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Last time

• entropy (microscopic perspective)

• heat engines

• heat pumps



Overview

• wrap up heat pumps

• Carnot engines

• efficiency of a Carnot engine

• entropy in a Carnot cycle (?)



Heat Engines

1Diagram from http://www2.ignatius.edu/faculty/decarlo/



Heat Pump

Refrigerators work by taking electrical energy, converting it to
work, then pumping heat from a cold area to a hotter one.

This type of process, where work is converted into a heat transfer
from a colder object to a hotter one is called a heat pump.

1Diagram from http://hyperphysics.phy-astr.gsu.edu



“Perfect” but Impossible Heat Pump
 22.2 Heat Pumps and Refrigerators 657

a minimum of work. If the process could be accomplished without doing any work, 
the refrigerator or heat pump would be “perfect” (Fig. 22.5). Again, the existence 
of such a device would be in violation of the second law of thermodynamics, which 
in the form of the Clausius statement3 states:

It is impossible to construct a cyclical machine whose sole effect is to transfer 
energy continuously by heat from one object to another object at a higher 
temperature without the input of energy by work.

In simpler terms, energy does not transfer spontaneously by heat from a cold object 
to a hot object. Work input is required to run a refrigerator.
 The Clausius and Kelvin–Planck statements of the second law of thermodynam-
ics appear at first sight to be unrelated, but in fact they are equivalent in all respects. 
Although we do not prove so here, if either statement is false, so is the other.4
 In practice, a heat pump includes a circulating fluid that passes through two sets 
of metal coils that can exchange energy with the surroundings. The fluid is cold 
and at low pressure when it is in the coils located in a cool environment, where it 
absorbs energy by heat. The resulting warm fluid is then compressed and enters 
the other coils as a hot, high-pressure fluid. There it releases its stored energy to 
the warm surroundings. In an air conditioner, energy is absorbed into the fluid in 
coils located in a building’s interior; after the fluid is compressed, energy leaves the 
fluid through coils located outdoors. In a refrigerator, the external coils are behind 
the unit (Fig. 22.6) or underneath the unit. The internal coils are in the walls of the 
refrigerator and absorb energy from the food.
 The effectiveness of a heat pump is described in terms of a number called the 
coefficient of performance (COP). The COP is similar to the thermal efficiency for 
a heat engine in that it is a ratio of what you gain (energy transferred to or from a 
reservoir) to what you give (work input). For a heat pump operating in the cooling 
mode, “what you gain” is energy removed from the cold reservoir. The most effective 
refrigerator or air conditioner is one that removes the greatest amount of energy 

3First expressed by Rudolf Clausius (1822–1888).
4See an advanced textbook on thermodynamics for this proof.
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Figure 22.4 Schematic repre-
sentation of a heat pump.
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Figure 22.5  Schematic diagram 
of an impossible heat pump or 
refrigerator, that is, one that takes 
in energy from a cold reservoir 
and expels an equivalent amount 
of energy to a hot reservoir with-
out the input of energy by work.

The coils on the back of
a refrigerator transfer 
energy by heat to the air.

Figure 22.6  The back of a 
household refrigerator. The air 
surrounding the coils is the hot 
reservoir.
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This heat pump (using no work) violates our
first statement of the second law, since heat
spontaneously goes from a cooler reservoir to
a hotter one.

More formally, the Clausius statement of the
second law:

Second Law of thermodynamics (Clausius)

It is impossible to construct a cyclical machine
whose sole effect is to transfer energy
continuously by heat from one object to
another object at a higher temperature
without the input of energy by work.

1Diagram from Serway and Jewett.

↙



Question

Suppose you have a house with very excellent insulation. If you
leave the door to your refrigerator open for the day, what happens
to the temperature of your house?

(A) It increases.

(B) It decreases.

(C) It stays the same.



Question

Suppose you have a house with very excellent insulation. If you
leave the door to your refrigerator open for the day, what happens
to the temperature of your house?

(A) It increases. ←
(B) It decreases.

(C) It stays the same.



Carnot Engines

Sadi Carnot wanted to find the fundamental limit of how
efficient a heat engine could be.

He imagined a theoretical engine (now called the Carnot engine)
that was as efficient as possible.

He realized that no engine would be more efficient than a
reversible one.

