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Last time

• oscillations

• simple harmonic motion (SHM)

• spring systems

• introducing waves

• kinds of waves

• pulse propagation



Overview

• wave speed on a string

• the wave equation



Wave Pulse Example 16.1

A pulse moving to the right along the x axis is represented by the
wave function

y(x , t) =
2

(x − 3.0t)2 + 1

where x and y are measured in centimeters and t is measured in
seconds.

What is the wave speed? 3.0 cm/s

Find expressions for the wave function at t = 0, t = 1.0 s, and
t = 2.0 s.

1Serway & Jewett, page 486.
2This function is an unnormalized Cauchy distribution, or as physicists say

“it has a Lorentzian profile”.



Wave Pulse Example 16.1

t = 0, y(x , 0) =
2

x2 + 1

t = 1, y(x , 1) =
2

(x − 3.0)2 + 1

t = 2, y(x , 2) =
2

(x − 6.0)2 + 1

486 Chapter 16 Wave Motion

Example 16.1   A Pulse Moving to the Right

A pulse moving to the right along the x axis is represented by the wave 
function

y 1x, t 2 5
21x 2 3.0t 2 2 1 1

where x and y are measured in centimeters and t is measured in sec-
onds. Find expressions for the wave function at t 5 0, t 5 1.0 s, and  
t 5 2.0 s.

Conceptualize  Figure 16.6a shows the pulse represented by this wave 
function at t 5 0. Imagine this pulse moving to the right at a speed 
of 3.0 cm/s and maintaining its shape as suggested by Figures 16.6b 
and 16.6c.

Categorize  We categorize this example as a relatively simple analysis 
problem in which we interpret the mathematical representation of a 
pulse.

Analyze  The wave function is of the form y 5  
f(x 2 v t). Inspection of the expression for  
y(x, t) and comparison to Equation 16.1 reveal 
that the wave speed is v 5 3.0 cm/s. Further-
more, by letting x 2 3.0t 5 0, we find that the 
maximum value of y is given by A 5 2.0 cm.

S O L U T I O N

Finalize  These snapshots show that the pulse moves to the right without changing its shape and that it has a constant 
speed of 3.0 cm/s.

Q uick Quiz 16.1  (i) In a long line of people waiting to buy tickets, the first person 
leaves and a pulse of motion occurs as people step forward to fill the gap.  
As each person steps forward, the gap moves through the line. Is the propaga-
tion of this gap (a) transverse or (b) longitudinal? (ii) Consider “the wave” at a 
baseball game: people stand up and raise their arms as the wave arrives at  
their location, and the resultant pulse moves around the stadium. Is this wave 
(a) transverse or (b) longitudinal?
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Figure 16.6   
(Example 16.1) Graphs 
of the function y(x, t) 5 
2/[(x 23.0t)2 1 1] at  
(a) t 5 0, (b) t 5 1.0 s, 
and (c) t 5 2.0 s.

Write the wave function expression at t 5 0: y(x, 0) 5 
2

x 2 1 1

Write the wave function expression at t 5 1.0 s: y(x, 1.0) 5 
21x 2 3.0 22 1 1

Write the wave function expression at t 5 2.0 s: y(x, 2.0) 5 
21x 2 6.0 22 1 1

For each of these expressions, we can substitute various values of x and plot the wave function. This procedure yields 
the wave functions shown in the three parts of Figure 16.6.

What if the wave function were

y 1x, t 2 5
41x 1 3.0t 22 1 1

How would that change the situation?

Answer  One new feature in this expression is the plus sign in the denominator rather than the minus sign. The  
new expression represents a pulse with a similar shape as that in Figure 16.6, but moving to the left as time progresses.

WHAT IF ?



Wave Speed on a String

How fast does a disturbance propagate on a string under tension?
484 Chapter 16 Wave Motion

which the pebble is dropped to the position of the object. This feature is central to wave 
motion: energy is transferred over a distance, but matter is not.

