Waves
 Solutions to the Wave Equation Sine Waves

Lana Sheridan
De Anza College

May 20, 2020

Last time

- pulse propagation
- the wave equation

Overview

- solutions to the wave equation
- sine waves

Solutions to the Wave Equation

Earlier we reasoned that a function of the form:

$$
y(x, t)=f(x \pm v t)
$$

should describe a propagating wave pulse.

Solutions to the Wave Equation

Earlier we reasoned that a function of the form:

$$
y(x, t)=f(x \pm v t)
$$

should describe a propagating wave pulse.

Notice that f does not depend arbitrarily on x and t. It only depends on the two together by depending on $u=x \pm v t$.

Solutions to the Wave Equation

Earlier we reasoned that a function of the form:

$$
y(x, t)=f(x \pm v t)
$$

should describe a propagating wave pulse.

Notice that f does not depend arbitrarily on x and t. It only depends on the two together by depending on $u=x \pm v t$.

Does it satisfy the wave equation?

$$
\frac{\partial^{2} y}{\partial x^{2}}=\frac{1}{v^{2}} \frac{\partial^{2} y}{\partial t^{2}}
$$

Solutions to the Wave Equation

Does $y(x, t)=f(x-v t)$ satisfy the wave equation?

$$
\frac{\partial^{2} y}{\partial x^{2}}=\frac{1}{v^{2}} \frac{\partial^{2} y}{\partial t^{2}}
$$

Solutions to the Wave Equation

Does $y(x, t)=f(x-v t)$ satisfy the wave equation?

$$
\frac{\partial^{2} y}{\partial x^{2}}=\frac{1}{v^{2}} \frac{\partial^{2} y}{\partial t^{2}}
$$

Let $u=x-v t$, so we can use the chain rule:

$$
\frac{\partial y}{\partial x}=\frac{\partial u}{\partial x} \frac{\partial y}{\partial u}=(1) f_{u}^{\prime} \quad ; \quad \frac{\partial^{2} y}{\partial x^{2}}=\left(1^{2}\right) f_{u}^{\prime \prime}
$$

Solutions to the Wave Equation

Does $y(x, t)=f(x-v t)$ satisfy the wave equation?

$$
\frac{\partial^{2} y}{\partial x^{2}}=\frac{1}{v^{2}} \frac{\partial^{2} y}{\partial t^{2}}
$$

Let $u=x-v t$, so we can use the chain rule:

$$
\frac{\partial y}{\partial x}=\frac{\partial u}{\partial x} \frac{\partial y}{\partial u}=(1) f_{u}^{\prime} \quad ; \quad \frac{\partial^{2} y}{\partial x^{2}}=\left(1^{2}\right) f_{u}^{\prime \prime}
$$

and

$$
\frac{\partial y}{\partial t}=\frac{\partial u}{\partial t} \frac{\partial y}{\partial u}=-v f_{u}^{\prime} \quad ; \quad \frac{\partial^{2} y}{\partial t^{2}}=v^{2} f_{u}^{\prime \prime}
$$

where f_{u}^{\prime} is the partial derivative of f wrt u.

Solutions to the Wave Equation

Replacing $\frac{\partial^{2} y}{\partial x^{2}}$ and $\frac{\partial^{2} y}{\partial t^{2}}$ in the wave equation:

$$
\begin{aligned}
f_{u}^{\prime \prime} & =\frac{1}{v^{2}}\left(v^{2}\right) f_{u}^{\prime \prime} \\
1 & =1
\end{aligned}
$$

The LHS does equal the RHS!
$y(x, t)=f(x \pm v t)$ is a solution to the wave equation for any (well-behaved) function f.

Solutions to the Wave Equation

Replacing $\frac{\partial^{2} y}{\partial x^{2}}$ and $\frac{\partial^{2} y}{\partial t^{2}}$ in the wave equation:

$$
\begin{aligned}
f_{u}^{\prime \prime} & =\frac{1}{v^{2}}\left(v^{2}\right) f_{u}^{\prime \prime} \\
1 & =1
\end{aligned}
$$

The LHS does equal the RHS!
$y(x, t)=f(x \pm v t)$ is a solution to the wave equation for any (well-behaved) function f.

In fact, any solution to the wave equation can be written:

$$
y(x, t)=f(x-v t)+g(x+v t)
$$

Sine Waves

An important form of the function f is a sine or cosine wave. (All called "sine waves"). $y(x, t)=A \sin (B(x-v t)+C)$

This is the simplest periodic, continuous wave.
It is the wave that is formed by a (driven) simple harmonic oscillator connected to the medium.

Wave Quantities

Wave Quantities

wavelength, λ
the distance from one crest of the wave to the next, or the distance covered by one cycle. units: length (m)

time period, T

the time for one complete oscillation.
units: time (s)

Sine Waves

frequency, f
the number of oscillations per second.

$$
f=\frac{1}{T}
$$

units: per time (Hz)

angular frequency, ω

the rate of change of phase of the wave.

$$
\omega=\frac{2 \pi}{T}=2 \pi f
$$

units: per time (rad/s)

Wave speed

How does wavelength relate to wave speed?

$$
\text { speed }=\frac{\text { distance }}{\text { time }}
$$

It travels the distance of one complete cycle in the time for one complete cycle.

$$
v=\frac{\lambda}{T}
$$

But since frequency is the inverse of the time period, we can relate speed to frequency and wavelength:

$$
v=f \lambda
$$

Wave speed

We also define a new quantity.

Wave number, k

$$
k=\frac{2 \pi}{\lambda}
$$

units: m^{-1}

Since $\omega=2 \pi f$ and $k=\frac{2 \pi}{\lambda}$ this gives another way to express the speed of the wave:

$$
v=\frac{\omega}{k}
$$

Sine Waves

$$
y(x, t)=A \sin \left(\frac{2 \pi}{\lambda}(x-v t)+\phi\right)
$$

This is usually written in a slightly different form...

Sine Waves

$$
y(x, t)=A \sin (k x-\omega t+\phi)
$$

where ϕ is a phase constant.

Summary

- solutions to the wave equation
- sine waves (covered in lab)

Homework Serway \& Jewett (Could start looking at these):

- Ch 16, onward from page 499. OQs: 3, 9; CQs: 5; Probs: 5, 9, 11, 19, 41, 43