Only in a reversible process will no energy be lost to friction or
turbulence in the fluid.



Carnot Engines

Carnot specified that his heat engine should use just two thermal
reservoirs, each at constant temperature, Th and Tc .

In order to be reversible, the heat must be exchanged in the cycle
only when the engine fluid’s temperature matches that of the
reservoir with which it is in contact. ⇒ Isothermal processes

The other parts of the cycle must be adiabatic (Q = 0).

(The Carnot engine is the reversible engine cycle you can operate
between just two thermal reservoirs at constant temperature.)



The Carnot Cycle
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Figure 22.10 The Carnot cycle. 
The letters A, B, C, and D refer 
to the states of the gas shown in 
Figure 22.11. The arrows on the 
piston indicate the direction of its 
motion during each process.

and the PV diagram for the cycle is shown in Figure 22.11. The Carnot cycle consists 
of two adiabatic processes and two isothermal processes, all reversible:

 1. Process A S B (Fig. 22.10a) is an isothermal expansion at temperature Th. 
The gas is placed in thermal contact with an energy reservoir at tempera-
ture Th. During the expansion, the gas absorbs energy |Q h| from the res-
ervoir through the base of the cylinder and does work WAB in raising the 
piston.

 2. In process B S C (Fig. 22.10b), the base of the cylinder is replaced by a 
thermally nonconducting wall and the gas expands adiabatically; that is, no 
energy enters or leaves the system by heat. During the expansion, the tem-
perature of the gas decreases from Th to Tc and the gas does work WBC in 
raising the piston.

 3. In process C S D (Fig. 22.10c), the gas is placed in thermal contact with an 
energy reservoir at temperature Tc and is compressed isothermally at tem-
perature Tc. During this time, the gas expels energy |Q c| to the reservoir 
and the work done by the piston on the gas is WCD.

 4. In the final process D S A (Fig. 22.10d), the base of the cylinder is replaced 
by a nonconducting wall and the gas is compressed adiabatically. The tem-
perature of the gas increases to Th, and the work done by the piston on the 
gas is WDA.

Figure 22.11 PV diagram for the 
Carnot cycle. The net work done 
Weng equals the net energy trans-
ferred into the Carnot engine in 
one cycle, |Q h | 2 |Q c |.
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Maximum Efficiency of an Engine

Assume a Carnot engine has efficiency eC .

Now supoose it was possible to construct an engine (reversible or
irreversible) that is even more efficient, with efficiency e > eC .

Since the Carnot cycle is reversible, we could run the Carnot
engine in reverse as a heat pump.



Maximum Efficiency of an Engine
Putting the imagined engine and the Carnot heat pump together: 22.4 The Carnot Engine 661

maximum possible efficiency for real engines. Let us confirm that the Carnot 
engine is the most efficient. We imagine a hypothetical engine with an efficiency 
greater than that of the Carnot engine. Consider Figure 22.9, which shows the 
hypothetical engine with e 7 eC on the left connected between hot and cold res-
ervoirs. In addition, let us attach a Carnot engine between the same reservoirs.  
Because the Carnot cycle is reversible, the Carnot engine can be run in reverse as 
a Carnot heat pump as shown on the right in Figure 22.9. We match the output 
work of the engine to the input work of the heat pump, W 5 WC, so there is no 
exchange of energy by work between the surroundings and the engine–heat pump 
combination.
 Because of the proposed relation between the efficiencies, we must have

e . e C   S   
0W 00Q h 0 .

0WC 00Q hC 0
The numerators of these two fractions cancel because the works have been 
matched. This expression requires that

 0Q hC 0 . 0Q h 0  (22.5)

From Equation 22.1, the equality of the works gives us0W 0 5 0WC 0    S   0Q h 0 2 0Q c 0 5 0Q hC 0 2 0Q c C 0
which can be rewritten to put the energies exchanged with the cold reservoir on 
the left and those with the hot reservoir on the right:

 0Q hC 0 2 0Q h 0 5 0Q c C 0 2 0Q c 0  (22.6)

