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Last time

• Pascal’s principle

• measurements of pressure

• introduced fluid dynamics



Warm Up Question

The figure shows a pipe and gives the volume flow rate (in cm3/s)
and the direction of flow for all but one section. What are the
volume flow rate and the direction of flow for that section?
(Assume that the fluid in the pipe is an ideal fluid.)

37314-9 TH E EQUATION OF CONTI N U ITY
PART 2

We can rewrite Eq. 14-23 as

RV ! Av ! a constant (volume flow rate, equation of continuity), (14-24)

in which RV is the volume flow rate of the fluid (volume past a given point per
unit time). Its SI unit is the cubic meter per second (m3/s). If the density r of the
fluid is uniform, we can multiply Eq. 14-24 by that density to get the mass flow
rate Rm (mass per unit time):

Rm ! rRV ! rAv ! a constant (mass flow rate). (14-25)

The SI unit of mass flow rate is the kilogram per second (kg/s). Equation 14-25
says that the mass that flows into the tube segment of Fig. 14-15 each second must
be equal to the mass that flows out of that segment each second.

CHECKPOINT 3

The figure shows a pipe and gives the volume flow rate (in cm3/s) and the di-
rection of flow for all but one section. What are the volume flow rate and the
direction of flow for that section?
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Sample Problem

A water stream narrows as it falls

Figure 14-18 shows how the stream of water emerging from
a faucet “necks down” as it falls. This change in the horizontal
cross-sectional area is characteristic of any laminar (non-
turbulant) falling stream because the gravitational force
increases the speed of the stream. Here the indicated
cross-sectional areas are A0 ! 1.2 cm2 and A ! 0.35 cm2.
The two levels are separated by a vertical distance h ! 45 mm.
What is the volume flow rate from the tap? 

KEY I DEA

Fig. 14-18 As water falls from a tap, its speed
increases. Because the volume flow rate must be
the same at all horizontal cross sections of the
stream, the stream must “neck down” (narrow).

h 

A0 

A 

The volume flow per
second here must
match ...

... the volume flow
per second here.

The volume flow rate through the higher cross section must
be the same as that through the lower cross section.

Calculations: From Eq. 14-24, we have

A0v0 ! Av, (14-26)

where v0 and v are the water speeds at the levels correspond-
ing to A0 and A. From Eq. 2-16 we can also write, because the
water is falling freely with acceleration g,

v2 ! v2
0 " 2gh. (14-27)

Eliminating v between Eqs. 14-26 and 14-27 and solving for
v0, we obtain

! 0.286 m/s ! 28.6 cm/s.

From Eq. 14-24, the volume flow rate RV is then
RV ! A0v0 ! (1.2 cm2)(28.6 cm/s)

! 34 cm3/s. (Answer)

! A (2)(9.8 m/s2)(0.045 m)(0.35 cm2)2

(1.2 cm2)2 # (0.35 cm2)2

v0 ! A 2ghA2

A2
0 # A2

Additional examples, video, and practice available at WileyPLUS
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A 11 cm3/s, outward

B 13 cm3/s, outward

C 3 cm3/s, inward

D cannot be determined

1Halliday, Resnick, Walker, 9th ed, page 373.
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Overview

• fluid dynamics

• the continuity equation

• Bernoulli’s equation



Fluid Dynamics

We will make some simplifying assumptions:

1 the fluid is nonviscous, ie. not sticky, it has no internal
friction between layers

2 the fluid is incompressible, its density is constant

3 the flow is laminar, ie. the streamlines are constant in time

4 the flow is irrotational, there is no curl

In real life no fluids actually have the second property, and almost
none have the first.

Flows can have the second two properties, in the right conditions.



Bernoulli’s Principle

A law discovered by the 18th-century Swiss scientist, Daniel
Bernoulli.

Bernoulli’s Principle

As the speed of a fluid’s flow increases, the pressure in the fluid
decreases.

This leads to a surprising effect: for liquids flowing in pipes, the
pressure drops as the pipes get narrower.



Bernoulli’s Principle

Why should this principle hold? Where does it come from?