16.1 Propagation of a Disturbance
The introduction to this chapter alluded to the essence of wave motion: the trans-
fer of energy through space without the accompanying transfer of matter. In the list 
of energy transfer mechanisms in Chapter 8, two mechanisms—mechanical waves 
and electromagnetic radiation—depend on waves. By contrast, in another mecha-
nism, matter transfer, the energy transfer is accompanied by a movement of matter 
through space with no wave character in the process.
 All mechanical waves require (1) some source of disturbance, (2) a medium con-
taining elements that can be disturbed, and (3) some physical mechanism through 
which elements of the medium can influence each other. One way to demonstrate 
wave motion is to flick one end of a long string that is under tension and has its 
opposite end fixed as shown in Figure 16.1. In this manner, a single bump (called 
a pulse) is formed and travels along the string with a definite speed. Figure 16.1 
represents four consecutive “snapshots” of the creation and propagation of the trav-
eling pulse. The hand is the source of the disturbance. The string is the medium 
through which the pulse travels—individual elements of the string are disturbed 
from their equilibrium position. Furthermore, the elements of the string are con-
nected together so they influence each other. The pulse has a definite height and a 
definite speed of propagation along the medium. The shape of the pulse changes 
very little as it travels along the string.1
 We shall first focus on a pulse traveling through a medium. Once we have explored 
the behavior of a pulse, we will then turn our attention to a wave, which is a periodic 
disturbance traveling through a medium. We create a pulse on our string by flicking 
the end of the string once as in Figure 16.1. If we were to move the end of the string 
up and down repeatedly, we would create a traveling wave, which has characteristics 
a pulse does not have. We shall explore these characteristics in Section 16.2.
 As the pulse in Figure 16.1 travels, each disturbed element of the string moves in 
a direction perpendicular to the direction of propagation. Figure 16.2 illustrates this 
point for one particular element, labeled P. Notice that no part of the string ever 
moves in the direction of the propagation. A traveling wave or pulse that causes 
the elements of the disturbed medium to move perpendicular to the direction of 
propagation is called a transverse wave.
 Compare this wave with another type of pulse, one moving down a long, stretched 
spring as shown in Figure 16.3. The left end of the spring is pushed briefly to the 
right and then pulled briefly to the left. This movement creates a sudden compres-
sion of a region of the coils. The compressed region travels along the spring (to 
the right in Fig. 16.3). Notice that the direction of the displacement of the coils is 
parallel to the direction of propagation of the compressed region. A traveling wave 
or pulse that causes the elements of the medium to move parallel to the direction 
of propagation is called a longitudinal wave.

As the pulse moves along the 
string, new elements of the 
string are displaced from their 
equilibrium positions.

Figure 16.1  A hand moves the 
end of a stretched string up and 
down once (red arrow), causing a 
pulse to travel along the string.

1In reality, the pulse changes shape and gradually spreads out during the motion. This effect, called dispersion, is com-
mon to many mechanical waves as well as to electromagnetic waves. We do not consider dispersion in this chapter.

The direction of the displacement 
of any element at a point P on the 
string is perpendicular to the 
direction of propagation (red 
arrow).

P

P

P

Figure 16.2  The displacement 
of a particular string element for 
a transverse pulse traveling on a 
stretched string.

As the pulse passes by, the 
displacement of the coils is parallel to 
the direction of the propagation.

The hand moves forward 
and back once to create 
a longitudinal pulse.

Figure 16.3  A longitudinal 
pulse along a stretched spring.



Wave Speed on a String
Imagine traveling with the pulse at speed v to the right. Each
small section of the rope travels to the left along a circular arc
from your point of view.

 16.3 The Speed of Waves on Strings 491

Pitfall Prevention 16.2
Two Kinds of Speed/Velocity  
Do not confuse v, the speed of 
the wave as it propagates along 
the string, with vy, the transverse 
velocity of a point on the string. 
The speed v is constant for a uni-
form medium, whereas vy varies 
sinusoidally.

reaches its maximum value (v2A) when y 5 6A. Finally, Equations 16.16 and 16.17 
are identical in mathematical form to the corresponding equations for simple har-
monic motion, Equations 15.17 and 15.18.

Q uick Quiz 16.3  The amplitude of a wave is doubled, with no other changes 
made to the wave. As a result of this doubling, which of the following state-
ments is correct? (a) The speed of the wave changes. (b) The frequency of the 
wave changes. (c) The maximum transverse speed of an element of the medium 
changes. (d) Statements (a) through (c) are all true. (e) None of statements (a) 
through (c) is true.

Imagine a source vibrating such that 
it influences the medium that is in 
contact with the source. Such a source 
creates a disturbance that propagates 
through the medium. If the source 
vibrates in simple harmonic motion 
with period T, sinusoidal waves propa-
gate through the medium at a speed 
given by

 v 5
l

T
5 lf  (16.6, 16.12)

where l is the wavelength of the wave and f is its frequency. A sinu-
soidal wave can be expressed as

 y 5 A sin 1kx 2 vt 2  (16.10)

Analysis Model   Traveling Wave

where A is the amplitude of the wave, k is its 
wave number, and v is its angular frequency.

