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Last time

• heat engines

• wrapped up thermodynamics



Overview

• oscillations and quantities

• simple harmonic motion (SHM)

• spring systems

• introducing waves

• kinds of waves

• pulse propagation

• wave speed on a string (?)



Oscillations and Periodic Motion

Many physical systems exhibit cycles of repetitive behavior.

After some time, they return to their initial configuration.

Examples:

• clocks

• rolling wheels

• a pendulum

• bobs on springs



Oscillations

oscillation

motion that repeats over a period of time

amplitude

the magnitude of the vibration; how far does the object move from
its average (equilibrium) position.

period, T

the time for one complete oscillation.

After 1 period, the motion repeats itself.



Oscillations

frequency

The number of complete oscillations in some amount of time.
Usually, oscillations per second.

f =
1

T

Units of frequency: Hertz. 1 Hz = 1 s−1

If one oscillation takes a quarter of a second (0.25 s), then there
are 4 oscillations per second. The frequency is 4 s−1 = 4 Hz.



Oscillations

angular frequency

the rate of change of the phase of a sinusoidal oscillation or wave
function

ω =
2π

T
= 2πf



Simple Harmonic Motion

The oscillations of bobs on springs and pendula are very regular
and simple to describe.

It is called simple harmonic motion.

simple harmonic motion (SHM)

any motion in which the acceleration is proportional to the
displacement from equilibrium, but opposite in direction

The force causing the acceleration is called the “restoring force”.



SHM and Springs

How can we find an equation of motion for a mass on a spring?

Newton’s second law:

Fnet = Fs = ma

Using the definition of acceleration: a = d2x
dt2

d2x

dt2
= −

k

m
x

Define

ω =

√
k

m

and we can write this equation as:

d2x

dt2
= −ω2x
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SHM and Springs

To solve:
d2x

dt2
= −ω2x

notice that it is a second order linear differential equation.

Any solution can be written in the form:

x = A cos(ωt + φ)



Waveform

x = A cos(ωt + φ)
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either the positive or negative x direction. The constant v is called the angular fre-
quency, and it has units1 of radians per second. It is a measure of how rapidly the 
oscillations are occurring; the more oscillations per unit time, the higher the value 
of v. From Equation 15.4, the angular frequency is

 v 5 Å k
m  (15.9)

 The constant angle f is called the phase constant (or initial phase angle) and, 
along with the amplitude A, is determined uniquely by the position and velocity of 
the particle at t 5 0. If the particle is at its maximum position x 5 A at t 5 0, the 
phase constant is f 5 0 and the graphical representation of the motion is as shown 
in Figure 15.2b. The quantity (vt 1 f) is called the phase of the motion. Notice 
that the function x(t) is periodic and its value is the same each time vt increases by 
2p radians.
 Equations 15.1, 15.5, and 15.6 form the basis of the mathematical representation 
of the particle in simple harmonic motion model. If you are analyzing a situation 
and find that the force on an object modeled as a particle is of the mathematical 
form of Equation 15.1, you know the motion is that of a simple harmonic oscillator 
and the position of the particle is described by Equation 15.6. If you analyze a sys-
tem and find that it is described by a differential equation of the form of Equation 
15.5, the motion is that of a simple harmonic oscillator. If you analyze a situation 
and find that the position of a particle is described by Equation 15.6, you know the 
particle undergoes simple harmonic motion.

Q uick Quiz 15.2  Consider a graphical representation (Fig. 15.3) of simple har-
monic motion as described mathematically in Equation 15.6. When the particle 
is at point ! on the graph, what can you say about its position and velocity?  
(a) The position and velocity are both positive. (b) The position and velocity 
are both negative. (c) The position is positive, and the velocity is zero. (d) The 
position is negative, and the velocity is zero. (e) The position is positive, and the 
velocity is negative. (f) The position is negative, and the velocity is positive.

