed distribution.

The number of molecules with speeds between v and v + dv is∫ v+dv

v
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4πN
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v2e−m0v
2/2kBT dv



Maxwell-Boltzmann speed distribution
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 21.5 Distribution of Molecular Speeds 641

 The fundamental expression that describes the distribution of speeds of N gas 
molecules is

 Nv 5 4pN a m0 
2pkBT

b3/2

v2e2m 0v 2/2kBT  (21.41)

where m0 is the mass of a gas molecule, k B is Boltzmann’s constant, and T is the 
absolute temperature.3 Observe the appearance of the Boltzmann factor e2E/kBT  
with E 5 1

2m0v2.
 As indicated in Figure 21.10, the average speed is somewhat lower than the 
rms speed. The most probable speed vmp is the speed at which the distribution curve 
reaches a peak. Using Equation 21.41, we find that

 vrms 5 " v2 5 Å3kBT
m0

5 1.73Å kBT
m 0

 (21.42)

 vavg 5 Å8kBT
pm 0

5 1.60Å kBT
m0

 (21.43)

 vmp 5 Å2kBT
m0

5 1.41Å kBT
m0

 (21.44)

Equation 21.42 has previously appeared as Equation 21.22. The details of the deri-
vations of these equations from Equation 21.41 are left for the end-of-chapter prob-
lems (see Problems 42 and 69). From these equations, we see that

 vrms . vavg . vmp 

 Figure 21.11 represents speed distribution curves for nitrogen, N2. The curves 
were obtained by using Equation 21.41 to evaluate the distribution function at vari-
ous speeds and at two temperatures. Notice that the peak in each curve shifts to 
the right as T increases, indicating that the average speed increases with increasing 
temperature, as expected. Because the lowest speed possible is zero and the upper 
classical limit of the speed is infinity, the curves are asymmetrical. (In Chapter 39, 
we show that the actual upper limit is the speed of light.)
 Equation 21.41 shows that the distribution of molecular speeds in a gas depends 
both on mass and on temperature. At a given temperature, the fraction of mol-
ecules with speeds exceeding a fixed value increases as the mass decreases. Hence, 

3 For the derivation of this expression, see an advanced textbook on thermodynamics.
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having speeds ranging from v 
to v ! dv equals the area of 
the tan rectangle, Nv dv.

Figure 21.10 The speed distri-
bution of gas molecules at some 
temperature. The function Nv 
approaches zero as v approaches 
infinity.

Figure 21.11 The speed distri-
bution function for 105 nitrogen 
molecules at 300 K and 900 K.
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Note that vrms # vavg # vmp.



The Shape of the Maxwell-Boltzmann distribution
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From a previous lecture:
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The Shape of the Maxwell-Boltzmann distribution
Average speed, can find by integrating over all speeds, then
dividing by the number of particles.
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The Shape of the Maxwell-Boltzmann distribution

How could we find the most probable speed for a particle (the peak
of the distribution)?

Set dNv
dv = 0

Then we find:

vmp =

√
2kBT

m0
= 1.41

√
kBT

m0

So,
vrms > vavg > vmp
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The Shape of the Maxwell-Boltzmann distribution
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Speed Distribution and Evaporation

We can understand evaporation as a change of some of our system
from the liquid to the gaseous state at the surface of the liquid.

Even well below the boiling point there are some molecules with
very high translational KE.

These molecules move fast enough to overcome the strength of the
liquid bonds.

Slower moving molecules are left behind, so the remaining liquid is
cooler.



The Second Law of Thermodynamics

We will state this law in several different ways. First an intuitive
statement:

2nd Law

Unless work is done on a system, heat in the system will flow from
a hotter body in the system to a cooler one.

This is obvious from experience, but it’s not obvious why this
should happen.

It also indicates there is are processes in the physical world that
seem not to happen in the same way if time is reversed.



