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Last time

• entropy (microscopic perspective)



Overview

• entropy (microscopic perspective)

• heat engines

• heat pumps (?)



Entropy in Thermodynamics

Consider the atmosphere, it is mostly Oxygen and Nitrogen.

Have you ever walked into a room and been unable to breathe
because all of the oxygen in on the other side of the room?

b

c

a

As more oxygen molecules are added, the probability that there is
oxygen is on both sides increases.



Macrostates and Microstates

A macrostate is something we can observe on a large scale.

The macrostates here could be:

• all oxygen on the left

• all oxygen on the right

• oxygen mixed throughout the room.
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of missing information, meaning we have very little information about what micro-
state actually exists. For a macrostate of a 2 on a pair of dice, we have no missing 
information; we know the microstate is 1–1. For a macrostate of a worthless poker 
hand, however, we have lots of missing information, related to the large number of 
choices we could make as to the actual hand that is held.

Q uick Quiz 22.4  (a) Suppose you select four cards at random from a standard 
deck of playing cards and end up with a macrostate of four deuces. How many 
microstates are associated with this macrostate? (b) Suppose you pick up two 
cards and end up with a macrostate of two aces. How many microstates are asso-
ciated with this macrostate?

 For thermodynamic systems, the variable entropy S is used to represent the level 
of uncertainty, choice, probability, or missing information in the system. Consider 
a configuration (a macrostate) in which all the oxygen molecules in your room 
are located in the west half of the room and the nitrogen molecules in the east 
half. Compare that macrostate to the more common configuration of the air mole-
cules distributed uniformly throughout the room. The latter configuration has the 
higher uncertainty and more missing information as to where the molecules are 
located because they could be anywhere, not just in one half of the room according 
to the type of molecule. The configuration with a uniform distribution also repre-
sents more choices as to where to locate molecules. It also has a much higher prob-
ability of occurring; have you ever noticed your half of the room suddenly being 
empty of oxygen? Therefore, the latter configuration represents a higher entropy.
     For systems of dice and poker hands, the comparisons between probabilities 
for various macrostates involve relatively small numbers. For example, a macrostate 
of a 4 on a pair of dice is only three times as probable as a macrostate of 2. The 
ratio of probabilities of a worthless hand and a royal flush is significantly larger. 
When we are talking about a macroscopic thermodynamic system containing on 
the order of Avogadro’s number of molecules, however, the ratios of probabilities 
can be astronomical.
 Let’s explore this concept by considering 100 molecules in a container. Half of 
the molecules are oxygen and the other half are nitrogen. At any given moment, 
the probability of one molecule being in the left part of the container shown in Fig-
ure 22.15a as a result of random motion is 12. If there are two molecules as shown in 
Figure 22.15b, the probability of both being in the left part is 11

2 22, or 1 in 4. If there 
are three molecules (Fig. 22.15c), the probability of them all being in the left por-
tion at the same moment is 11

2 23, or 1 in 8. For 100 independently moving molecules, 
the probability that the 50 oxygen molecules will be found in the left part at any 
moment is 11

2 250. Likewise, the probability that the remaining 50 nitrogen molecules 
will be found in the right part at any moment is 11

2 250. Therefore, the probability of 

Pitfall Prevention 22.5 
Entropy Is for Thermodynamic 
Systems We are not applying the 
word entropy to describe systems 
of dice or cards. We are only 
discussing dice and cards to set 
up the notions of microstates, 
macrostates, uncertainty, choice, 
probability, and missing informa-
tion. Entropy can only be used to 
describe thermodynamic systems 
that contain many particles, allow-
ing the system to store energy as 
internal energy.

Pitfall Prevention 22.6 
Entropy and Disorder Some 
textbook treatments of entropy 
relate entropy to the disorder of a 
system. While this approach has 
some merit, it is not entirely suc-
cessful. For example, consider 
two samples of the same solid 
material at the same temperature. 
One sample has volume V and 
the other volume 2V. The larger 
sample has higher entropy than 
the smaller one simply because 
there are more molecules in it. 
But there is no sense in which it is 
more disordered than the smaller 
sample. We will not use the dis-
order approach in this text, but 
watch for it in other sources.

b

c

a
Figure 22.15 Possible distribu-
tions of identical molecules in a 
container. The colors used here 
exist only to allow us to distin-
guish among the molecules.  
(a) One molecule in a container 
has a 1-in-2 chance of being on 
the left side. (b) Two molecules 
have a 1-in-4 chance of being on 
the left side at the same time.  
(c) Three molecules have a 1-in-8 
chance of being on the left side  
at the same time.