Q uick Quiz 15.3  Figure 15.4 shows two curves representing particles under-
going simple harmonic motion. The correct description of these two motions 
is that the simple harmonic motion of particle B is (a) of larger angular  
frequency and larger amplitude than that of particle A, (b) of larger angular  
frequency and smaller amplitude than that of particle A, (c) of smaller angu-
lar frequency and larger amplitude than that of particle A, or (d) of smaller 
angular frequency and smaller amplitude than that of particle A.

1We have seen many examples in earlier chapters in which we evaluate a trigonometric function of an angle. The 
argument of a trigonometric function, such as sine or cosine, must be a pure number. The radian is a pure number 
because it is a ratio of lengths. Angles in degrees are pure numbers because the degree is an artificial “unit”; it is not 
related to measurements of lengths. The argument of the trigonometric function in Equation 15.6 must be a pure 
number. Therefore, v must be expressed in radians per second (and not, for example, in revolutions per second) if t 
is expressed in seconds. Furthermore, other types of functions such as logarithms and exponential functions require 
arguments that are pure numbers.

Figure 15.2 (a) An x–t graph 
for a particle undergoing simple 
harmonic motion. The amplitude 
of the motion is A, and the period 
(defined in Eq. 15.10) is T. (b) The 
x–t graph for the special case in 
which x 5 A at t 5 0 and hence  
f 5 0.
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Figure 15.3  (Quick Quiz 15.2) 
An x–t graph for a particle under-
going simple harmonic motion. 
At a particular time, the particle’s 
position is indicated by ! in the 
graph.
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Figure 15.4  (Quick Quiz 15.3) 
Two x–t graphs for particles under-
going simple harmonic motion. 
The amplitudes and frequencies 
are different for the two particles.

 Let us investigate further the mathematical description of simple harmonic 
motion. The period T of the motion is the time interval required for the particle 
to go through one full cycle of its motion (Fig. 15.2a). That is, the values of x and v 
for the particle at time t equal the values of x and v at time t 1 T. Because the phase 
increases by 2p radians in a time interval of T,

 [v(t 1 T) 1 f] 2 (vt 1 f) 5 2p 

!

f =
1

T

1Figure from Serway & Jewett, 9th ed, pg 453.



Energy in SHM
460 Chapter 15 Oscillatory Motion

position, the potential energy curve for this function approximates a parabola, 
which represents the potential energy function for a simple harmonic oscillator. 
Therefore, we can model the complex atomic binding forces as being due to tiny 
springs as depicted in Figure 15.11b.
 The ideas presented in this chapter apply not only to block–spring systems and 
atoms, but also to a wide range of situations that include bungee jumping, playing 
a musical instrument, and viewing the light emitted by a laser. You will see more 
examples of simple harmonic oscillators as you work through this book.

r

U

a b

Figure 15.11  (a) If the atoms in a molecule 
do not move too far from their equilibrium 
positions, a graph of potential energy versus 
separation distance between atoms is similar 
to the graph of potential energy versus posi-
tion for a simple harmonic oscillator (dashed 
black curve). (b) The forces between atoms 
in a solid can be modeled by imagining 
springs between neighboring atoms.
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Figure 15.10 (a) through (e) Several instants in the simple harmonic motion for a block–spring system. Energy bar graphs show the distri-
bution of the energy of the system at each instant. The parameters in the table at the right refer to the block–spring system, assuming at t 5 0, 
x 5 A; hence, x 5 A cos vt. For these five special instants, one of the types of energy is zero. (f) An arbitrary point in the motion of the oscilla-
tor. The system possesses both kinetic energy and potential energy at this instant as shown in the bar graph.

Example 15.3   Oscillations on a Horizontal Surface 

A 0.500-kg cart connected to a light spring for which the force constant is 20.0 N/m oscillates on a frictionless, hori-
zontal air track.

(A)  Calculate the maximum speed of the cart if the amplitude of the motion is 3.00 cm.

Conceptualize  The system oscillates in exactly the same way as the block in Figure 15.10, so use that figure in your 
mental image of the motion.

AM

S O L U T I O N



Waves

Very often an oscillation or one-time disturbance can be detected
far away.

