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Last time

• the Maxwell-Boltzmann distribution (distribution of speeds)

• the Second Law of thermodynamics



Overview

• entropy (macroscopic perspective)



Reversible and Irreversible Processes

Reversible process

a process that takes a system from an initial state i to a final state
f through a series of equilibrium states, such that we can take the
same system back again from f to i along the same path in a PV
diagram.

Irreversible process

any process that is not reversible.

In real life, all processes are irreversible, but some are close to
being reversible. We use reversible processes as an idealization.



Irreversible Process Example
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Entropy differs from energy in that entropy does not obey a conservation law.
The energy of a closed system is conserved; it always remains constant. For
irreversible processes, the entropy of a closed system always increases. Because of
this property, the change in entropy is sometimes called “the arrow of time.” For
example, we associate the explosion of a popcorn kernel with the forward
direction of time and with an increase in entropy. The backward direction of time
(a videotape run backwards) would correspond to the exploded popcorn re-
forming the original kernel. Because this backward process would result in an
entropy decrease, it never happens.

There are two equivalent ways to define the change in entropy of a system:
(1) in terms of the system’s temperature and the energy the system gains or loses
as heat, and (2) by counting the ways in which the atoms or molecules that make
up the system can be arranged. We use the first approach in the next section and
the second in Section 20-8.

20-3 Change in Entropy
Let’s approach this definition of change in entropy by looking again at a process
that we described in Sections 18-11 and 19-11: the free expansion of an ideal gas.
Figure 20-1a shows the gas in its initial equilibrium state i, confined by a closed
stopcock to the left half of a thermally insulated container. If we open the
stopcock, the gas rushes to fill the entire container, eventually reaching the final
equilibrium state f shown in Fig. 20-1b. This is an irreversible process; all the
molecules of the gas will never return to the left half of the container.

The p-V plot of the process, in Fig. 20-2, shows the pressure and volume
of the gas in its initial state i and final state f. Pressure and volume are state
properties, properties that depend only on the state of the gas and not on how it
reached that state. Other state properties are temperature and energy. We now
assume that the gas has still another state property—its entropy. Furthermore,
we define the change in entropy Sf ! Si of a system during a process that takes
the system from an initial state i to a final state f as

(change in entropy defined). (20-1)

Here Q is the energy transferred as heat to or from the system during the process,
and T is the temperature of the system in kelvins. Thus, an entropy change
depends not only on the energy transferred as heat but also on the temperature
at which the transfer takes place. Because T is always positive, the sign of "S is
the same as that of Q. We see from Eq. 20-1 that the SI unit for entropy and
entropy change is the joule per kelvin.

There is a problem, however, in applying Eq. 20-1 to the free expansion of
Fig. 20-1. As the gas rushes to fill the entire container, the pressure, temperature,
and volume of the gas fluctuate unpredictably. In other words, they do not have a
sequence of well-defined equilibrium values during the intermediate stages of the
change from initial state i to final state f. Thus, we cannot trace a pressure–vol-
ume path for the free expansion on the p-V plot of Fig. 20-2, and we cannot find a
relation between Q and T that allows us to integrate as Eq. 20-1 requires.

However, if entropy is truly a state property, the difference in entropy
between states i and f must depend only on those states and not at all on the way
the system went from one state to the other. Suppose, then, that we replace the
irreversible free expansion of Fig. 20-1 with a reversible process that connects
states i and f. With a reversible process we can trace a pressure–volume path on
a p-V plot, and we can find a relation between Q and T that allows us to use
Eq. 20-1 to obtain the entropy change.
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Fig. 20-1 The free expansion of an
ideal gas. (a) The gas is confined to the left
half of an insulated container by a closed
stopcock. (b) When the stopcock is
opened, the gas rushes to fill the entire
container.This process is irreversible; that
is, it does not occur in reverse, with the gas
spontaneously collecting itself in the left
half of the container.
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Fig. 20-2 A p-V diagram showing the
initial state i and the final state f of the free
expansion of Fig. 20-1.The intermediate
states of the gas cannot be shown because
they are not equilibrium states.
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Irreversible Process Example

This process has well-defined initial and final equilibrium states,
but during the expansion of the gas is not in equilibrium.
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It cannot be plotted on a PV diagram. Also, no work is done on
the gas in this process.



A Reversible Counterpart

This process has the same starting and ending points.

Allow gas to expand very slowly through equilibrium states at
constant temperature.