The Second Law of Thermodynamics and
Reversibility

Scientists and engineers studying and designing steam engines
wanted to make them as efficient as possible.

They noticed there were always losses.

There seemed to be more to it. Energy seems to always spread
out. Heat goes from hotter to colder objects. Energy is lost as
heating in friction.

These things do not happen in reverse.



Isolated, Closed, and Open Systems

Isolated system

does not exchange energy (work, heat, or radiation) or matter with
its environment.

Closed system

does not exchange matter with its environment, but may exchange
energy.

Open system

can exchange energy and matter with its environment.



Reversible and Irreversible Processes

Reversible process

a process that takes a system from an initial state i to a final state
f through a series of equilibrium states, such that we can take the
same system back again from f to i along the same path in a PV
diagram.

Irreversible process

any process that is not reversible.

In real life, all processes are irreversible, but some are close to
being reversible. We use reversible processes as an idealization.



Irreversible Process Example
53720-3 CHANG E I N E NTROPY

PART 2

Entropy differs from energy in that entropy does not obey a conservation law.
The energy of a closed system is conserved; it always remains constant. For
irreversible processes, the entropy of a closed system always increases. Because of
this property, the change in entropy is sometimes called “the arrow of time.” For
example, we associate the explosion of a popcorn kernel with the forward
direction of time and with an increase in entropy. The backward direction of time
(a videotape run backwards) would correspond to the exploded popcorn re-
forming the original kernel. Because this backward process would result in an
entropy decrease, it never happens.

There are two equivalent ways to define the change in entropy of a system:
(1) in terms of the system’s temperature and the energy the system gains or loses
as heat, and (2) by counting the ways in which the atoms or molecules that make
up the system can be arranged. We use the first approach in the next section and
the second in Section 20-8.

20-3 Change in Entropy
Let’s approach this definition of change in entropy by looking again at a process
that we described in Sections 18-11 and 19-11: the free expansion of an ideal gas.
Figure 20-1a shows the gas in its initial equilibrium state i, confined by a closed
stopcock to the left half of a thermally insulated container. If we open the
stopcock, the gas rushes to fill the entire container, eventually reaching the final
equilibrium state f shown in Fig. 20-1b. This is an irreversible process; all the
molecules of the gas will never return to the left half of the container.

The p-V plot of the process, in Fig. 20-2, shows the pressure and volume
of the gas in its initial state i and final state f. Pressure and volume are state
properties, properties that depend only on the state of the gas and not on how it
reached that state. Other state properties are temperature and energy. We now
assume that the gas has still another state property—its entropy. Furthermore,
we define the change in entropy Sf ! Si of a system during a process that takes
the system from an initial state i to a final state f as

(change in entropy defined). (20-1)

Here Q is the energy transferred as heat to or from the system during the process,
and T is the temperature of the system in kelvins. Thus, an entropy change
depends not only on the energy transferred as heat but also on the temperature
at which the transfer takes place. Because T is always positive, the sign of "S is
the same as that of Q. We see from Eq. 20-1 that the SI unit for entropy and
entropy change is the joule per kelvin.

There is a problem, however, in applying Eq. 20-1 to the free expansion of
Fig. 20-1. As the gas rushes to fill the entire container, the pressure, temperature,
and volume of the gas fluctuate unpredictably. In other words, they do not have a
sequence of well-defined equilibrium values during the intermediate stages of the
change from initial state i to final state f. Thus, we cannot trace a pressure–vol-
ume path for the free expansion on the p-V plot of Fig. 20-2, and we cannot find a
relation between Q and T that allows us to integrate as Eq. 20-1 requires.

However, if entropy is truly a state property, the difference in entropy
between states i and f must depend only on those states and not at all on the way
the system went from one state to the other. Suppose, then, that we replace the
irreversible free expansion of Fig. 20-1 with a reversible process that connects
states i and f. With a reversible process we can trace a pressure–volume path on
a p-V plot, and we can find a relation between Q and T that allows us to use
Eq. 20-1 to obtain the entropy change.