Plucking one end of a stretched string will eventually result in the
far end of the string vibrating.

The string is a medium along which the vibration travels.

It carries energy from on part of the string to another.

Wave

a disturbance or oscillation that transfers energy through matter or
space.



Wave Pulses 484 Chapter 16 Wave Motion

which the pebble is dropped to the position of the object. This feature is central to wave 
motion: energy is transferred over a distance, but matter is not.

16.1 Propagation of a Disturbance
The introduction to this chapter alluded to the essence of wave motion: the trans-
fer of energy through space without the accompanying transfer of matter. In the list 
of energy transfer mechanisms in Chapter 8, two mechanisms—mechanical waves 
and electromagnetic radiation—depend on waves. By contrast, in another mecha-
nism, matter transfer, the energy transfer is accompanied by a movement of matter 
through space with no wave character in the process.
 All mechanical waves require (1) some source of disturbance, (2) a medium con-
taining elements that can be disturbed, and (3) some physical mechanism through 
which elements of the medium can influence each other. One way to demonstrate 
wave motion is to flick one end of a long string that is under tension and has its 
opposite end fixed as shown in Figure 16.1. In this manner, a single bump (called 
a pulse) is formed and travels along the string with a definite speed. Figure 16.1 
represents four consecutive “snapshots” of the creation and propagation of the trav-
eling pulse. The hand is the source of the disturbance. The string is the medium 
through which the pulse travels—individual elements of the string are disturbed 
from their equilibrium position. Furthermore, the elements of the string are con-
nected together so they influence each other. The pulse has a definite height and a 
definite speed of propagation along the medium. The shape of the pulse changes 
very little as it travels along the string.1
 We shall first focus on a pulse traveling through a medium. Once we have explored 
the behavior of a pulse, we will then turn our attention to a wave, which is a periodic 
disturbance traveling through a medium. We create a pulse on our string by flicking 
the end of the string once as in Figure 16.1. If we were to move the end of the string 
up and down repeatedly, we would create a traveling wave, which has characteristics 
a pulse does not have. We shall explore these characteristics in Section 16.2.
 As the pulse in Figure 16.1 travels, each disturbed element of the string moves in 
a direction perpendicular to the direction of propagation. Figure 16.2 illustrates this 
point for one particular element, labeled P. Notice that no part of the string ever 
moves in the direction of the propagation. A traveling wave or pulse that causes 
the elements of the disturbed medium to move perpendicular to the direction of 
propagation is called a transverse wave.
 Compare this wave with another type of pulse, one moving down a long, stretched 
spring as shown in Figure 16.3. The left end of the spring is pushed briefly to the 
right and then pulled briefly to the left. This movement creates a sudden compres-
sion of a region of the coils. The compressed region travels along the spring (to 
the right in Fig. 16.3). Notice that the direction of the displacement of the coils is 
parallel to the direction of propagation of the compressed region. A traveling wave 
or pulse that causes the elements of the medium to move parallel to the direction 
of propagation is called a longitudinal wave.

As the pulse moves along the 
string, new elements of the 
string are displaced from their 
equilibrium positions.

Figure 16.1  A hand moves the 
end of a stretched string up and 
down once (red arrow), causing a 
pulse to travel along the string.

1In reality, the pulse changes shape and gradually spreads out during the motion. This effect, called dispersion, is com-
mon to many mechanical waves as well as to electromagnetic waves. We do not consider dispersion in this chapter.

The direction of the displacement 
of any element at a point P on the 
string is perpendicular to the 
direction of propagation (red 
arrow).

P

P

P

Figure 16.2  The displacement 
of a particular string element for 
a transverse pulse traveling on a 
stretched string.

As the pulse passes by, the 
displacement of the coils is parallel to 
the direction of the propagation.

The hand moves forward 
and back once to create 
a longitudinal pulse.

Figure 16.3  A longitudinal 
pulse along a stretched spring.



Wave Motion

Wave

a disturbance or oscillation that transfers energy through matter or
space.