Actually, it just comes from the conservation of energy, and an
assumption that the fluid is incompressible.1

Consider a fixed volume of fluid, V .

In a narrower pipe, this volume flows by a particular point 1 in
time ∆t.

However, it must push the same volume of fluid past a point 2 in
the same time. If the pipe is wider at point 2, it flows more slowly.

1Something similar can be argued for compressible fluids also.
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The Continuity Equation

V = A1v1∆t

also, V = A2v2∆t

This means

R = A1v1 = A2v2

Called the “Continuity equation”. R = V /(∆t) is the flow rate.
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Bernoulli’s Equation

Bernoulli’s equation is just the conservation of energy for this fluid.
The system here is all of the fluid in the pipe shown.

Both light blue cylinders of fluid have the same volume, V , and
same mass m.

We imagine that in a time ∆t, volume V of fluid enters the left
end of the pipe, and another V exits the right.



Bernoulli’s Equation
It makes sense that the energy of the fluid might change: the fluid
is moved along, and some is lifted up.

428 Chapter 14 Fluid Mechanics

 The path taken by a fluid particle under steady flow is called a streamline. The 
velocity of the particle is always tangent to the streamline as shown in Figure 14.15. 
A set of streamlines like the ones shown in Figure 14.15 form a tube of flow. Fluid 
particles cannot flow into or out of the sides of this tube; if they could, the stream-
lines would cross one another.
 Consider ideal fluid flow through a pipe of nonuniform size as illustrated in Fig-
ure 14.16. Let’s focus our attention on a segment of fluid in the pipe. Figure 14.16a 
shows the segment at time t 5 0 consisting of the gray portion between point 1 and 
point 2 and the short blue portion to the left of point 1. At this time, the fluid in the 
short blue portion is flowing through a cross section of area A1 at speed v1. During 
the time interval Dt, the small length Dx1 of fluid in the blue portion moves past 
point 1. During the same time interval, fluid at the right end of the segment moves 
past point 2 in the pipe. Figure 14.16b shows the situation at the end of the time 
interval Dt. The blue portion at the right end represents the fluid that has moved 
past point 2 through an area A2 at a speed v2.
 The mass of fluid contained in the blue portion in Figure 14.16a is given by m1 5 
rA1 Dx1 5 rA1v1 Dt, where r is the (unchanging) density of the ideal fluid. Similarly, 
the fluid in the blue portion in Figure 14.16b has a mass m2 5 rA2 Dx2 5 rA2v2 Dt. 
Because the fluid is incompressible and the flow is steady, however, the mass of fluid 
that passes point 1 in a time interval Dt must equal the mass that passes point 2 in 
the same time interval. That is, m1 5 m2 or rA1v1 Dt 5 rA2v2 Dt, which means that

 A1v1 5 A2v2 5 constant (14.7)

This expression is called the equation of continuity for fluids. It states that the 
product of the area and the fluid speed at all points along a pipe is constant for an 
incompressible fluid. Equation 14.7 shows that the speed is high where the tube 
is constricted (small A) and low where the tube is wide (large A). The product Av, 
which has the dimensions of volume per unit time, is called either the volume flux or 
the flow rate. The condition Av 5 constant is equivalent to the statement that the vol-
ume of fluid that enters one end of a tube in a given time interval equals the volume 
leaving the other end of the tube in the same time interval if no leaks are present.
 You demonstrate the equation of continuity each time you water your garden 
with your thumb over the end of a garden hose as in Figure 14.17. By partially block-

Equation of Continuity X
for Fluids

Figure 14.17  The speed of water spraying from 
the end of a garden hose increases as the size of 
the opening is decreased with the thumb.©
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At each point along its path, 
the particle’s velocity is 
tangent to the streamline.

Figure 14.15  A particle 
in laminar flow follows a 
streamline.

v2

v1

At t ! 0, fluid in the blue
portion is moving past
point 1 at velocity v1.

After a time interval "t,
the fluid in the blue 
portion is moving past 
point 2 at velocity v2.

