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Last time

• entropy (macroscopic perspective)



Overview

• entropy (microscopic perspective)



Irreversible & Reversible Processes Example
53720-3 CHANG E I N E NTROPY

PART 2

Entropy differs from energy in that entropy does not obey a conservation law.
The energy of a closed system is conserved; it always remains constant. For
irreversible processes, the entropy of a closed system always increases. Because of
this property, the change in entropy is sometimes called “the arrow of time.” For
example, we associate the explosion of a popcorn kernel with the forward
direction of time and with an increase in entropy. The backward direction of time
(a videotape run backwards) would correspond to the exploded popcorn re-
forming the original kernel. Because this backward process would result in an
entropy decrease, it never happens.

There are two equivalent ways to define the change in entropy of a system:
(1) in terms of the system’s temperature and the energy the system gains or loses
as heat, and (2) by counting the ways in which the atoms or molecules that make
up the system can be arranged. We use the first approach in the next section and
the second in Section 20-8.

20-3 Change in Entropy
Let’s approach this definition of change in entropy by looking again at a process
that we described in Sections 18-11 and 19-11: the free expansion of an ideal gas.
Figure 20-1a shows the gas in its initial equilibrium state i, confined by a closed
stopcock to the left half of a thermally insulated container. If we open the
stopcock, the gas rushes to fill the entire container, eventually reaching the final
equilibrium state f shown in Fig. 20-1b. This is an irreversible process; all the
molecules of the gas will never return to the left half of the container.

The p-V plot of the process, in Fig. 20-2, shows the pressure and volume
of the gas in its initial state i and final state f. Pressure and volume are state
properties, properties that depend only on the state of the gas and not on how it
reached that state. Other state properties are temperature and energy. We now
assume that the gas has still another state property—its entropy. Furthermore,
we define the change in entropy Sf ! Si of a system during a process that takes
the system from an initial state i to a final state f as

(change in entropy defined). (20-1)

Here Q is the energy transferred as heat to or from the system during the process,
and T is the temperature of the system in kelvins. Thus, an entropy change
depends not only on the energy transferred as heat but also on the temperature
at which the transfer takes place. Because T is always positive, the sign of "S is
the same as that of Q. We see from Eq. 20-1 that the SI unit for entropy and
entropy change is the joule per kelvin.

There is a problem, however, in applying Eq. 20-1 to the free expansion of
Fig. 20-1. As the gas rushes to fill the entire container, the pressure, temperature,
and volume of the gas fluctuate unpredictably. In other words, they do not have a
sequence of well-defined equilibrium values during the intermediate stages of the
change from initial state i to final state f. Thus, we cannot trace a pressure–vol-
ume path for the free expansion on the p-V plot of Fig. 20-2, and we cannot find a
relation between Q and T that allows us to integrate as Eq. 20-1 requires.

However, if entropy is truly a state property, the difference in entropy
between states i and f must depend only on those states and not at all on the way
the system went from one state to the other. Suppose, then, that we replace the
irreversible free expansion of Fig. 20-1 with a reversible process that connects
states i and f. With a reversible process we can trace a pressure–volume path on
a p-V plot, and we can find a relation between Q and T that allows us to use
Eq. 20-1 to obtain the entropy change.
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Fig. 20-1 The free expansion of an
ideal gas. (a) The gas is confined to the left
half of an insulated container by a closed
stopcock. (b) When the stopcock is
opened, the gas rushes to fill the entire
container.This process is irreversible; that
is, it does not occur in reverse, with the gas
spontaneously collecting itself in the left
half of the container.
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Fig. 20-2 A p-V diagram showing the
initial state i and the final state f of the free
expansion of Fig. 20-1.The intermediate
states of the gas cannot be shown because
they are not equilibrium states.
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Figure 20.7  Gas in a cylinder. (a) The gas is in contact with an energy reservoir. The walls of the cylinder are perfectly insulating, but the 
base in contact with the reservoir is conducting. (b) The gas expands slowly to a larger volume. (c) The gas is contained by a membrane in 
half of a volume, with vacuum in the other half. The entire cylinder is perfectly insulating. (d) The gas expands freely into the larger volume.
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at its initial position by an external agent such as a hand. When the force holding the 
piston is reduced slightly, the piston rises very slowly to its final position shown in Fig-
ure 20.7b. Because the piston is moving upward, the gas is doing work on the piston. 
During this expansion to the final volume Vf , just enough energy is transferred by 
heat from the reservoir to the gas to maintain a constant temperature Ti.
 Now consider the completely thermally insulated system shown in Figure 20.7c. 
When the membrane is broken, the gas expands rapidly into the vacuum until it 
occupies a volume Vf and is at a pressure Pf . The final state of the gas is shown in 
Figure 20.7d. In this case, the gas does no work because it does not apply a force; no 
force is required to expand into a vacuum. Furthermore, no energy is transferred 
by heat through the insulating wall.
 As we discuss in Section 20.5, experiments show that the temperature of the ideal 
gas does not change in the process indicated in Figures 20.7c and 20.7d. Therefore, 
the initial and final states of the ideal gas in Figures 20.7a and 20.7b are identical  
to the initial and final states in Figures 20.7c and 20.7d, but the paths are different. 
In the first case, the gas does work on the piston and energy is transferred slowly to 
the gas by heat. In the second case, no energy is transferred by heat and the value of 
the work done is zero. Therefore, energy transfer by heat, like work done, depends on 
the particular process occurring in the system. In other words, because heat and work 
both depend on the path followed on a PV diagram between the initial and final states, 
neither quantity is determined solely by the endpoints of a thermodynamic process.