"S # Sf ! Si # !f

i

dQ
T

Fig. 20-1 The free expansion of an
ideal gas. (a) The gas is confined to the left
half of an insulated container by a closed
stopcock. (b) When the stopcock is
opened, the gas rushes to fill the entire
container.This process is irreversible; that
is, it does not occur in reverse, with the gas
spontaneously collecting itself in the left
half of the container.
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Fig. 20-2 A p-V diagram showing the
initial state i and the final state f of the free
expansion of Fig. 20-1.The intermediate
states of the gas cannot be shown because
they are not equilibrium states.
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Irreversible Process Example

This process has well-defined initial and final equilibrium states,
but during the expansion of the gas is not in equilibrium.
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It cannot be plotted on a PV diagram. Also, no work is done on
the gas in this process.



A Reversible Counterpart

This process has the same starting and ending points.

Allow gas to expand very slowly through equilibrium states at
constant temperature.

 20.5 The First Law of Thermodynamics 603

Figure 20.7  Gas in a cylinder. (a) The gas is in contact with an energy reservoir. The walls of the cylinder are perfectly insulating, but the 
base in contact with the reservoir is conducting. (b) The gas expands slowly to a larger volume. (c) The gas is contained by a membrane in 
half of a volume, with vacuum in the other half. The entire cylinder is perfectly insulating. (d) The gas expands freely into the larger volume.
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piston to move 
up slowly. The 
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keeps the gas at 
temperature Ti . The gas is 

initially at 
temperature Ti . 
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c d

The gas is 
initially at 
temperature
Ti  and 
contained
by a thin 
membrane, 
with vacuum 
above. 

The membrane
is broken, and 
the gas expands 
freely into the 
evacuated 
region.

at its initial position by an external agent such as a hand. When the force holding the 
piston is reduced slightly, the piston rises very slowly to its final position shown in Fig-
ure 20.7b. Because the piston is moving upward, the gas is doing work on the piston. 
During this expansion to the final volume Vf , just enough energy is transferred by 
heat from the reservoir to the gas to maintain a constant temperature Ti.
 Now consider the completely thermally insulated system shown in Figure 20.7c. 
When the membrane is broken, the gas expands rapidly into the vacuum until it 
occupies a volume Vf and is at a pressure Pf . The final state of the gas is shown in 
Figure 20.7d. In this case, the gas does no work because it does not apply a force; no 
force is required to expand into a vacuum. Furthermore, no energy is transferred 
by heat through the insulating wall.
 As we discuss in Section 20.5, experiments show that the temperature of the ideal 
gas does not change in the process indicated in Figures 20.7c and 20.7d. Therefore, 
the initial and final states of the ideal gas in Figures 20.7a and 20.7b are identical  
to the initial and final states in Figures 20.7c and 20.7d, but the paths are different. 
In the first case, the gas does work on the piston and energy is transferred slowly to 
the gas by heat. In the second case, no energy is transferred by heat and the value of 
the work done is zero. Therefore, energy transfer by heat, like work done, depends on 
the particular process occurring in the system. In other words, because heat and work 
both depend on the path followed on a PV diagram between the initial and final states, 
neither quantity is determined solely by the endpoints of a thermodynamic process.

20.5 The First Law of Thermodynamics
When we introduced the law of conservation of energy in Chapter 8, we stated that 
the change in the energy of a system is equal to the sum of all transfers of energy 
across the system’s boundary (Eq. 8.2). The first law of thermodynamics is a spe-
cial case of the law of conservation of energy that describes processes in which only 
the internal energy5 changes and the only energy transfers are by heat and work:

 DE int 5 Q 1 W (20.10) �W First law of thermodynamics

5It is an unfortunate accident of history that the traditional symbol for internal energy is U, which is also the tra-
ditional symbol for potential energy as introduced in Chapter 7. To avoid confusion between potential energy and 
internal energy, we use the symbol Eint for internal energy in this book. If you take an advanced course in thermody-
namics, however, be prepared to see U used as the symbol for internal energy in the first law.