The waveform moves along the medium and energy is carried with
it.

The particles in the medium do not move along with the wave.

The particles in the medium are briefly shifted from their
equilibrium positions, and then return to them.



Wave pulses
A point P in the middle of the string moves up and down, just as
the hand did.



Kinds of Waves

medium

a material substance that carries waves. The constituent particles
are temporarily displaced as the wave passes, but they return to
their original position.

Kinds of waves:

• mechanical waves – waves that travel on a medium, eg. sound
waves, waves on string, water waves

• electromagnetic waves – light, in all its various wavelengths,
eg. x-rays, uv, infrared, radio waves

• matter waves – wait for Phys4D!



Kinds of Waves
Kinds of waves:

• transverse – displacement perpendicular to direction of wave
travel

• longitudinal – displacement parallel to direction of wave travel

Transverse

Longitudinal



Transverse vs. Longitudinal

Examples of transverse waves:

• vibrations on a guitar string

• ripples in water

• light

• S-waves in an earthquake (more destructive)

Examples of longitudinal waves:

• sound

• P-waves in an earthquake (initial shockwave, faster moving)



Earthquakes



Earthquakes



Sound waves



Pulse Propagation

A wave pulse (in a plane) at a moment in time can be described in
terms of x and y coordinates, giving y(x).

Suppose that the pulse will move with speed v and be displaced,
say in the positive x direction, while maintaining its shape.

That means we can also give y as a function of time, y(x , t).

Consider a moving reference frame, S ′, with the pulse at rest,
y ′(x ′) = f (x ′), no time dependence. Galilean transformation:

x ′ = x − vt



Pulse Propagation

A wave pulse (in a plane) at a moment in time can be described in
terms of x and y coordinates, giving y(x).

Suppose that the pulse will move with speed v and be displaced,
say in the positive x direction, while maintaining its shape.
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Pulse Propagation

x ′ = x − vt

Then in the rest-frame of the string

y(x , t) = f (x ′) = f (x − vt)

 16.1 Propagation of a Disturbance 485

 Sound waves, which we shall discuss in Chapter 17, are another example of lon-
gitudinal waves. The disturbance in a sound wave is a series of high-pressure and 
low-pressure regions that travel through air.
 Some waves in nature exhibit a combination of transverse and longitudinal 
displacements. Surface-water waves are a good example. When a water wave trav-
els on the surface of deep water, elements of water at the surface move in nearly 
circular paths as shown in Figure 16.4. The disturbance has both transverse and 
longitudinal components. The transverse displacements seen in Figure 16.4 rep-
resent the variations in vertical position of the water elements. The longitudinal 
displacements represent elements of water moving back and forth in a horizontal 
direction.
 The three-dimensional waves that travel out from a point under the Earth’s sur-
face at which an earthquake occurs are of both types, transverse and longitudinal. 
The longitudinal waves are the faster of the two, traveling at speeds in the range of 
7 to 8 km/s near the surface. They are called P waves, with “P” standing for primary, 
because they travel faster than the transverse waves and arrive first at a seismo-
graph (a device used to detect waves due to earthquakes). The slower transverse 
waves, called S waves, with “S” standing for secondary, travel through the Earth at 
4 to 5 km/s near the surface. By recording the time interval between the arrivals 
of these two types of waves at a seismograph, the distance from the seismograph to 
the point of origin of the waves can be determined. This distance is the radius of an 
imaginary sphere centered on the seismograph. The origin of the waves is located 
somewhere on that sphere. The imaginary spheres from three or more monitoring 
stations located far apart from one another intersect at one region of the Earth, 
and this region is where the earthquake occurred.
 Consider a pulse traveling to the right on a long string as shown in Figure 16.5. 
Figure 16.5a represents the shape and position of the pulse at time t 5 0. At this 
time, the shape of the pulse, whatever it may be, can be represented by some math-
ematical function that we will write as y(x, 0) 5 f(x). This function describes the 
transverse position y of the element of the string located at each value of x at time 
t 5 0. Because the speed of the pulse is v, the pulse has traveled to the right a 
distance vt at the time t (Fig. 16.5b). We assume the shape of the pulse does not 
change with time. Therefore, at time t, the shape of the pulse is the same as it was 
at time t 5 0 as in Figure 16.5a. Consequently, an element of the string at x at this 
time has the same y position as an element located at x 2 vt had at time t 5 0:

 y(x, t) 5 y(x 2 vt, 0)