"x1

"x2

Point 2

Point 1

A1

A2
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Figure 14.16  A fluid moving 
with steady flow through a pipe  
of varying cross-sectional area.  
(a) At t 5 0, the small blue-
colored portion of the fluid at the 
left is moving through area A1.  
(b) After a time interval Dt, the 
blue-colored portion shown 
here is that fluid that has moved 
through area A2.

How does it change? Depends on the work done:

W = ∆K + ∆U



Bernoulli’s Equation

430 Chapter 14 Fluid Mechanics

14.6 Bernoulli’s Equation
You have probably experienced driving on a highway and having a large truck pass 
you at high speed. In this situation, you may have had the frightening feeling that your  
car was being pulled in toward the truck as it passed. We will investigate the origin 
of this effect in this section.
 As a fluid moves through a region where its speed or elevation above the 
Earth’s surface changes, the pressure in the fluid varies with these changes. The 
relationship between fluid speed, pressure, and elevation was first derived in 1738 
by Swiss physicist Daniel Bernoulli. Consider the flow of a segment of an ideal 
fluid through a nonuniform pipe in a time interval Dt as illustrated in Figure 
14.18. This figure is very similar to Figure 14.16, which we used to develop the 
continuity equation. We have added two features: the forces on the outer ends of 
the blue portions of fluid and the heights of these portions above the reference 
position y 5 0.
 The force exerted on the segment by the fluid to the left of the blue portion in 
Figure 14.18a has a magnitude P1A1. The work done by this force on the segment 
in a time interval Dt is W1 5 F1 Dx1 5 P1A1 Dx1 5 P1V, where V is the volume of the 
blue portion of fluid passing point 1 in Figure 14.18a. In a similar manner, the 
work done on the segment by the fluid to the right of the segment in the same time 
interval Dt is W2 5 2P2A2 Dx2 5 2P2V, where V is the volume of the blue portion of 
fluid passing point 2 in Figure 14.18b. (The volumes of the blue portions of fluid in 
Figures 14.18a and 14.18b are equal because the fluid is incompressible.) This work 
is negative because the force on the segment of fluid is to the left and the displace-
ment of the point of application of the force is to the right. Therefore, the net work 
done on the segment by these forces in the time interval Dt is

 W 5 (P1 2 P2)V 

Finalize  The time interval for the element of water to fall to the ground is unchanged if the projection speed is 
changed because the projection is horizontal. Increasing the projection speed results in the water hitting the ground 
farther from the end of the hose, but requires the same time interval to strike the ground.

y1

y2

The pressure at
point 1 is P1. 

P1A1 i

The pressure at
point 2 is P2. v2

v1
!x1

!x2

Point 2

Point 1
a

S
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"P2A2 i

ˆ

ˆ
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Figure 14.18  A fluid in laminar 
flow through a pipe. (a) A segment 
of the fluid at time t 5 0. A small 
portion of the blue-colored fluid 
is at height y1 above a reference 
position. (b) After a time interval 
Dt, the entire segment has moved 
to the right. The blue-colored por-
tion of the fluid is that which has 
passed point 2 and is at height y2.

 

▸ 14.7 c o n t i n u e d

Daniel Bernoulli
Swiss physicist (1700–1782)
Bernoulli made important discoveries  
in fluid dynamics. Bernoulli’s most 
famous work, Hydrodynamica, was 
published in 1738; it is both a theoreti-
cal and a practical study of equilibrium, 
pressure, and speed in fluids. He showed 
that as the speed of a fluid increases, 
its pressure decreases. Referred to as 
“Bernoulli’s principle,” Bernoulli’s work 
is used to produce a partial vacuum in 
chemical laboratories by connecting a 
vessel to a tube through which water is 
running rapidly.
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The work done is the sum of the
work done on each end of the
fluid by more fluid that is on
either side of it:

W = F1∆x1 − F2∆x2

= P1A1∆x1 − P2A2∆x2

(The “environment fluid” just to
the right of the system fluid does
negative work on the system as it
must be pushed aside by the
system fluid.)