Macrostates and Microstates

A microstate is a state too small / complex to easily observe, but
represents one way a macrostate can be achieved.

We want to consider the number of microstates for each
macrostate.

The macrostates here could be:

• all oxygen on the left — 1 microstate

• all oxygen on the right — 1 microstate

• oxygen mixed throughout the room — 6 microstates
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of missing information, meaning we have very little information about what micro-
state actually exists. For a macrostate of a 2 on a pair of dice, we have no missing 
information; we know the microstate is 1–1. For a macrostate of a worthless poker 
hand, however, we have lots of missing information, related to the large number of 
choices we could make as to the actual hand that is held.

Q uick Quiz 22.4  (a) Suppose you select four cards at random from a standard 
deck of playing cards and end up with a macrostate of four deuces. How many 
microstates are associated with this macrostate? (b) Suppose you pick up two 
cards and end up with a macrostate of two aces. How many microstates are asso-
ciated with this macrostate?

 For thermodynamic systems, the variable entropy S is used to represent the level 
of uncertainty, choice, probability, or missing information in the system. Consider 
a configuration (a macrostate) in which all the oxygen molecules in your room 
are located in the west half of the room and the nitrogen molecules in the east 
half. Compare that macrostate to the more common configuration of the air mole-
cules distributed uniformly throughout the room. The latter configuration has the 
higher uncertainty and more missing information as to where the molecules are 
located because they could be anywhere, not just in one half of the room according 
to the type of molecule. The configuration with a uniform distribution also repre-
sents more choices as to where to locate molecules. It also has a much higher prob-
ability of occurring; have you ever noticed your half of the room suddenly being 
empty of oxygen? Therefore, the latter configuration represents a higher entropy.
     For systems of dice and poker hands, the comparisons between probabilities 
for various macrostates involve relatively small numbers. For example, a macrostate 
of a 4 on a pair of dice is only three times as probable as a macrostate of 2. The 
ratio of probabilities of a worthless hand and a royal flush is significantly larger. 
When we are talking about a macroscopic thermodynamic system containing on 
the order of Avogadro’s number of molecules, however, the ratios of probabilities 
can be astronomical.
 Let’s explore this concept by considering 100 molecules in a container. Half of 
the molecules are oxygen and the other half are nitrogen. At any given moment, 
the probability of one molecule being in the left part of the container shown in Fig-
ure 22.15a as a result of random motion is 12. If there are two molecules as shown in 
Figure 22.15b, the probability of both being in the left part is 11

2 22, or 1 in 4. If there 
are three molecules (Fig. 22.15c), the probability of them all being in the left por-
tion at the same moment is 11

2 23, or 1 in 8. For 100 independently moving molecules, 
the probability that the 50 oxygen molecules will be found in the left part at any 
moment is 11

2 250. Likewise, the probability that the remaining 50 nitrogen molecules 
will be found in the right part at any moment is 11

2 250. Therefore, the probability of 
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two samples of the same solid 
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One sample has volume V and 
the other volume 2V. The larger 
sample has higher entropy than 
the smaller one simply because 
there are more molecules in it. 
But there is no sense in which it is 
more disordered than the smaller 
sample. We will not use the dis-
order approach in this text, but 
watch for it in other sources.
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Suppose all of the microstates are equally likely. If so, even with
only 3 molecules, we would expect to find the oxygen distributed
throughout the room (75% probability).

S = −kB
∑
i

pi ln pi

Entropy of the “all on the left” macrostate:

SL = kB ln 1 = 0

Entropy of the “mixed” macrostate:

SM = kB ln 6 ≈ 1.8kB

The entropy of the “mixed” macrostate is higher!



Boltzmann’s formula

The entropy of a macrostate can be written:

S = kB lnW

where W is the number of microstates for that macrostate,
assuming all microstates are equally likely.

W is the number of ways the macrostate can occur.



Entropy and disorder

A macrostate that has very many microstates can be thought of as
a disordered state.

If all the oxygen is on the left of the room, all the nitrogen on the
right, the room is organized, or ordered.

But this is very unlikely!