Note that the left side of Equation 22.6 is positive, so the right side must be positive 
also. We see that the net energy exchange with the hot reservoir is equal to the net 
energy exchange with the cold reservoir. As a result, for the combination of the 
heat engine and the heat pump, energy is transferring from the cold reservoir to 
the hot reservoir by heat with no input of energy by work.
 This result is in violation of the Clausius statement of the second law. Therefore, 
our original assumption that e 7 eC must be incorrect, and we must conclude that 
the Carnot engine represents the highest possible efficiency for an engine. The key 
feature of the Carnot engine that makes it the most efficient is its reversibility; it can 
be run in reverse as a heat pump. All real engines are less efficient than the Carnot 
engine because they do not operate through a reversible cycle. The efficiency of a 
real engine is further reduced by such practical difficulties as friction and energy 
losses by conduction.
 To describe the Carnot cycle taking place between temperatures Tc and Th, let’s 
assume the working substance is an ideal gas contained in a cylinder fitted with a 
movable piston at one end. The cylinder’s walls and the piston are thermally non-
conducting. Four stages of the Carnot cycle are shown in Figure 22.10(page 662), 

Hot reservoir
at Th

Q hC

Q c C

Carnot 
heat

pump

rn

Qh

Q c

Cold reservoir
at Tc

Heat
engine

WCW

Figure 22.9  A Carnot engine 
operated as a heat pump and 
another engine with a proposed 
higher efficiency operate between 
two energy reservoirs. The work 
output and input are matched.

Sadi Carnot
French engineer (1796–1832)
Carnot was the first to show the quan-
titative relationship between work and 
heat. In 1824, he published his only 
work, Reflections on the Motive Power 
of Heat, which reviewed the industrial, 
political, and economic importance of 
the steam engine. In it, he defined work 
as “weight lifted through a height.”
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Now, the work from the hypothetical engine drives the Carnot heat
pump, so W = WC

e > eC ⇒ |W |

|Qh|
>

|WC |

|QhC |



Maximum Efficiency of an Engine

e > eC ⇒ |W |

|Qh|
>

|W |

|QhC |

This means
|Qh| < |QhC |

We also know that |W | = |Qh|− |Qc | (energy conservation). Since
the works are equal:

W = Wc

|Qh|− |Qc | = |QhC |− |QcC |

Rearranging:
|QhC |− |Qh| = |QcC |− |Qc |

But the LHS is positive if e > eC .

Heat arrives at the hot reservoir and leaves the cold one! ⇒
Violates the Second Law.



Maximum Efficiency of an Engine

Putting the imagined engine and the Carnot heat pump together:

|QhC |− |Qh| > 0

|QcC |− |Qc | > 0

 22.4 The Carnot Engine 661

maximum possible efficiency for real engines. Let us confirm that the Carnot 
engine is the most efficient. We imagine a hypothetical engine with an efficiency 
greater than that of the Carnot engine. Consider Figure 22.9, which shows the 
hypothetical engine with e 7 eC on the left connected between hot and cold res-
ervoirs. In addition, let us attach a Carnot engine between the same reservoirs.  
Because the Carnot cycle is reversible, the Carnot engine can be run in reverse as 
a Carnot heat pump as shown on the right in Figure 22.9. We match the output 
work of the engine to the input work of the heat pump, W 5 WC, so there is no 
exchange of energy by work between the surroundings and the engine–heat pump 
combination.
 Because of the proposed relation between the efficiencies, we must have

e . e C   S   
0W 00Q h 0 .

0WC 00Q hC 0
The numerators of these two fractions cancel because the works have been 
matched. This expression requires that

 0Q hC 0 . 0Q h 0  (22.5)
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which can be rewritten to put the energies exchanged with the cold reservoir on 
the left and those with the hot reservoir on the right:
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Note that the left side of Equation 22.6 is positive, so the right side must be positive 
also. We see that the net energy exchange with the hot reservoir is equal to the net 
energy exchange with the cold reservoir. As a result, for the combination of the 
heat engine and the heat pump, energy is transferring from the cold reservoir to 
the hot reservoir by heat with no input of energy by work.
 This result is in violation of the Clausius statement of the second law. Therefore, 
our original assumption that e 7 eC must be incorrect, and we must conclude that 
the Carnot engine represents the highest possible efficiency for an engine. The key 
feature of the Carnot engine that makes it the most efficient is its reversibility; it can 
be run in reverse as a heat pump. All real engines are less efficient than the Carnot 
engine because they do not operate through a reversible cycle. The efficiency of a 
real engine is further reduced by such practical difficulties as friction and energy 
losses by conduction.
 To describe the Carnot cycle taking place between temperatures Tc and Th, let’s 
assume the working substance is an ideal gas contained in a cylinder fitted with a 
movable piston at one end. The cylinder’s walls and the piston are thermally non-
conducting. Four stages of the Carnot cycle are shown in Figure 22.10(page 662), 
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Figure 22.9  A Carnot engine 
operated as a heat pump and 
another engine with a proposed 
higher efficiency operate between 
two energy reservoirs. The work 
output and input are matched.