 In general, then, we can represent the transverse position y for all positions and 
times, measured in a stationary frame with the origin at O, as

 y(x, t) 5 f(x 2 vt) (16.1)

Similarly, if the pulse travels to the left, the transverse positions of elements of the 
string are described by

 y(x, t) 5 f(x 1 vt) (16.2)

 The function y, sometimes called the wave function, depends on the two vari-
ables x and t. For this reason, it is often written y(x, t), which is read “y as a function 
of x and t.”
 It is important to understand the meaning of y. Consider an element of the 
string at point P in Figure 16.5, identified by a particular value of its x coordinate. 
As the pulse passes through P, the y coordinate of this element increases, reaches 
a maximum, and then decreases to zero. The wave function y(x, t) represents the 
y coordinate—the transverse position—of any element located at position x at any 
time t. Furthermore, if t is fixed (as, for example, in the case of taking a snapshot of 
the pulse), the wave function y(x), sometimes called the waveform, defines a curve 
representing the geometric shape of the pulse at that time.

Figure 16.4 The motion of 
water elements on the surface 
of deep water in which a wave 
is propagating is a combination 
of transverse and longitudinal 
displacements. 

The elements at the surface move 
in nearly circular paths. Each 
element is displaced both 
horizontally and vertically from its 
equilibrium position.
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At t ! 0,  the shape of the 
pulse is given by y ! f(x).

At some later time t, the shape 
of the pulse remains unchanged 
and the vertical position of an 
element of the medium at any 
point P is given by y ! f(x " vt).
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a

Figure 16.5  A one-dimensional 
pulse traveling to the right on a 
string with a speed v.



Pulse Propagation

The shape of the pulse is given by f (x) and can be arbitrary.

Whatever the form of f , if the pulse moves in the +x direction:

y(x , t) = f (x − vt)

If the pulse moves in the −x direction:

y(x , t) = f (x + vt)



Wave Pulse Example 16.1

A pulse moving to the right along the x axis is represented by the
wave function

y(x , t) =
2

(x − 3.0t)2 + 1

where x and y are measured in centimeters and t is measured in
seconds.

What is the wave speed?

Find expressions for the wave function at t = 0, t = 1.0 s, and
t = 2.0 s.

1Serway & Jewett, page 486.
2This function is an unnormalized Cauchy distribution, or as physicists say

“it has a Lorentzian profile”.
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A pulse moving to the right along the x axis is represented by the
wave function

y(x , t) =
2

(x − 3.0t)2 + 1

where x and y are measured in centimeters and t is measured in
seconds.

What is the wave speed? 3.0 cm/s

Find expressions for the wave function at t = 0, t = 1.0 s, and
t = 2.0 s.

1Serway & Jewett, page 486.
2This function is an unnormalized Cauchy distribution, or as physicists say

“it has a Lorentzian profile”.



Wave Pulse Example 16.1

t = 0, y(x , 0) =
2

x2 + 1

t = 1, y(x , 1) =
2

(x − 3.0)2 + 1

t = 2, y(x , 2) =
2

(x − 6.0)2 + 1

486 Chapter 16 Wave Motion

Example 16.1   A Pulse Moving to the Right

A pulse moving to the right along the x axis is represented by the wave 
function

y 1x, t 2 5
21x 2 3.0t 2 2 1 1

where x and y are measured in centimeters and t is measured in sec-
onds. Find expressions for the wave function at t 5 0, t 5 1.0 s, and  
t 5 2.0 s.