A Reversible Counterpart

We can plot this isothermal expansion:
606 Chapter 20 The First Law of Thermodynamics

Isothermal Expansion of an Ideal Gas
Suppose an ideal gas is allowed to expand quasi-statically at constant temperature. 
This process is described by the PV diagram shown in Figure 20.9. The curve is a 
hyperbola (see Appendix B, Eq. B.23), and the ideal gas law (Eq. 19.8) with T con-
stant indicates that the equation of this curve is PV 5 nRT 5 constant.
 Let’s calculate the work done on the gas in the expansion from state i to state f. 
The work done on the gas is given by Equation 20.9. Because the gas is ideal and the 
process is quasi-static, the ideal gas law is valid for each point on the path. Therefore,

 W 5 23
Vf

Vi

 P dV 5 23
Vf

Vi

 
nRT

V
 dV  

Because T is constant in this case, it can be removed from the integral along with 
n and R:

 W 5 2nRT  3
Vf

Vi

 
dV
V

5 2nRT lnV `Vf

Vi

 

To evaluate the integral, we used e(dx/x) 5 ln x. (See Appendix B.) Evaluating the 
result at the initial and final volumes gives

 W 5 nRT ln aVi

Vf
b  (20.14)

Numerically, this work W equals the negative of the shaded area under the PV curve 
shown in Figure 20.9. Because the gas expands, Vf . Vi and the value for the work 
done on the gas is negative as we expect. If the gas is compressed, then Vf , Vi and 
the work done on the gas is positive.

Q uick Quiz 20.4  Characterize the paths in Figure 20.10 as isobaric, isovolumet-
ric, isothermal, or adiabatic. For path B, Q 5 0. The blue curves are isotherms.

Example 20.5   An Isothermal Expansion

A 1.0-mol sample of an ideal gas is kept at 0.0°C during an expansion from 3.0 L to 10.0 L.

(A)  How much work is done on the gas during the expansion?

Conceptualize  Run the process in your mind: the cylinder in Figure 20.8 is immersed in an ice-water bath, and the 
piston moves outward so that the volume of the gas increases. You can also use the graphical representation in Figure 
20.9 to conceptualize the process.

Categorize  We will evaluate parameters using equations developed in the preceding sections, so we categorize this 
example as a substitution problem. Because the temperature of the gas is fixed, the process is isothermal.

S O L U T I O N

Substitute the given values into Equation 20.14: W 5 nRT ln aVi

Vf
b

5 11.0 mol 2 18.31 J/mol # K 2 1273 K 2  ln a 3.0 L
10.0 L

b
5  22.7 3 103 J

(B)  How much energy transfer by heat occurs between the gas and its surroundings in this process?

f

i

V

PV = constant

Isotherm
P

Pi

Pf

Vi Vf

The curve is a 
hyperbola.

Figure 20.9  The PV diagram 
for an isothermal expansion of an 
ideal gas from an initial state to a 
final state.

A

B
C

D

V

P

T1

T3

T2

T4

Figure 20.10  (Quick Quiz 20.4) 
Identify the nature of paths A, B, 
C, and D.

S O L U T I O N

Find the heat from the first law: DE int 5 Q 1 W

0 5 Q 1 W
Q 5 2W 5   2.7 3 103 J

Negative work is done on the gas, heat is transferred in, and the
internal energy and the temperature remain constant.



Comparing the Processes

In both of these processes the gas expands into a region it was not
in previously.

The energy of the system spreads out.

This corresponds to a change of state, but it is not captured by the
internal energy of the gas system, which does not change in either
process.

Something does change in these processes and we call it entropy.
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Summary

• Boltzmann distribution (energies)

• Maxwell-Boltzmann distribution (speeds)

• the second law