1Diagram from Serway & Jewett.



Bernoulli’s Equation
Notice that V = A1∆x1 = A2∆x2

W = P1A1∆x1 − P2A2∆x2

= (P1 − P2)V

Conservation of energy:

W = ∆K + ∆U

(P1 − P2)V =
1

2
m(v22 − v21 ) +mg(h2 − h1)

Dividing by V :

P1 − P2 =
1

2
ρv22 + ρg(h2 − h1)

P1 +
1

2
ρv21 + ρgh1 = P2 +

1

2
ρv22 + ρgh2
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Bernoulli’s Equation

P1 +
1

2
ρv21 + ρgh1 = P2 +

1

2
ρv22 + ρgh2

This expression is true for any two points along a streamline.

Therefore,

P +
1

2
ρv2 + ρgh = const

is constant along a streamline in the fluid.

This is Bernoulli’s equation.



Bernoulli’s Equation

P +
1

2
ρv2 + ρgh = const

The P in this equation is the pressure that one could measure with
a barometer or manometer. (In some books it is called the static
pressure, but this book calls it just “pressure”.)

Even though we derived this expression for the case of an
incompressible fluid, this is also true (to first order) for
compressible fluids, like air and other gases.

The constraint is that the densities should not vary too much from
the ambient density ρ.
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Bernoulli’s Principle from Bernoulli’s Equation

For two different points in the fluid, we have:

1

2
ρv21 + ρgh1 + P1 =

1

2
ρv22 + ρgh2 + P2

Suppose the height of the fluid does not change, so h1 = h2:

1

2
ρv21 + P1 =

1

2
ρv22 + P2

If v2 > v1 then P2 < P1.
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Bernoulli’s Principle

However, from the continuity equation A1v1 = A2v2 we can see
that if A2 is smaller than A1, v2 is bigger than v1.

So the pressure really does fall as the pipe contracts!



Summary

Bernoulli’s Principle

As the speed of a fluid’s flow increases, the pressure in the fluid
decreases.

The Continuity equation:

A1v1 = A2v2

Bernoulli’s Equation:

P +
1

2
ρv2 + ρgh = const

is constant along a streamline in the fluid.



Question
Water flows smoothly through the pipe shown in the figure,
descending in the process. Rank the four numbered sections of pipe
according to the volume flow rate through them, greatest first.

37514-10 B E R NOU LLI ’S EQUATION
PART 2

Proof of Bernoulli’s Equation
Let us take as our system the entire volume of the (ideal) fluid shown in 
Fig. 14-19.We shall apply the principle of conservation of energy to this system as
it moves from its initial state (Fig. 14-19a) to its final state (Fig. 14-19b). The fluid
lying between the two vertical planes separated by a distance L in Fig. 14-19 does
not change its properties during this process; we need be concerned only with
changes that take place at the input and output ends.

First, we apply energy conservation in the form of the work–kinetic energy
theorem,

W ! "K, (14-31)

which tells us that the change in the kinetic energy of our system must equal the
net work done on the system. The change in kinetic energy results from the
change in speed between the ends of the tube and is

, (14-32)

in which "m (! r "V) is the mass of the fluid that enters at the input end and
leaves at the output end during a small time interval "t.

The work done on the system arises from two sources. The work Wg done by
the gravitational force on the fluid of mass "m during the vertical lift of
the mass from the input level to the output level is

Wg ! #"m g(y2 # y1)

! #rg "V(y2 # y1). (14-33)

This work is negative because the upward displacement and the downward gravi-
tational force have opposite directions.

Work must also be done on the system (at the input end) to push the entering
fluid into the tube and by the system (at the output end) to push forward the fluid
that is located ahead of the emerging fluid. In general, the work done by a force
of magnitude F, acting on a fluid sample contained in a tube of area A to move
the fluid through a distance "x, is

F "x ! ( pA)("x) ! p(A "x) ! p "V.

The work done on the system is then p1 "V, and the work done by the system
is #p2 "V.Their sum Wp is

Wp ! #p2 "V $ p1 "V

! #( p2 # p1) "V. (14-34)

The work–kinetic energy theorem of Eq. 14-31 now becomes

W ! Wg $ Wp ! "K.