Conceptualize  Figure 16.6a shows the pulse represented by this wave 
function at t 5 0. Imagine this pulse moving to the right at a speed 
of 3.0 cm/s and maintaining its shape as suggested by Figures 16.6b 
and 16.6c.

Categorize  We categorize this example as a relatively simple analysis 
problem in which we interpret the mathematical representation of a 
pulse.

Analyze  The wave function is of the form y 5  
f(x 2 v t). Inspection of the expression for  
y(x, t) and comparison to Equation 16.1 reveal 
that the wave speed is v 5 3.0 cm/s. Further-
more, by letting x 2 3.0t 5 0, we find that the 
maximum value of y is given by A 5 2.0 cm.

S O L U T I O N

Finalize  These snapshots show that the pulse moves to the right without changing its shape and that it has a constant 
speed of 3.0 cm/s.

Q uick Quiz 16.1  (i) In a long line of people waiting to buy tickets, the first person 
leaves and a pulse of motion occurs as people step forward to fill the gap.  
As each person steps forward, the gap moves through the line. Is the propaga-
tion of this gap (a) transverse or (b) longitudinal? (ii) Consider “the wave” at a 
baseball game: people stand up and raise their arms as the wave arrives at  
their location, and the resultant pulse moves around the stadium. Is this wave 
(a) transverse or (b) longitudinal?

t ! 2.0 s

t ! 1.0 s

t ! 0

y (x, 2.0)

y (x, 1.0)

y (x, 0)

3.0 cm/s

3.0 cm/s

3.0 cm/s
y (cm)

2.0
1.5
1.0
0.5

0 1 2 3 4 5 6
x (cm)

7 8

y (cm)

2.0
1.5
1.0
0.5

0 1 2 3 4 5 6
x (cm)

7 8

y (cm)

2.0
1.5
1.0
0.5

0 1 2 3 4 5 6
x (cm)

7 8

a

b

c

Figure 16.6   
(Example 16.1) Graphs 
of the function y(x, t) 5 
2/[(x 23.0t)2 1 1] at  
(a) t 5 0, (b) t 5 1.0 s, 
and (c) t 5 2.0 s.

Write the wave function expression at t 5 0: y(x, 0) 5 
2

x 2 1 1

Write the wave function expression at t 5 1.0 s: y(x, 1.0) 5 
21x 2 3.0 22 1 1

Write the wave function expression at t 5 2.0 s: y(x, 2.0) 5 
21x 2 6.0 22 1 1

For each of these expressions, we can substitute various values of x and plot the wave function. This procedure yields 
the wave functions shown in the three parts of Figure 16.6.

What if the wave function were

y 1x, t 2 5
41x 1 3.0t 22 1 1

How would that change the situation?

Answer  One new feature in this expression is the plus sign in the denominator rather than the minus sign. The  
new expression represents a pulse with a similar shape as that in Figure 16.6, but moving to the left as time progresses.

WHAT IF ?



Wave Speed on a String

How fast does a disturbance propagate on a string under tension?
484 Chapter 16 Wave Motion

which the pebble is dropped to the position of the object. This feature is central to wave 
motion: energy is transferred over a distance, but matter is not.