20.5 The First Law of Thermodynamics
When we introduced the law of conservation of energy in Chapter 8, we stated that 
the change in the energy of a system is equal to the sum of all transfers of energy 
across the system’s boundary (Eq. 8.2). The first law of thermodynamics is a spe-
cial case of the law of conservation of energy that describes processes in which only 
the internal energy5 changes and the only energy transfers are by heat and work:

 DE int 5 Q 1 W (20.10) �W First law of thermodynamics

5It is an unfortunate accident of history that the traditional symbol for internal energy is U, which is also the tra-
ditional symbol for potential energy as introduced in Chapter 7. To avoid confusion between potential energy and 
internal energy, we use the symbol Eint for internal energy in this book. If you take an advanced course in thermody-
namics, however, be prepared to see U used as the symbol for internal energy in the first law.



Example (Macroscopic Entropy Analysis)

What is the entropy change during an adiabatic free expansion of
an isolated gas of n moles going from volume Vi to volume Vf ?
(Note: such a process is not reversible.)

In an adiabatic free expansion Q = 0, and since its isolated,
W = 0, and therefore ∆Eint = 0 and Tf = Ti .

∆S = nCv ln

(
Tf

Ti

)
+ nR ln

(
Vf

Vi

)
using ln 1 = 0 becomes

∆S = nR ln

(
Vf

Vi

)
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Example

Exercise for you:
What is the entropy change the same n moles of gas (a diatomic
gas around room temperatures) in an constant volume process,
with temperature going Ti to Tf ?

What is the entropy change when the pressure is constant and the
volume goes Vi to Vf ?



Question

Quick Quiz 22.51 An ideal gas is taken from an initial
temperature Ti to a higher final temperature Tf along two
different reversible paths. Path A is at constant pressure, and path
B is at constant volume. What is the relation between the entropy
changes of the gas for these paths?

(A) ∆SA > ∆SB

(B) ∆SA = ∆SB

(C) ∆SA < ∆SB

1Serway & Jewett, page 673.
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Entropy Microscopically

So far, we have seen that entropy is measuring something about
how energy is distributed in our system. However, that’s not the
only thing entropy can represent.

Entropy is a measure of disorder in a system.

It can also be used as a measure of information content.

Intriguingly, entropy was introduced separately in physics and then
later in information theory. The fact that these two measures were
the same was observed by John von Neumann.
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Entropy

According to Claude Shannon, who developed Shannon entropy, or
information entropy:

“I thought of calling it ‘information’, but the word was overly used,
so I decided to call it ‘uncertainty’. [...] Von Neumann told me,
‘You should call it entropy, for two reasons. In the first place your
uncertainty function has been used in statistical mechanics under
that name, so it already has a name. In the second place, and
more important, nobody knows what entropy really is, so in a
debate you will always have the advantage.’ ”



So what is entropy?

Consider the Yo. app (valued at $5-10 million in 2014).

You (originally) could only use it to send the message “yo.”

If you get a message on the app, you can guess what it will say.

The message has no information content, and it is perfectly
ordered, there is no uncertainty.

The message is a physical system that can only be in one state.
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So what is entropy?

But what if the message is only sent with 50% probability?

“If you get the message, let’s meet for drinks, if not, I’m still in a
meeting and can’t join you.”

Now you learn something when you get the message.

The information content is 1 bit.
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So what is entropy?

But what if the message is only sent with 50% probability?

“If you get the message, let’s ‘meet’ (on Zoom) for drinks, if not,
I’m still in a meeting and can’t join you.”

Now you learn something when you get the message.

The information content is 1 bit.



So what is entropy?
(Shannon) Entropy of a message m:

H(m) = −
∑
i

pi log pi

where pi is the probability of receiving message i .

For the fully-determined message “yo”:

H(m) = −1 log 1 − 0 log 0

= 0 bits

For the “yo”-or-no message:

H(m) = −
1

2
log

1

2
−

1

2
log

1

2

= log 2

= 1 bit
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Entropy in Thermodynamics

In physics, we express entropy a little differently:

S = −kB
∑
i

pi ln pi

pi is the probability of being in the ith microstate, given you are in
a known macrostate.

kB is called the Boltzmann constant.

kB = 1.38 × 10−23J K−1

Notice that this changes the units of entropy to J / K.



Entropy in Thermodynamics

Consider the atmosphere, it is mostly Oxygen and Nitrogen.

Have you ever walked into a room and been unable to breathe
because all of the oxygen in on the other side of the room?

b

c

a

As more oxygen molecules are added, the probability that there is
oxygen is on both sides increases.
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Macrostates and Microstates

A macrostate is something we can observe on a large scale.