Even if a room starts out ordered, you would expect it to become
disordered right away, because a disordered room is more probable.



Entropy example

Imagine throwing two dice. The score of the dice will be the sum
of the two numbers on the dice.

What score should you bet on seeing?

What is the number of microstates associated with that score?

What is the number of microstates associated a score of 2?

The macroscopic world is like a game in which there are ∼ 1023

dice, but you only ever see the (approximate) score, not the result
on each dice.

1Hewitt, ‘Conceptual Physics’, Problem 8, page 331.
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Second Law of Thermodynamics

This is another equivalent way to state the second law.

Heat must flow from hotter to colder because there are more ways
to distribute energy evenly than to keep it in one place only.

∆S

∆t
> 0

As time goes by, things tend to disorder.



Second Law of Thermodynamics

ordered,
less probable,
low entropy

disordered,
more probable,
high entropy

53720-3 CHANG E I N E NTROPY
PART 2

Entropy differs from energy in that entropy does not obey a conservation law.
The energy of a closed system is conserved; it always remains constant. For
irreversible processes, the entropy of a closed system always increases. Because of
this property, the change in entropy is sometimes called “the arrow of time.” For
example, we associate the explosion of a popcorn kernel with the forward
direction of time and with an increase in entropy. The backward direction of time
(a videotape run backwards) would correspond to the exploded popcorn re-
forming the original kernel. Because this backward process would result in an
entropy decrease, it never happens.

There are two equivalent ways to define the change in entropy of a system:
(1) in terms of the system’s temperature and the energy the system gains or loses
as heat, and (2) by counting the ways in which the atoms or molecules that make
up the system can be arranged. We use the first approach in the next section and
the second in Section 20-8.

20-3 Change in Entropy
Let’s approach this definition of change in entropy by looking again at a process
that we described in Sections 18-11 and 19-11: the free expansion of an ideal gas.
Figure 20-1a shows the gas in its initial equilibrium state i, confined by a closed
stopcock to the left half of a thermally insulated container. If we open the
stopcock, the gas rushes to fill the entire container, eventually reaching the final
equilibrium state f shown in Fig. 20-1b. This is an irreversible process; all the
molecules of the gas will never return to the left half of the container.

The p-V plot of the process, in Fig. 20-2, shows the pressure and volume
of the gas in its initial state i and final state f. Pressure and volume are state
properties, properties that depend only on the state of the gas and not on how it
reached that state. Other state properties are temperature and energy. We now
assume that the gas has still another state property—its entropy. Furthermore,
we define the change in entropy Sf ! Si of a system during a process that takes
the system from an initial state i to a final state f as

(change in entropy defined). (20-1)

Here Q is the energy transferred as heat to or from the system during the process,
and T is the temperature of the system in kelvins. Thus, an entropy change
depends not only on the energy transferred as heat but also on the temperature
at which the transfer takes place. Because T is always positive, the sign of "S is
the same as that of Q. We see from Eq. 20-1 that the SI unit for entropy and
entropy change is the joule per kelvin.

There is a problem, however, in applying Eq. 20-1 to the free expansion of
Fig. 20-1. As the gas rushes to fill the entire container, the pressure, temperature,
and volume of the gas fluctuate unpredictably. In other words, they do not have a
sequence of well-defined equilibrium values during the intermediate stages of the
change from initial state i to final state f. Thus, we cannot trace a pressure–vol-
ume path for the free expansion on the p-V plot of Fig. 20-2, and we cannot find a
relation between Q and T that allows us to integrate as Eq. 20-1 requires.

However, if entropy is truly a state property, the difference in entropy
between states i and f must depend only on those states and not at all on the way
the system went from one state to the other. Suppose, then, that we replace the
irreversible free expansion of Fig. 20-1 with a reversible process that connects
states i and f. With a reversible process we can trace a pressure–volume path on
a p-V plot, and we can find a relation between Q and T that allows us to use
Eq. 20-1 to obtain the entropy change.

"S # Sf ! Si # !f

i

dQ
T

Fig. 20-1 The free expansion of an
ideal gas. (a) The gas is confined to the left
half of an insulated container by a closed
stopcock. (b) When the stopcock is
opened, the gas rushes to fill the entire
container.This process is irreversible; that
is, it does not occur in reverse, with the gas
spontaneously collecting itself in the left
half of the container.