Sadi Carnot
French engineer (1796–1832)
Carnot was the first to show the quan-
titative relationship between work and 
heat. In 1824, he published his only 
work, Reflections on the Motive Power 
of Heat, which reviewed the industrial, 
political, and economic importance of 
the steam engine. In it, he defined work 
as “weight lifted through a height.”
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↑ Qh,net

↑ Qc,net

Violates the Second Law.



Carnot’s Theorem

Carnot’s Theorem

No real heat engine operating between two energy reservoirs can
be more efficient than a Carnot engine operating between the same
two reservoirs.

But how efficient is a Carnot engine?



The Carnot Cycle
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and the PV diagram for the cycle is shown in Figure 22.11. The Carnot cycle consists 
of two adiabatic processes and two isothermal processes, all reversible:

 1. Process A S B (Fig. 22.10a) is an isothermal expansion at temperature Th. 
The gas is placed in thermal contact with an energy reservoir at tempera-
ture Th. During the expansion, the gas absorbs energy |Q h| from the res-
ervoir through the base of the cylinder and does work WAB in raising the 
piston.

 2. In process B S C (Fig. 22.10b), the base of the cylinder is replaced by a 
thermally nonconducting wall and the gas expands adiabatically; that is, no 
energy enters or leaves the system by heat. During the expansion, the tem-
perature of the gas decreases from Th to Tc and the gas does work WBC in 
raising the piston.

 3. In process C S D (Fig. 22.10c), the gas is placed in thermal contact with an 
energy reservoir at temperature Tc and is compressed isothermally at tem-
perature Tc. During this time, the gas expels energy |Q c| to the reservoir 
and the work done by the piston on the gas is WCD.

 4. In the final process D S A (Fig. 22.10d), the base of the cylinder is replaced 
by a nonconducting wall and the gas is compressed adiabatically. The tem-
perature of the gas increases to Th, and the work done by the piston on the 
gas is WDA.

Figure 22.11 PV diagram for the 
Carnot cycle. The net work done 
Weng equals the net energy trans-
ferred into the Carnot engine in 
one cycle, |Q h | 2 |Q c |.
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Efficiency of a Carnot Engine

First, we can relate the volumes at different parts of the cycle.

In the first adiabatic process:

ThV
γ−1
B = TcV

γ−1
C

In the second adiabatic process:

ThV
γ−1
A = TcV

γ−1
D

Taking a ratio, then the γ− 1 root:

VB

VA
=

VC

VD



Efficiency of a Carnot Engine

First law: ∆Eint = Q +W = 0 gives for the first isothermal process

|Qh| = nRTh ln

(
VB

VA

)
Second isothermal process:

|Qc | = nRTc ln

(
VC

VD

)

We will take a ratio of these to find the efficiency. Noting that
VB
VA

= VC
VD

:

|Qc |

|Qh|
=

|Tc |

|Th|



Efficiency of a Carnot Engine

Recall, efficiency of a heat engine:

e = 1 −
|Qc |

|Qh|

Efficiency of a Carnot engine:

e =
Th − Tc

Th
= 1 −

Tc

Th

(T is measured in Kelvin!)

This is the most efficient that any heat engine operating between
two reservoirs at constant temperatures can be.



Third Law of Thermodynamics

3rd Law

As the temperature of a material approaches zero, the entropy
approaches a constant value.

The constant value the entropy takes is very small. It is actually
zero if the lowest energy state of the material is unique.

Another way to express the third law:

3rd Law - alternate

It is impossible to reach absolute zero using any procedure and
only a finite number of steps.