Examples: 

down a string attached to the blade

emitting sound waves into the air (Chap-
ter 17)

waves into the air (Chapter 18)
-

tromagnetic wave that propagates into 
space at the speed of light (Chapter 34)

16.3 The Speed of Waves on Strings
One aspect of the behavior of linear mechanical waves is that the wave speed 
depends only on the properties of the medium through which the wave travels. 
Waves for which the amplitude A is small relative to the wavelength l can be repre-
sented as linear waves. (See Section 16.6.) In this section, we determine the speed 
of a transverse wave traveling on a stretched string.
 Let us use a mechanical analysis to derive the expression for the speed of a pulse 
traveling on a stretched string under tension T. Consider a pulse moving to the 
right with a uniform speed v, measured relative to a stationary (with respect to the 
Earth) inertial reference frame as shown in Figure 16.11a. Newton’s laws are valid 
in any inertial reference frame. Therefore, let us view this pulse from a different 
inertial reference frame, one that moves along with the pulse at the same speed so 
that the pulse appears to be at rest in the frame as in Figure 16.11b. In this refer-
ence frame, the pulse remains fixed and each element of the string moves to the 
left through the pulse shape.
 A short element of the string, of length Ds, forms an approximate arc of a cir-
cle of radius R as shown in the magnified view in Figure 16.11b. In our  moving 
frame of reference, the element of the string moves to the left with speed v. As 
it travels through the arc, we can model the element as a particle in uniform cir-
cular motion. This element has a centripetal acceleration of v2/R, which is sup-
plied by components of the force T

S
 whose magnitude is the tension in the string.  

The force T
S

 acts on each side of the element, tangent to the arc, as in Figure 16.11b. 
The horizontal components of T

S
 cancel, and each vertical component T sin u acts 

downward. Hence, the magnitude of the total radial force on the element is 2T sin u.  

y

 

 
x

A

l

vS

Figure 16.11 (a) In the refer-
ence frame of the Earth, a pulse 
moves to the right on a string with 
speed v. (b) In a frame of refer-
ence moving to the right with the 
pulse, the small element of length 
Ds moves to the left with speed v.
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We will find find how fast a point on the string moves backwards
relative to the wave pulse.
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moves to the right on a string with 
speed v. (b) In a frame of refer-
ence moving to the right with the 
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We can use the force diagram to find the force on a small length of
string ∆s:

Fnet = 2T sin θ ≈ 2Tθ (1)
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Wave Speed on a String

Consider the centripetal force on the piece of string.

If R is the radius of curvature and m is the mass of the small piece
of string:

Fnet =
mv2

R

Suppose the string has mass density µ (units: kg m−1)

m = µ∆s = µR(2θ)

Put this into our expression for centripetal force:

Fnet =
2µRθv2

R
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Wave Speed on a String

Put this into our expression for centripetal force:

Fnet = 2µθv2

And using eq. (1), Fnet = 2Tθ:

2Tθ = 2µθv2

The wave speed is:

v =

√
T

µ

For a given string under a given tension, all waves travel with the
same speed!



Wave Speed Question

If you stretch a rubber hose and pluck it, you can observe a pulse
traveling up and down the hose.

What happens to the speed of the pulse if you stretch the hose
more tightly?

(A) It increases.

(B) It decreases.

(C) It is constant.

(D) It changes unpredictably.

1Serway & Jewett, page 499, objective question 2.
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Wave Speed Question

If you stretch a rubber hose and pluck it, you can observe a pulse
traveling up and down the hose.

What happens to the speed if you fill the hose with water?

(A) It increases.

(B) It decreases.

(C) It is constant.

(D) It changes unpredictably.

1Serway & Jewett, page 499, objective question 2.
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Example

A uniform string has a mass of ms and a length of `. The string
passes over a pulley and supports an block of mass mb. Find the
speed of a pulse traveling along this string. (Assume the vertical
piece of the rope is very short.)