The macrostates here could be:

• all oxygen on the left

• all oxygen on the right

• oxygen mixed throughout the room.
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of missing information, meaning we have very little information about what micro-
state actually exists. For a macrostate of a 2 on a pair of dice, we have no missing 
information; we know the microstate is 1–1. For a macrostate of a worthless poker 
hand, however, we have lots of missing information, related to the large number of 
choices we could make as to the actual hand that is held.

Q uick Quiz 22.4  (a) Suppose you select four cards at random from a standard 
deck of playing cards and end up with a macrostate of four deuces. How many 
microstates are associated with this macrostate? (b) Suppose you pick up two 
cards and end up with a macrostate of two aces. How many microstates are asso-
ciated with this macrostate?

 For thermodynamic systems, the variable entropy S is used to represent the level 
of uncertainty, choice, probability, or missing information in the system. Consider 
a configuration (a macrostate) in which all the oxygen molecules in your room 
are located in the west half of the room and the nitrogen molecules in the east 
half. Compare that macrostate to the more common configuration of the air mole-
cules distributed uniformly throughout the room. The latter configuration has the 
higher uncertainty and more missing information as to where the molecules are 
located because they could be anywhere, not just in one half of the room according 
to the type of molecule. The configuration with a uniform distribution also repre-
sents more choices as to where to locate molecules. It also has a much higher prob-
ability of occurring; have you ever noticed your half of the room suddenly being 
empty of oxygen? Therefore, the latter configuration represents a higher entropy.
     For systems of dice and poker hands, the comparisons between probabilities 
for various macrostates involve relatively small numbers. For example, a macrostate 
of a 4 on a pair of dice is only three times as probable as a macrostate of 2. The 
ratio of probabilities of a worthless hand and a royal flush is significantly larger. 
When we are talking about a macroscopic thermodynamic system containing on 
the order of Avogadro’s number of molecules, however, the ratios of probabilities 
can be astronomical.
 Let’s explore this concept by considering 100 molecules in a container. Half of 
the molecules are oxygen and the other half are nitrogen. At any given moment, 
the probability of one molecule being in the left part of the container shown in Fig-
ure 22.15a as a result of random motion is 12. If there are two molecules as shown in 
Figure 22.15b, the probability of both being in the left part is 11

2 22, or 1 in 4. If there 
are three molecules (Fig. 22.15c), the probability of them all being in the left por-
tion at the same moment is 11

2 23, or 1 in 8. For 100 independently moving molecules, 
the probability that the 50 oxygen molecules will be found in the left part at any 
moment is 11

2 250. Likewise, the probability that the remaining 50 nitrogen molecules 
will be found in the right part at any moment is 11

2 250. Therefore, the probability of 

Pitfall Prevention 22.5 
Entropy Is for Thermodynamic 
Systems We are not applying the 
word entropy to describe systems 
of dice or cards. We are only 
discussing dice and cards to set 
up the notions of microstates, 
macrostates, uncertainty, choice, 
probability, and missing informa-
tion. Entropy can only be used to 
describe thermodynamic systems 
that contain many particles, allow-
ing the system to store energy as 
internal energy.

Pitfall Prevention 22.6 
Entropy and Disorder Some 
textbook treatments of entropy 
relate entropy to the disorder of a 
system. While this approach has 
some merit, it is not entirely suc-
cessful. For example, consider 
two samples of the same solid 
material at the same temperature. 
One sample has volume V and 
the other volume 2V. The larger 
sample has higher entropy than 
the smaller one simply because 
there are more molecules in it. 
But there is no sense in which it is 
more disordered than the smaller 
sample. We will not use the dis-
order approach in this text, but 
watch for it in other sources.

b

c

a
Figure 22.15 Possible distribu-
tions of identical molecules in a 
container. The colors used here 
exist only to allow us to distin-
guish among the molecules.  
(a) One molecule in a container 
has a 1-in-2 chance of being on 
the left side. (b) Two molecules 
have a 1-in-4 chance of being on 
the left side at the same time.  
(c) Three molecules have a 1-in-8 
chance of being on the left side  
at the same time.



Macrostates and Microstates

A microstate is a state too small / complex to easily observe, but
represents one way a macrostate can be achieved.

We want to consider the number of microstates for each
macrostate.

The macrostates here could be:

• all oxygen on the left — 1 microstate

• all oxygen on the right — 1 microstate

• oxygen mixed throughout the room — 6 microstates
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Suppose all of the microstates are equally likely. If so, even with
only 3 molecules, we would expect to find the oxygen distributed
throughout the room (75% probability).

S = −kB
∑
i

pi ln pi

Entropy of the “all on the left” macrostate:

SL = kB ln 1 = 0

Entropy of the “mixed” macrostate:

SM = kB ln 6 ≈ 1.8kB

The entropy of the “mixed” macrostate is higher!



Boltzmann’s formula

The entropy of a macrostate can be written:

S = kB lnW

where W is the number of microstates for that macrostate,
assuming all microstates are equally likely.

W is the number of ways the macrostate can occur.



Summary

• entropy (microscopic perspective)