16.1 Propagation of a Disturbance
The introduction to this chapter alluded to the essence of wave motion: the trans-
fer of energy through space without the accompanying transfer of matter. In the list 
of energy transfer mechanisms in Chapter 8, two mechanisms—mechanical waves 
and electromagnetic radiation—depend on waves. By contrast, in another mecha-
nism, matter transfer, the energy transfer is accompanied by a movement of matter 
through space with no wave character in the process.
 All mechanical waves require (1) some source of disturbance, (2) a medium con-
taining elements that can be disturbed, and (3) some physical mechanism through 
which elements of the medium can influence each other. One way to demonstrate 
wave motion is to flick one end of a long string that is under tension and has its 
opposite end fixed as shown in Figure 16.1. In this manner, a single bump (called 
a pulse) is formed and travels along the string with a definite speed. Figure 16.1 
represents four consecutive “snapshots” of the creation and propagation of the trav-
eling pulse. The hand is the source of the disturbance. The string is the medium 
through which the pulse travels—individual elements of the string are disturbed 
from their equilibrium position. Furthermore, the elements of the string are con-
nected together so they influence each other. The pulse has a definite height and a 
definite speed of propagation along the medium. The shape of the pulse changes 
very little as it travels along the string.1
 We shall first focus on a pulse traveling through a medium. Once we have explored 
the behavior of a pulse, we will then turn our attention to a wave, which is a periodic 
disturbance traveling through a medium. We create a pulse on our string by flicking 
the end of the string once as in Figure 16.1. If we were to move the end of the string 
up and down repeatedly, we would create a traveling wave, which has characteristics 
a pulse does not have. We shall explore these characteristics in Section 16.2.
 As the pulse in Figure 16.1 travels, each disturbed element of the string moves in 
a direction perpendicular to the direction of propagation. Figure 16.2 illustrates this 
point for one particular element, labeled P. Notice that no part of the string ever 
moves in the direction of the propagation. A traveling wave or pulse that causes 
the elements of the disturbed medium to move perpendicular to the direction of 
propagation is called a transverse wave.
 Compare this wave with another type of pulse, one moving down a long, stretched 
spring as shown in Figure 16.3. The left end of the spring is pushed briefly to the 
right and then pulled briefly to the left. This movement creates a sudden compres-
sion of a region of the coils. The compressed region travels along the spring (to 
the right in Fig. 16.3). Notice that the direction of the displacement of the coils is 
parallel to the direction of propagation of the compressed region. A traveling wave 
or pulse that causes the elements of the medium to move parallel to the direction 
of propagation is called a longitudinal wave.

As the pulse moves along the 
string, new elements of the 
string are displaced from their 
equilibrium positions.

Figure 16.1  A hand moves the 
end of a stretched string up and 
down once (red arrow), causing a 
pulse to travel along the string.

1In reality, the pulse changes shape and gradually spreads out during the motion. This effect, called dispersion, is com-
mon to many mechanical waves as well as to electromagnetic waves. We do not consider dispersion in this chapter.

The direction of the displacement 
of any element at a point P on the 
string is perpendicular to the 
direction of propagation (red 
arrow).

P

P

P

Figure 16.2  The displacement 
of a particular string element for 
a transverse pulse traveling on a 
stretched string.

As the pulse passes by, the 
displacement of the coils is parallel to 
the direction of the propagation.

The hand moves forward 
and back once to create 
a longitudinal pulse.

Figure 16.3  A longitudinal 
pulse along a stretched spring.



Wave Speed on a String
Imagine traveling with the pulse at speed v to the right. Each
small section of the rope travels to the left along a circular arc
from your point of view.
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Pitfall Prevention 16.2
Two Kinds of Speed/Velocity  
Do not confuse v, the speed of 
the wave as it propagates along 
the string, with vy, the transverse 
velocity of a point on the string. 
The speed v is constant for a uni-
form medium, whereas vy varies 
sinusoidally.

reaches its maximum value (v2A) when y 5 6A. Finally, Equations 16.16 and 16.17 
are identical in mathematical form to the corresponding equations for simple har-
monic motion, Equations 15.17 and 15.18.

Q uick Quiz 16.3  The amplitude of a wave is doubled, with no other changes 
made to the wave. As a result of this doubling, which of the following state-
ments is correct? (a) The speed of the wave changes. (b) The frequency of the 
wave changes. (c) The maximum transverse speed of an element of the medium 
changes. (d) Statements (a) through (c) are all true. (e) None of statements (a) 
through (c) is true.

Imagine a source vibrating such that 
it influences the medium that is in 
contact with the source. Such a source 
creates a disturbance that propagates 
through the medium. If the source 
vibrates in simple harmonic motion 
with period T, sinusoidal waves propa-
gate through the medium at a speed 
given by

 v 5
l

T
5 lf  (16.6, 16.12)

where l is the wavelength of the wave and f is its frequency. A sinu-
soidal wave can be expressed as

 y 5 A sin 1kx 2 vt 2  (16.10)

Analysis Model   Traveling Wave

where A is the amplitude of the wave, k is its 
wave number, and v is its angular frequency.