492 Chapter 16 Wave Motion

Because the element is small, u is small and we can use the small-angle approxima-
tion sin u < u. Therefore, the magnitude of the total radial force is

Fr 5 2T sin u < 2Tu

The element has mass m 5 m Ds, where m is the mass per unit length of the string. 
Because the element forms part of a circle and subtends an angle of 2u at the center, 
Ds 5 R(2u), and

m 5 mDs 5 2mR u

The element of the string is modeled as a particle under a net force. Therefore, 
applying Newton’s second law to this element in the radial direction gives

Fr 5
mv2

R
   S   2Tu 5

2mR uv2

R
   S   T 5 mv2

Solving for v gives

 v 5 ÅT
m

 (16.18)

Notice that this derivation is based on the assumption that the pulse height is small 
relative to the length of the pulse. Using this assumption, we were able to use the 
approximation sin u < u. Furthermore, the model assumes that the tension T is not 
 affected by the presence of the pulse, so T is the same at all points on the pulse. 
Finally, this proof does not assume any particular shape for the pulse. We therefore 
conclude that a pulse of any shape will travel on the string with speed v 5 "T/m, 
without any change in pulse shape.

Q uick Quiz 16.4  Suppose you create a pulse by moving the free end of a taut string 
up and down once with your hand beginning at t 5 0. The string is attached at its 
other end to a distant wall. The pulse reaches the wall at time t. Which of the fol-
lowing actions, taken by itself, decreases the time interval required for the pulse 
to reach the wall? More than one choice may be correct. (a) moving your hand 
more quickly, but still only up and down once by the same amount (b) moving 
your hand more slowly, but still only up and down once by the same amount  
(c) moving your hand a greater distance up and down in the same amount of 
time (d) moving your hand a lesser distance up and down in the same amount of 
time (e) using a heavier string of the same length and under the same tension  
(f) using a lighter string of the same length and under the same tension (g) using 
a string of the same linear mass density but under decreased tension (h) using a 
string of the same linear mass density but under increased tension

Speed of a wave on X
a stretched string

Example 16.3   The Speed of a Pulse on a Cord 

A uniform string has a mass of 0.300 kg and a length of 6.00 m (Fig. 16.12). The string passes over a pulley and sup-
ports a 2.00-kg object. Find the speed of a pulse traveling along this string.

Conceptualize  In Figure 16.12, the hanging block establishes 
a tension in the horizontal string. This tension determines the 
speed with which waves move on the string.

Categorize  To find the tension in the string, we model the hang-
ing block as a particle in equilibrium. Then we use the tension to 
evaluate the wave speed on the string using Equation 16.18.

AM

S O L U T I O N

2.00 kg

T

Figure 16.12  (Example 
16.3) The tension T in the 
cord is maintained by the 
suspended object. The 
speed of any wave traveling 
along the cord is given by 
v 5 !T/m.

Analyze  Apply the particle in equilibrium model to the block: o Fy 5 T 2 m blockg 5 0

Solve for the tension in the string: T 5 m blockg

Pitfall Prevention 16.3
Multiple T 's Do not confuse the 
T in Equation 16.18 for the ten-
sion with the symbol T used in 
this chapter for the period of a 
wave. The context of the equation 
should help you identify which 
quantity is meant. There simply 
aren’t enough letters in the alpha-
bet to assign a unique letter to 
each variable!

v =

√
mbg`

ms
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without any change in pulse shape.

Q uick Quiz 16.4  Suppose you create a pulse by moving the free end of a taut string 
up and down once with your hand beginning at t 5 0. The string is attached at its 
other end to a distant wall. The pulse reaches the wall at time t. Which of the fol-
lowing actions, taken by itself, decreases the time interval required for the pulse 
to reach the wall? More than one choice may be correct. (a) moving your hand 
more quickly, but still only up and down once by the same amount (b) moving 
your hand more slowly, but still only up and down once by the same amount  
(c) moving your hand a greater distance up and down in the same amount of 
time (d) moving your hand a lesser distance up and down in the same amount of 
time (e) using a heavier string of the same length and under the same tension  
(f) using a lighter string of the same length and under the same tension (g) using 
a string of the same linear mass density but under decreased tension (h) using a 
string of the same linear mass density but under increased tension

Speed of a wave on X
a stretched string

Example 16.3   The Speed of a Pulse on a Cord 

A uniform string has a mass of 0.300 kg and a length of 6.00 m (Fig. 16.12). The string passes over a pulley and sup-
ports a 2.00-kg object. Find the speed of a pulse traveling along this string.

Conceptualize  In Figure 16.12, the hanging block establishes 
a tension in the horizontal string. This tension determines the 
speed with which waves move on the string.

Categorize  To find the tension in the string, we model the hang-
ing block as a particle in equilibrium. Then we use the tension to 
evaluate the wave speed on the string using Equation 16.18.

AM

S O L U T I O N

2.00 kg

T

Figure 16.12  (Example 
16.3) The tension T in the 
cord is maintained by the 
suspended object. The 
speed of any wave traveling 
along the cord is given by 
v 5 !T/m.