Heat Engine question

Consider and ocean thermal energy conversion (OTEC) power
plant that operates on a temperature difference between deep 4◦C
water and 25◦C surface water. Show that the Carnot (ideal)
efficiency of this plant would be about 7%.

0Hewitt, page 331, problem 2.



Clausius Equality

Clausius found that the entropy change around any reversible cycle
(closed path) is zero.

This is called the Clausius Equality:

∆S =

∮
dQr

T
= 0

This follows directly from the fact that entropy is a state variable
(though that was not obvious initially).

If a heat engine works in a cycle, the entropy change of the engine
over the cycle is zero.



Entropy in the Carnot Cycle

In the Carnot engine, since the working fluid returns to its initial
state, the change in the entropy for the whole cycle is

∆Seng = 0.

We can see this from an analysis also:

∆S =

∫
1

T
dQr

In the reversible adiabatic processes ∆S = 0.

In the reversible isothermal portions, T is constant so ∆S = Q
T .

For the cycle

∆Seng =
|Qh|

Th
−

|Qc |

Tc
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Entropy in the Carnot Cycle

For the cycle

∆Seng =
|Qh|

Th
−

|Qc |

Tc

We just found that
|Qh|

|Qc |
=

Th

Tc

So
|Qh|

Th
=

|Qc |

Tc

And for the cycle
∆Seng = 0



Entropy in the Carnot Cycle

We can represent the Carnot Cycle on a TS diagram:
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substance from this reservoir as the gas undergoes an isothermal expansion from
volume Va to volume Vb. Similarly, with the working substance in contact with
the low-temperature reservoir at temperature TL, heat |QL| is transferred from
the working substance to the low-temperature reservoir as the gas undergoes an
isothermal compression from volume Vc to volume Vd (Fig. 20-9b).

In the engine of Fig. 20-8, we assume that heat transfers to or from the work-
ing substance can take place only during the isothermal processes ab and cd of
Fig. 20-9. Therefore, processes bc and da in that figure, which connect the two
isotherms at temperatures TH and TL, must be (reversible) adiabatic processes;
that is, they must be processes in which no energy is transferred as heat.To ensure
this, during processes bc and da the cylinder is placed on an insulating slab as the
volume of the working substance is changed.

During the processes ab and bc of Fig. 20-9a, the working substance is ex-
panding and thus doing positive work as it raises the weighted piston. This work
is represented in Fig. 20-9a by the area under curve abc. During the processes cd
and da (Fig. 20-9b), the working substance is being compressed, which means that
it is doing negative work on its environment or, equivalently, that its environment
is doing work on it as the loaded piston descends.This work is represented by the
area under curve cda. The net work per cycle, which is represented by W in both
Figs. 20-8 and 20-9, is the difference between these two areas and is a positive
quantity equal to the area enclosed by cycle abcda in Fig. 20-9. This work W is
performed on some outside object, such as a load to be lifted.

Equation 20-1 (!S " ! dQ/T) tells us that any energy transfer as heat must
involve a change in entropy. To see this for a Carnot engine, we can plot the
Carnot cycle on a temperature–entropy (T-S) diagram as in Fig. 20-10. The let-
tered points a, b, c, and d there correspond to the lettered points in the p-V dia-
gram in Fig. 20-9. The two horizontal lines in Fig. 20-10 correspond to the two
isothermal processes of the cycle. Process ab is the isothermal expansion of the
cycle. As the working substance (reversibly) absorbs energy |QH| as heat at con-
stant temperature TH during the expansion, its entropy increases. Similarly, dur-
ing the isothermal compression cd, the working substance (reversibly) loses en-
ergy |QL| as heat at constant temperature TL, and its entropy decreases.

The two vertical lines in Fig. 20-10 correspond to the two adiabatic processes
of the Carnot cycle. Because no energy is transferred as heat during the two
processes, the entropy of the working substance is constant during them.

