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Last time

• pulse propagation

• the wave equation



Overview

• solutions to the wave equation

• sine waves



Solutions to the Wave Equation

Earlier we reasoned that a function of the form:

y(x , t) = f (x ± vt)

should describe a propagating wave pulse.

Notice that f does not depend arbitrarily on x and t. It only
depends on the two together by depending on u = x ± vt.

Does it satisfy the wave equation?
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Solutions to the Wave Equation

Does y(x , t) = f (x − vt) satisfy the wave equation?

∂2y

∂x2
=

1

v2
∂2y

∂t2

Let u = x − vt, so we can use the chain rule:

∂y

∂x
=
∂u

∂x

∂y
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= (1)f ′

u ;
∂2y
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=
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= v2f ′′
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where f ′
u is the partial derivative of f wrt u.
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Solutions to the Wave Equation

Replacing ∂2y
∂x2

and ∂2y
∂t2

in the wave equation:

f ′′
u =

1

v2
(v2)f ′′

u

1 = 1

The LHS does equal the RHS!

y(x , t) = f (x ± vt) is a solution to the wave equation for any
(well-behaved) function f .

In fact, any solution to the wave equation can be written:

y(x , t) = f (x − vt) + g(x + vt)
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Sine Waves
An important form of the function f is a sine or cosine wave. (All
called “sine waves”). y(x , t) = A sin

(
B(x − vt) + C

)
This is the simplest periodic, continuous wave.

It is the wave that is formed by a (driven) simple harmonic
oscillator connected to the medium.
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16.2 Analysis Model: Traveling Wave 
In this section, we introduce an important wave function whose shape is shown in 
Figure 16.7. The wave represented by this curve is called a sinusoidal wave because 
the curve is the same as that of the function sin u plotted against u. A sinusoidal 
wave could be established on the rope in Figure 16.1 by shaking the end of the rope 
up and down in simple harmonic motion.
 The sinusoidal wave is the simplest example of a periodic continuous wave and 
can be used to build more complex waves (see Section 18.8). The brown curve in 
Figure 16.7 represents a snapshot of a traveling sinusoidal wave at t 5 0, and the 
blue curve represents a snapshot of the wave at some later time t. Imagine two types 
of motion that can occur. First, the entire waveform in Figure 16.7 moves to the 
right so that the brown curve moves toward the right and eventually reaches the 
position of the blue curve. This movement is the motion of the wave. If we focus on 
one element of the medium, such as the element at x 5 0, we see that each element 
moves up and down along the y axis in simple harmonic motion. This movement is 
the motion of the elements of the medium. It is important to differentiate between the 
motion of the wave and the motion of the elements of the medium.
 In the early chapters of this book, we developed several analysis models based on 
three simplification models: the particle, the system, and the rigid object. With our 
introduction to waves, we can develop a new simplification model, the wave, that 
will allow us to explore more analysis models for solving problems. An ideal particle 
has zero size. We can build physical objects with nonzero size as combinations of 
particles. Therefore, the particle can be considered a basic building block. An ideal 
wave has a single frequency and is infinitely long; that is, the wave exists throughout 
the Universe. (A wave of finite length must necessarily have a mixture of frequen-
cies.) When this concept is explored in Section 18.8, we will find that ideal waves 
can be combined to build complex waves, just as we combined particles.
 In what follows, we will develop the principal features and mathematical represen-
tations of the analysis model of a traveling wave. This model is used in situations in 
which a wave moves through space without interacting with other waves or particles.
 Figure 16.8a shows a snapshot of a traveling wave moving through a medium. 
Figure 16.8b shows a graph of the position of one element of the medium as a func-
tion of time. A point in Figure 16.8a at which the displacement of the element from 
its normal position is highest is called the crest of the wave. The lowest point is 
called the trough. The distance from one crest to the next is called the wavelength 
l (Greek letter lambda). More generally, the wavelength is the minimum distance 
between any two identical points on adjacent waves as shown in Figure 16.8a.
 If you count the number of seconds between the arrivals of two adjacent crests 
at a given point in space, you measure the period T of the waves. In general, the 
period is the time interval required for two identical points of adjacent waves to 
pass by a point as shown in Figure 16.8b. The period of the wave is the same as the 
period of the simple harmonic oscillation of one element of the medium.
 The same information is more often given by the inverse of the period, which is 
called the frequency f. In general, the frequency of a periodic wave is the number 
of crests (or troughs, or any other point on the wave) that pass a given point in a 
unit time interval. The frequency of a sinusoidal wave is related to the period by the 
expression

 f 5
1
T

 (16.3)
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Figure 16.7 A one-dimensional 
sinusoidal wave traveling to the 
right with a speed v. The brown 
curve represents a snapshot of the 
wave at t 5 0, and the blue curve 
represents a snapshot at some 
later time t.

 

▸ 16.1 c o n t i n u e d

Another new feature here is the numerator of 4 rather than 2. Therefore, the new expression represents a pulse with 
twice the height of that in Figure 16.6.
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The wavelength l of a wave is 
the distance between adjacent 
crests or adjacent troughs.

The period T of a wave is the 
time interval required for the 
element to complete one cycle 
of its oscillation and for the 
wave to travel one wavelength.
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Figure 16.8 (a) A snapshot of a 
sinusoidal wave. (b) The position 
of one element of the medium as a 
function of time.



Wave Quantities



Wave Quantities

wavelength, λ

the distance from one crest of the wave to the next, or the
distance covered by one cycle.
units: length (m)

time period, T

the time for one complete oscillation.
units: time (s)



Sine Waves

frequency, f

the number of oscillations per second.

f =
1

T

units: per time (Hz)

angular frequency, ω

the rate of change of phase of the wave.

ω =
2π

T
= 2πf

units: per time (rad/s)



Wave speed

How does wavelength relate to wave speed?

speed = distance
time

It travels the distance of one complete cycle in the time for one
complete cycle.

v =
λ

T

But since frequency is the inverse of the time period, we can relate
speed to frequency and wavelength:

v = f λ



Wave speed

We also define a new quantity.

Wave number, k

k =
2π

λ

units: m−1

Since ω = 2πf and k = 2π
λ this gives another way to express the

speed of the wave:

v =
ω

k
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y(x , t) = A sin

(
2π

λ
(x − vt) + φ

)
This is usually written in a slightly different form...
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y(x , t) = A sin (kx −ωt + φ)

where φ is a phase constant.



Summary

• solutions to the wave equation

• sine waves (covered in lab)

Homework Serway & Jewett (Could start looking at these):

• Ch 16, onward from page 499. OQs: 3, 9; CQs: 5; Probs: 5,
9, 11, 19, 41, 43