Analyze  Apply the particle in equilibrium model to the block: o Fy 5 T 2 m blockg 5 0

Solve for the tension in the string: T 5 m blockg

Pitfall Prevention 16.3
Multiple T 's Do not confuse the 
T in Equation 16.18 for the ten-
sion with the symbol T used in 
this chapter for the period of a 
wave. The context of the equation 
should help you identify which 
quantity is meant. There simply 
aren’t enough letters in the alpha-
bet to assign a unique letter to 
each variable!

v =

√
mbg`

ms



The Wave Equation

Can we find a general equation describing the displacement (y) of
our medium as a function of position (x) and time (t)?

Start by considering a string carrying a disturbance.

 16.6 The Linear Wave Equation 497

Categorize  We evaluate quantities from equations developed in the chapter, so we categorize this example as a substi-
tution problem.

Use Equation 16.21 to evaluate the power: P 5 1
2 mv2A2v

Use Equations 16.9 and 16.18 to substitute 
for v and v :

P 5 1
2m 12pf 22A2aÅT

m
b 5 2p2f 2A2"mT

Substitute numerical values: P 5 2p 2 160.0 Hz 22 10.060 0 m 22"10.050 0 kg/m 2 180.0 N 2 5   512 W

What if the string is to transfer energy at a rate of 1 000 W? What must be the required amplitude if all 
other parameters remain the same?

Answer  Let us set up a ratio of the new and old power, reflecting only a change in the amplitude:

Pnew

Pold
5

1
2 mv2A 2

new v
1
2 mv2A 2

old v
5

A 2
new

A 2
old

Solving for the new amplitude gives

A new 5 A oldÅPnew

Pold
5 16.00 cm 2Å1 000 W

512 W
5 8.39 cm

WHAT IF ?

16.6 The Linear Wave Equation
In Section 16.1, we introduced the concept of the wave function to represent waves 
traveling on a string. All wave functions y(x, t) represent solutions of an equation 
called the linear wave equation. This equation gives a complete description of the 
wave motion, and from it one can derive an expression for the wave speed. Further-
more, the linear wave equation is basic to many forms of wave motion. In this sec-
tion, we derive this equation as applied to waves on strings.
 Suppose a traveling wave is propagating along a string that is under a tension T. 
Let’s consider one small string element of length Dx (Fig. 16.19). The ends of the 
element make small angles uA and uB with the x axis. Forces act on the string at its 
ends where it connects to neighboring elements. Therefore, the element is modeled 
as a particle under a net force. The net force acting on the element in the vertical 
direction is

 o Fy 5 T sin uB 2 T sin uA 5 T(sin uB 2 sin uA) 

Because the angles are small, we can use the approximation sin u < tan u to express 
the net force as

 o Fy < T(tan uB 2 tan uA) (16.22)

Imagine undergoing an infinitesimal displacement outward from the right end of 
the rope element in Figure 16.19 along the blue line representing the force T

S
. This 

displacement has infinitesimal x and y components and can be represented by the 
vector dx î 1 dy ĵ. The tangent of the angle with respect to the x axis for this dis-
placement is dy/dx. Because we evaluate this tangent at a particular instant of time, 
we must express it in partial form as 'y/'x. Substituting for the tangents in Equa-
tion 16.22 gives

 a Fy < T c a'y
'x

b
B

2 a'y
'x

b
A
d  (16.23)

B

A

x

A

B! u

u

T
S

T
S

Figure 16.19  An element of a 
string under tension T.
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The Wave Equation

Consider a small length of string ∆x .
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In Section 16.1, we introduced the concept of the wave function to represent waves 
traveling on a string. All wave functions y(x, t) represent solutions of an equation 
called the linear wave equation. This equation gives a complete description of the 
wave motion, and from it one can derive an expression for the wave speed. Further-
more, the linear wave equation is basic to many forms of wave motion. In this sec-
tion, we derive this equation as applied to waves on strings.
 Suppose a traveling wave is propagating along a string that is under a tension T. 
Let’s consider one small string element of length Dx (Fig. 16.19). The ends of the 
element make small angles uA and uB with the x axis. Forces act on the string at its 
ends where it connects to neighboring elements. Therefore, the element is modeled 
as a particle under a net force. The net force acting on the element in the vertical 
direction is

 o Fy 5 T sin uB 2 T sin uA 5 T(sin uB 2 sin uA) 

Because the angles are small, we can use the approximation sin u < tan u to express 
the net force as
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Imagine undergoing an infinitesimal displacement outward from the right end of 
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placement is dy/dx. Because we evaluate this tangent at a particular instant of time, 
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Figure 16.19  An element of a 
string under tension T.
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As we did for oscillations, start from Newton’s 2nd law.