Fig. 20-10 The Carnot cycle of 
Fig. 20-9 plotted on a temperature–entropy
diagram. During processes ab and cd the 
temperature remains constant. During
processes bc and da the entropy remains
constant.
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Fig. 20-9 A pressure–volume
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engine in Fig. 20-8.The cycle con-
sists of two isothermal (ab and
cd) and two adiabatic processes
(bc and da).The shaded area en-
closed by the cycle is equal to the
work W per cycle done by the
Carnot engine.
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Entropy in the Carnot Cycle

We can represent the Carnot Cycle on a TS diagram:
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substance from this reservoir as the gas undergoes an isothermal expansion from
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volume of the working substance is changed.
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panding and thus doing positive work as it raises the weighted piston. This work
is represented in Fig. 20-9a by the area under curve abc. During the processes cd
and da (Fig. 20-9b), the working substance is being compressed, which means that
it is doing negative work on its environment or, equivalently, that its environment
is doing work on it as the loaded piston descends.This work is represented by the
area under curve cda. The net work per cycle, which is represented by W in both
Figs. 20-8 and 20-9, is the difference between these two areas and is a positive
quantity equal to the area enclosed by cycle abcda in Fig. 20-9. This work W is
performed on some outside object, such as a load to be lifted.

Equation 20-1 (!S " ! dQ/T) tells us that any energy transfer as heat must
involve a change in entropy. To see this for a Carnot engine, we can plot the
Carnot cycle on a temperature–entropy (T-S) diagram as in Fig. 20-10. The let-
tered points a, b, c, and d there correspond to the lettered points in the p-V dia-
gram in Fig. 20-9. The two horizontal lines in Fig. 20-10 correspond to the two
isothermal processes of the cycle. Process ab is the isothermal expansion of the
cycle. As the working substance (reversibly) absorbs energy |QH| as heat at con-
stant temperature TH during the expansion, its entropy increases. Similarly, dur-
ing the isothermal compression cd, the working substance (reversibly) loses en-
ergy |QL| as heat at constant temperature TL, and its entropy decreases.

The two vertical lines in Fig. 20-10 correspond to the two adiabatic processes
of the Carnot cycle. Because no energy is transferred as heat during the two
processes, the entropy of the working substance is constant during them.

Fig. 20-10 The Carnot cycle of 
Fig. 20-9 plotted on a temperature–entropy
diagram. During processes ab and cd the 
temperature remains constant. During
processes bc and da the entropy remains
constant.
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Fig. 20-9 A pressure–volume
plot of the cycle followed by the
working substance of the Carnot
engine in Fig. 20-8.The cycle con-
sists of two isothermal (ab and
cd) and two adiabatic processes
(bc and da).The shaded area en-
closed by the cycle is equal to the
work W per cycle done by the
Carnot engine.
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Entropy only changes during the isothermal processes.



Entropy in the Carnot Cycle
What is the energy change of the surroundings (the thermal
reservoirs) for a Carnot engine?
Hot reservoir:

∆Shot = −
|Qh|

Th

Cold reservoir:

∆Scold = +
|Qc |

Tc

However,
|Qh|

Th
=

|Qc |

Tc

The total entropy change of the surroundings over the cycle:

∆Ssurr = ∆Shot + ∆Scold = 0



Entropy in the Carnot Cycle

The total entropy change of the engine + surroundings over the
cycle:

∆Snet = ∆Seng + ∆Ssurr = 0

Remember that the engine only exchanges heat with its
surroundings when they are at the same temperature. This is
necessary for the processes to be reversible.

In any real, practical engine, some heat transfer occurs when the
engine’s working fluid is not at the same temperature as its
surroundings. These are irreversible effects.

The surroundings do not quite return to their initial state ⇒
entropy of the surroundings increases.

∆Snet > 0
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Clausius Inequality

Since real engines always involve irreversible processes, the entropy
of the engine + surroundings will increase:

∆S =

∮
dQr

T
> 0

This is called the Clausius Inequality.



Entropy in an isolated system

This gives us another way to state the second law:

2nd Law

In an isolated system, entropy does not decrease. dS
dt > 0

In a non-isolated system (either closed or open) entropy can
decrease, but only by increasing the entropy of the environment at
least as much.

However, in an isolated system, such as when we include a heat
engine and its thermal reservoirs in the system, the entropy cannot
decrease.



Summary

• wrapped up heat pumps

• Carnot engines

• efficiency of a Carnot engine

• entropy in a Carnot cycle (?)

Homework
Serway & Jewett (additional problems you might like to look at):

• Ch 22, OQs: 1, 3, 7; CQs: 1; Probs: 20, 73