Examples: 

down a string attached to the blade

emitting sound waves into the air (Chap-
ter 17)

waves into the air (Chapter 18)
-

tromagnetic wave that propagates into 
space at the speed of light (Chapter 34)

16.3 The Speed of Waves on Strings
One aspect of the behavior of linear mechanical waves is that the wave speed 
depends only on the properties of the medium through which the wave travels. 
Waves for which the amplitude A is small relative to the wavelength l can be repre-
sented as linear waves. (See Section 16.6.) In this section, we determine the speed 
of a transverse wave traveling on a stretched string.
 Let us use a mechanical analysis to derive the expression for the speed of a pulse 
traveling on a stretched string under tension T. Consider a pulse moving to the 
right with a uniform speed v, measured relative to a stationary (with respect to the 
Earth) inertial reference frame as shown in Figure 16.11a. Newton’s laws are valid 
in any inertial reference frame. Therefore, let us view this pulse from a different 
inertial reference frame, one that moves along with the pulse at the same speed so 
that the pulse appears to be at rest in the frame as in Figure 16.11b. In this refer-
ence frame, the pulse remains fixed and each element of the string moves to the 
left through the pulse shape.
 A short element of the string, of length Ds, forms an approximate arc of a cir-
cle of radius R as shown in the magnified view in Figure 16.11b. In our  moving 
frame of reference, the element of the string moves to the left with speed v. As 
it travels through the arc, we can model the element as a particle in uniform cir-
cular motion. This element has a centripetal acceleration of v2/R, which is sup-
plied by components of the force T

S
 whose magnitude is the tension in the string.  

The force T
S

 acts on each side of the element, tangent to the arc, as in Figure 16.11b. 
The horizontal components of T

S
 cancel, and each vertical component T sin u acts 

downward. Hence, the magnitude of the total radial force on the element is 2T sin u.  

y

 

 
x

A

l

vS

Figure 16.11 (a) In the refer-
ence frame of the Earth, a pulse 
moves to the right on a string with 
speed v. (b) In a frame of refer-
ence moving to the right with the 
pulse, the small element of length 
Ds moves to the left with speed v.
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We will find find how fast a point on the string moves backwards
relative to the wave pulse.



Wave Speed on a String
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speed v. (b) In a frame of refer-
ence moving to the right with the 
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We can use the force diagram to find the force on a small length of
string ∆s:

Fnet = 2T sin θ ≈ 2Tθ (1)



Wave Speed on a String

Consider the centripetal force on the piece of string.

If R is the radius of curvature and m is the mass of the small piece
of string:

Fnet =
mv2

R

Suppose the string has mass density µ (units: kg m−1)

m = µ∆s = µR(2θ)

Put this into our expression for centripetal force:

Fnet =
2µRθv2

R



Wave Speed on a String

Consider the centripetal force on the piece of string.

If R is the radius of curvature and m is the mass of the small piece
of string:

Fnet =
mv2

R

Suppose the string has mass density µ (units: kg m−1)

m = µ∆s = µR(2θ)

Put this into our expression for centripetal force:

Fnet =
2µRθv2
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Wave Speed on a String

Put this into our expression for centripetal force:

Fnet = 2µθv2

And using eq. (1), Fnet = 2Tθ:

2Tθ = 2µθv2

The wave speed is:

v =

√
T

µ

For a given string under a given tension, all waves travel with the
same speed!



Summary

• oscillations

• simple harmonic motion (SHM)

• spring systems

• intro to waves

• pulse propagation

• wave speed on a string (?)

Homework Serway & Jewett:

• (if you like, for review) Ch 15, onward from page 472. OQs:
13; CQs: 5, 7; Probs: 1, 3, 9, 35, 41, 86