 20.5 The First Law of Thermodynamics 603

Figure 20.7  Gas in a cylinder. (a) The gas is in contact with an energy reservoir. The walls of the cylinder are perfectly insulating, but the 
base in contact with the reservoir is conducting. (b) The gas expands slowly to a larger volume. (c) The gas is contained by a membrane in 
half of a volume, with vacuum in the other half. The entire cylinder is perfectly insulating. (d) The gas expands freely into the larger volume.
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downward force,  
allowing the 
piston to move 
up slowly. The 
energy reservoir 
keeps the gas at 
temperature Ti . The gas is 

initially at 
temperature Ti . 
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The gas is 
initially at 
temperature
Ti  and 
contained
by a thin 
membrane, 
with vacuum 
above. 

The membrane
is broken, and 
the gas expands 
freely into the 
evacuated 
region.

at its initial position by an external agent such as a hand. When the force holding the 
piston is reduced slightly, the piston rises very slowly to its final position shown in Fig-
ure 20.7b. Because the piston is moving upward, the gas is doing work on the piston. 
During this expansion to the final volume Vf , just enough energy is transferred by 
heat from the reservoir to the gas to maintain a constant temperature Ti.
 Now consider the completely thermally insulated system shown in Figure 20.7c. 
When the membrane is broken, the gas expands rapidly into the vacuum until it 
occupies a volume Vf and is at a pressure Pf . The final state of the gas is shown in 
Figure 20.7d. In this case, the gas does no work because it does not apply a force; no 
force is required to expand into a vacuum. Furthermore, no energy is transferred 
by heat through the insulating wall.
 As we discuss in Section 20.5, experiments show that the temperature of the ideal 
gas does not change in the process indicated in Figures 20.7c and 20.7d. Therefore, 
the initial and final states of the ideal gas in Figures 20.7a and 20.7b are identical  
to the initial and final states in Figures 20.7c and 20.7d, but the paths are different. 
In the first case, the gas does work on the piston and energy is transferred slowly to 
the gas by heat. In the second case, no energy is transferred by heat and the value of 
the work done is zero. Therefore, energy transfer by heat, like work done, depends on 
the particular process occurring in the system. In other words, because heat and work 
both depend on the path followed on a PV diagram between the initial and final states, 
neither quantity is determined solely by the endpoints of a thermodynamic process.

20.5 The First Law of Thermodynamics
When we introduced the law of conservation of energy in Chapter 8, we stated that 
the change in the energy of a system is equal to the sum of all transfers of energy 
across the system’s boundary (Eq. 8.2). The first law of thermodynamics is a spe-
cial case of the law of conservation of energy that describes processes in which only 
the internal energy5 changes and the only energy transfers are by heat and work:

 DE int 5 Q 1 W (20.10) �W First law of thermodynamics

5It is an unfortunate accident of history that the traditional symbol for internal energy is U, which is also the tra-
ditional symbol for potential energy as introduced in Chapter 7. To avoid confusion between potential energy and 
internal energy, we use the symbol Eint for internal energy in this book. If you take an advanced course in thermody-
namics, however, be prepared to see U used as the symbol for internal energy in the first law.



A Reversible Counterpart

We can plot this isothermal expansion:
606 Chapter 20 The First Law of Thermodynamics

Isothermal Expansion of an Ideal Gas
Suppose an ideal gas is allowed to expand quasi-statically at constant temperature. 
This process is described by the PV diagram shown in Figure 20.9. The curve is a 
hyperbola (see Appendix B, Eq. B.23), and the ideal gas law (Eq. 19.8) with T con-
stant indicates that the equation of this curve is PV 5 nRT 5 constant.
 Let’s calculate the work done on the gas in the expansion from state i to state f. 
The work done on the gas is given by Equation 20.9. Because the gas is ideal and the 
process is quasi-static, the ideal gas law is valid for each point on the path. Therefore,

 W 5 23
Vf

Vi

 P dV 5 23
Vf

Vi

 
nRT

V
 dV  

Because T is constant in this case, it can be removed from the integral along with 
n and R:

 W 5 2nRT  3
Vf

Vi

 
dV
V

5 2nRT lnV `Vf

Vi

 

To evaluate the integral, we used e(dx/x) 5 ln x. (See Appendix B.) Evaluating the 
result at the initial and final volumes gives

 W 5 nRT ln aVi

Vf
b  (20.14)

Numerically, this work W equals the negative of the shaded area under the PV curve 
shown in Figure 20.9. Because the gas expands, Vf . Vi and the value for the work 
done on the gas is negative as we expect. If the gas is compressed, then Vf , Vi and 
the work done on the gas is positive.

Q uick Quiz 20.4  Characterize the paths in Figure 20.10 as isobaric, isovolumet-
ric, isothermal, or adiabatic. For path B, Q 5 0. The blue curves are isotherms.