Vacuum

Insulation

System

(a) Initial state i

(b) Final state f

Irreversible
process
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Stopcock closed
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Volume

i

f

Fig. 20-2 A p-V diagram showing the
initial state i and the final state f of the free
expansion of Fig. 20-1.The intermediate
states of the gas cannot be shown because
they are not equilibrium states.
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Example (Microscopic Entropy Analysis)

What is the entropy change during an adiabatic free expansion of
an isolated gas of n moles going from volume Vi to volume Vf ?
(Note: such a process is not reversible.)

Two approaches: microscopic and macroscopic (seen earlier).

Now for microscopic. We need some way to count microstates of
the gas.

Let’s break up our volume, V , into a grid and say there are m
different locations a gas particle could be in.1 Let N be the
number of particles and m � N.

1Serway & Jewett, pg 671.



Example

Let Vm be the volume of one grid unit, so m = V /Vm.

How many ways can we place the particles? The first can be
placed in any of w = V /Vm places. For each of those positions,
the second can be placed in w locations, giving w2 ways in total.

For N, there are wN =
(

V
Vm

)N
ways the particles can be arranged

in the volume V .

This gives

S = NkB ln

(
V

Vm

)



Example

There are reasons to quibble over how we counted the microstates,
but let us think what this gives us for the change in entropy.

We have a final volume Vf and an initial volume Vi :

∆S = NkB ln

(
Vf

Vm

)
− NkB ln

(
Vi

Vm

)

So,

∆S = NkB ln

(
Vf

Vi

)

The same as for the macroscopic analysis!
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Heat Engines

Steam engines and later incarnations of the engine run on a very
simple principle: heat is transferred from a hot object to a colder
object and mechanical work is done in the process.

Heat engines run in a cycle, returning their working fluid back to
its initial state at the end of the cycle.

In practice, usually some chemical energy (burning fuel) is used to
raise the temperature of one object, and the colder object remains
at the ambient temperature.



Heat Engines

1Diagram from http://www2.ignatius.edu/faculty/decarlo/



Example of a Heat Engine Cycle

666 Chapter 22 Heat Engines, Entropy, and the Second Law of Thermodynamics

Figure 22.13 PV diagram for 
the Otto cycle, which approxi-
mately represents the processes 
occurring in an internal combus-
tion engine.

V

P

C

Qh

B D

TC

Qc

Adiabatic
processes

V2 V1

O A

TA

cylinder at atmospheric pressure. That is the energy input part of the cycle: 
energy enters the system (the interior of the cylinder) by matter transfer 
as potential energy stored in the fuel. In this process, the volume increases 
from V2 to V1. This apparent backward numbering is based on the compres-
sion stroke (process 2 below), in which the air–fuel mixture is compressed 
from V1 to V2.

 2. During the compression stroke (Fig. 22.12b and A S B in Fig. 22.13), the pis-
ton moves upward, the air–fuel mixture is compressed adiabatically from 
volume V1 to volume V2, and the temperature increases from TA to TB . The 
work done on the gas is positive, and its value is equal to the negative of the 
area under the curve AB in Figure 22.13.

 3. Combustion occurs when the spark plug fires (Fig. 22.12c and B S C in Fig. 
22.13). That is not one of the strokes of the cycle because it occurs in a very 
short time interval while the piston is at its highest position. The combus-
tion represents a rapid energy transformation from potential energy stored 
in chemical bonds in the fuel to internal energy associated with molecular 
motion, which is related to temperature. During this time interval, the 
mixture’s pressure and temperature increase rapidly, with the temperature 
rising from TB to TC . The volume, however, remains approximately constant 
because of the short time interval. As a result, approximately no work is 
done on or by the gas. We can model this process in the PV diagram (Fig. 
22.13) as that process in which the energy |Q h | enters the system. (In real-
ity, however, this process is a transformation of energy already in the cylinder 
from process O S A.)

 4. In the power stroke (Fig. 22.12d and C S D in Fig. 22.13), the gas expands 
adiabatically from V2 to V1. This expansion causes the temperature to drop 
from TC to TD . Work is done by the gas in pushing the piston downward, 
and the value of this work is equal to the area under the curve CD.

 5. Release of the residual gases occurs when an exhaust valve is opened (Fig. 
22.12e and D S A in Fig. 22.13). The pressure suddenly drops for a short 
time interval. During this time interval, the piston is almost stationary and 
the volume is approximately constant. Energy is expelled from the interior 
of the cylinder and continues to be expelled during the next process.