Fy = may

T sin θB − T sin θA = (µ∆x)
∂2y

∂t2

For small angles
sin θ ≈ tan θ



The Wave Equation
We can write tan θ as the slope of y(x):

tan θ =
∂y

∂x

Now Newton’s second law becomes:

T

(
∂y

∂x

∣∣∣∣
x=B

−
∂y

∂x

∣∣∣∣
x=A

)
= (µ∆x)

∂2y

∂t2

µ

T

∂2y

∂t2
=

∂y
∂x

∣∣∣
x=B

− ∂y
∂x

∣∣∣
x=A

∆x

We need to take the limit of this expression as we consider an
infinitesimal piece of string: ∆x → 0, B → A.

µ

T

∂2y

∂t2
=

∂2y

∂x2

where we use the definition of the second-order partial derivative.



The Wave Equation
We can write tan θ as the slope of y(x):

tan θ =
∂y

∂x

Now Newton’s second law becomes:

T
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x=B

−
∂y
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x=A
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= (µ∆x)

∂2y

∂t2

µ

T

∂2y

∂t2
=

∂y
∂x

∣∣∣
x=B

− ∂y
∂x

∣∣∣
x=A

∆x
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µ

T

∂2y

∂t2
=

∂2y

∂x2

where we use the definition of the second-order partial derivative.



The Wave Equation
We can write tan θ as the slope of y(x):

tan θ =
∂y

∂x

Now Newton’s second law becomes:

T
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x=B

−
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− ∂y
∂x

∣∣∣
x=A

∆x

We need to take the limit of this expression as we consider an
infinitesimal piece of string: ∆x → 0, B → A.

µ

T

∂2y

∂t2
=

∂2y

∂x2

where we use the definition of the second-order partial derivative.



The Wave Equation

µ

T

∂2y

∂t2
=
∂2y

∂x2

Remember that the speed of a wave on a string is

v =

√
T

µ

The wave equation:

∂2y

∂x2
=

1

v2
∂2y

∂t2

Even though we derived this for a string, it applies much more
generally!



Proof for Longitudinal Waves - Skipping
We can model longitudinal waves like sound waves by a series of
masses connected by springs, length h.

u1 u2 u3

u is a function that gives the displacement of the mass at each
equilibrium position x , x + h, etc.

For such a case, the propagation speed is

v =

√
KL

µ

where K is the spring constant of the entire spring chain, L is the
length, and µ is the mass density.

1Figure from Wikipedia, by Sebastian Henckel.



The Wave Equation - Skipping

u1 u2 u3

u is a function that gives the displacement of the mass at each
equilibrium position x , x + h, etc.

Consider the mass, m, at equilibrium position x + h

F = ma

k(u3 − u2) − k(u2 − u1) = m
∂2u

∂t2

m

k

∂2u

∂t2
= u3 − 2u2 + u1

1Figure from Wikipedia, by Sebastian Henckel.



The Wave Equation - Skipping

m

k

∂2u

∂t2
= u3 − 2u2 + u1

We can re-write m
k in terms of quantities for the entire spring

chain. Suppose there are N masses.

m = µL
N and k = NK and N = L

h

µ

KL

∂2u

∂t2
=

u(x + 2h) − 2u(x + h) + u(x)

h2

Letting N →∞ and h→ 0, the RHS is the definition of the 2nd
derivative. Same equation!

1

v2
∂2u

∂t2
=
∂2u

∂x2



The Wave Equation

The wave equation:

∂2y

∂x2
=

1

v2
∂2y

∂t2

We derived this for a case of transverse waves (wave on a string)
and a case of longitudinal waves (spring with mass).

It applies generally!



Solutions to the Wave Equation

Earlier we reasoned that a function of the form:

y(x , t) = f (x ± vt)

should describe a propagating wave pulse.

Notice that f does not depend arbitrarily on x and t. It only
depends on the two together by depending on u = x ± vt.

Does it satisfy the wave equation?

∂2y

∂x2
=

1

v2
∂2y

∂t2

(Next lecture...)



Summary

• wave speed on a string

• pulse propagation

• the wave equation

Homework Serway & Jewett (suggested, to try):

• Ch 16, onward from page 499. OQs: 5; Probs: 53, 60