Example 20.5   An Isothermal Expansion

A 1.0-mol sample of an ideal gas is kept at 0.0°C during an expansion from 3.0 L to 10.0 L.

(A)  How much work is done on the gas during the expansion?

Conceptualize  Run the process in your mind: the cylinder in Figure 20.8 is immersed in an ice-water bath, and the 
piston moves outward so that the volume of the gas increases. You can also use the graphical representation in Figure 
20.9 to conceptualize the process.

Categorize  We will evaluate parameters using equations developed in the preceding sections, so we categorize this 
example as a substitution problem. Because the temperature of the gas is fixed, the process is isothermal.

S O L U T I O N

Substitute the given values into Equation 20.14: W 5 nRT ln aVi

Vf
b

5 11.0 mol 2 18.31 J/mol # K 2 1273 K 2  ln a 3.0 L
10.0 L

b
5  22.7 3 103 J

(B)  How much energy transfer by heat occurs between the gas and its surroundings in this process?

f

i

V

PV = constant

Isotherm
P

Pi

Pf

Vi Vf

The curve is a 
hyperbola.

Figure 20.9  The PV diagram 
for an isothermal expansion of an 
ideal gas from an initial state to a 
final state.
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T1

T3

T2

T4

Figure 20.10  (Quick Quiz 20.4) 
Identify the nature of paths A, B, 
C, and D.

S O L U T I O N

Find the heat from the first law: DE int 5 Q 1 W

0 5 Q 1 W
Q 5 2W 5   2.7 3 103 J

Negative work is done on the gas, heat is transferred in, and the
internal energy and the temperature remain constant.



Comparing the Processes

In both of these processes the gas expands into a region it was not
in previously.

The energy of the system spreads out.

This corresponds to a change of state, but it is not captured by the
internal energy of the gas system, which does not change in either
process.

Something does change in these processes and we call it entropy.
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State Variables
State variables of a thermodynamics system are variables that are
determined if the system is in thermodynamic equilibrium and you
know the system’s state.

Examples: pressure, volume, internal energy, temperature. Also,
entropy.

Each variable on it’s own is not enough to determine the state of
the system. (Many systems in different states might have the same
volume.)

Once the current state is known, we do know all of these variables’
values.

How the system arrived at its current state, does not affect these
values. Heat and work are not state variables. (They are transfer
variables.)
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Entropy

Sadi Carnot discovered that the most efficient possible engine must
be reversible (more on this to come).

Rudolph Clausius interpreted this as being due to the behavior of a
new quantity (entropy).

The change in entropy moving between two states i and f is:

∆S =

∫ f
i

dQr

T

where dQr is an infinitesimal heat transfer when the system follows
a reversible path.

(T can be a function of Q!)



Entropy Example # 42

An ice tray contains 500 g of liquid water at 0 degrees C. Calculate
the change in entropy of the water as it freezes slowly and
completely at 0 degrees C.



Entropy

When a reversible path is followed:

∆Sr =

∫ f
i

dQ

T

Can we find the entropy change for an irreversible process?

Yes! Since entropy is a state variable, we can consider the entropy
change in any reversible process with the same initial and
final states.

Then:

∆Sirr =

∫ f
i

dQr

T

The entropy change in that process will give us the entropy
difference between those two states, regardless of the process.
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Entropy Change
Consider an initial state i and final state f .

We can find the entropy change moving between those two states
(for any process, reversible or irreversible), by finding the entropy
change along an arbitrary reversible path.

First law,
dEint = dW+ dQr

Rearranging, we can find an expression for dQr, using
∆Eint = nCV∆T :

dQr = nCV dT+P dV

To find entropy, we multiply by 1/T and integrate:

∆S =

∫ f
i

dQr

T
=

∫ f
i

nCV

T
dT+

∫ f
i

P

T
dV



Entropy Change

∆S =

∫ f
i

dQr

T
=

∫ f
i

nCV

T
dT+

∫ f
i

P

T
dV

Finally, replace P
T = nR

V (ideal gas):

∆S =

∫ f
i

dQr

T
=

∫ f
i

nCV

T
dT+ nR

∫ f
i

1

V
dV

The entropy difference is:

∆S = nCv ln

(
Tf

Ti

)
+ nR ln

(
Vf

Vi

)



Question

Quick Quiz 22.61 True or False: The entropy change in any
adiabatic process must be zero because Q = 0.

(A) True

(B) False

1Serway & Jewett, page 673.
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Summary

• entropy as a thermodynamic variable (macroscopic
perspective)

Test next week on Ch 21 & 22.

Homework
• new WebAssigns