 6. In the final process, the exhaust stroke (Fig. 22.12e and A S O in Fig. 22.13), 
the piston moves upward while the exhaust valve remains open. Residual 
gases are exhausted at atmospheric pressure, and the volume decreases 
from V1 to V2. The cycle then repeats.

 If the air–fuel mixture is assumed to be an ideal gas, the efficiency of the Otto 
cycle is

 e 5 1 2
11V1/V2 2g21 1Otto cycle 2  (22.9)

where V1/V2 is the compression ratio and g is the ratio of the molar specific heats 
CP/CV for the air–fuel mixture. Equation 22.9, which is derived in Example 22.5, 
shows that the efficiency increases as the compression ratio increases. For a typi-
cal compression ratio of 8 and with g 5 1.4, Equation 22.9 predicts a theoretical 
efficiency of 56% for an engine operating in the idealized Otto cycle. This value 
is much greater than that achieved in real engines (15% to 20%) because of such 
effects as friction, energy transfer by conduction through the cylinder walls, and 
incomplete combustion of the air–fuel mixture.
 Diesel engines operate on a cycle similar to the Otto cycle, but they do not employ 
a spark plug. The compression ratio for a diesel engine is much greater than that 
for a gasoline engine. Air in the cylinder is compressed to a very small volume, and, 
as a consequence, the cylinder temperature at the end of the compression stroke is 



Efficiency of a Heat Engine

The working fluid returns to its initial state, so in the entire cycle
∆Eint = 0.

First law:
∆Eint = W + Q = 0

where W is the work done on the system.

This means
Weng = Qnet = |Qh|− |Qc |

where Weng is the work done by the engine (working fluid).

We define the efficiency to be:

e =
Weng

|Qh|
=

|Qh|− |Qc |

|Qh|
= 1 −

|Qc |

|Qh|
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Efficiency of a Heat Engine

e =
Weng

|Qh|
=

|Qh|− |Qc |

|Qh|
= 1 −

|Qc |

|Qh|

Ideally, we would like to have an efficiency of 1.

This would mean all heat that enters our fluid is converted to
work.

Since we usually supply this heat through a chemical reaction,
ideally all the energy from the reaction would become useful work.



“Perfect” but Impossible Engine

It would be nice if all heat energy Qh could be converted to work.

But this is not possible.

We will see why shortly.



“Perfect” but Impossible Engine

It would be nice if all heat energy Qh could be converted to work.
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X



Second Law and Heat Engines

We can state the second law also as a fundamental limitation on
heat engines.

Second Law of Thermodynamics (Heat Engine version)

It is impossible to construct a heat engine that, operating in a
cycle, produces no effect other than the input of energy by heat
from a reservoir and the performance of an equal amount of work.



Heat Engines

1Diagram from http://www2.ignatius.edu/faculty/decarlo/



Heat Pump

Refrigerators work by taking electrical energy, converting it to
work, then pumping heat from a cold area to a hotter one.

This type of process, where work is converted into a heat transfer
from a colder object to a hotter one is called a heat pump.

1Diagram from http://hyperphysics.phy-astr.gsu.edu



Heat Pump Coefficient of Performance

The effectiveness of a heat pump isn’t well represented with our
previous definition of efficiency, since now the resource we are
considering is work.

Instead we use the Coefficient of Performance, COP.

We can use heat pumps for two different purposes:

• to further heat an object (eg. a house) that is warmer than its
surroundings

• to cool an object (eg. in a refrigerator) that is cooler than its
surroundings

Each purpose has its own COP.



Heat Pump Coefficient of Performance

For cooling (refrigeration):

COP (cooling) =
|Qc |

W

Typical refrigerator COPs are around 5 or 6.

For heating:

COP (heating) =
|Qh|

W



Question

Quick Quiz 22.22 The energy entering an electric heater by
electrical transmission can be converted to internal energy with an
efficiency of 100%.

By what factor does the cost of heating your home change when
you replace your electric heating system with an electric heat pump
that has a COP of 4.00?

Assume the motor running the heat pump is 100% efficient.

(A) 4.00

(B) 2.00

(C) 0.500

(D) 0.250

2Serway & Jewett, page 658.
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Summary

• entropy (microscopic perspective)

• heat engines

• heat pumps (?)