Substituting from Eqs. 14-32, 14-33, and 14-34 yields

.

This, after a slight rearrangement, matches Eq. 14-28, which we set out to prove.

#%g "V(y2 # y1) # "V(p2 # p1) ! 1
2% "V(v2

2 # v2
1)

("m g:)

! 1
2% "V(v2

2 # v2
1)

"K ! 1
2"m v2

2 # 1
2"m v2

1

CHECKPOINT 4

Water flows smoothly through the
pipe shown in the figure, descending
in the process. Rank the four num-
bered sections of pipe according to
(a) the volume flow rate RV through
them, (b) the flow speed v through
them, and (c) the water pressure p
within them, greatest first.

1

Flow

2

3
4
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A 4, 3, 2, 1

B 1, (2 and 3), 4

C 4, (2 and 3), 1

D All the same

1Halliday, Resnick, Walker, 9th ed, page 375.
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Question
Water flows smoothly through the pipe shown in the figure,
descending in the process. Rank the four numbered sections of
pipe according to the flow speed v through them, greatest first.

37514-10 B E R NOU LLI ’S EQUATION
PART 2

Proof of Bernoulli’s Equation
Let us take as our system the entire volume of the (ideal) fluid shown in 
Fig. 14-19.We shall apply the principle of conservation of energy to this system as
it moves from its initial state (Fig. 14-19a) to its final state (Fig. 14-19b). The fluid
lying between the two vertical planes separated by a distance L in Fig. 14-19 does
not change its properties during this process; we need be concerned only with
changes that take place at the input and output ends.

First, we apply energy conservation in the form of the work–kinetic energy
theorem,

W ! "K, (14-31)

which tells us that the change in the kinetic energy of our system must equal the
net work done on the system. The change in kinetic energy results from the
change in speed between the ends of the tube and is

, (14-32)

in which "m (! r "V) is the mass of the fluid that enters at the input end and
leaves at the output end during a small time interval "t.

The work done on the system arises from two sources. The work Wg done by
the gravitational force on the fluid of mass "m during the vertical lift of
the mass from the input level to the output level is

Wg ! #"m g(y2 # y1)

! #rg "V(y2 # y1). (14-33)

This work is negative because the upward displacement and the downward gravi-
tational force have opposite directions.

Work must also be done on the system (at the input end) to push the entering
fluid into the tube and by the system (at the output end) to push forward the fluid
that is located ahead of the emerging fluid. In general, the work done by a force
of magnitude F, acting on a fluid sample contained in a tube of area A to move
the fluid through a distance "x, is

F "x ! ( pA)("x) ! p(A "x) ! p "V.

The work done on the system is then p1 "V, and the work done by the system
is #p2 "V.Their sum Wp is

Wp ! #p2 "V $ p1 "V

! #( p2 # p1) "V. (14-34)

The work–kinetic energy theorem of Eq. 14-31 now becomes

W ! Wg $ Wp ! "K.

Substituting from Eqs. 14-32, 14-33, and 14-34 yields

.

This, after a slight rearrangement, matches Eq. 14-28, which we set out to prove.
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of magnitude F, acting on a fluid sample contained in a tube of area A to move
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Water flows smoothly through the pipe shown in the figure,
descending in the process. Rank the four numbered sections of pipe
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changes that take place at the input and output ends.
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which tells us that the change in the kinetic energy of our system must equal the
net work done on the system. The change in kinetic energy results from the
change in speed between the ends of the tube and is
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in which "m (! r "V) is the mass of the fluid that enters at the input end and
leaves at the output end during a small time interval "t.

The work done on the system arises from two sources. The work Wg done by
the gravitational force on the fluid of mass "m during the vertical lift of
the mass from the input level to the output level is

Wg ! #"m g(y2 # y1)

! #rg "V(y2 # y1). (14-33)

This work is negative because the upward displacement and the downward gravi-
tational force have opposite directions.

Work must also be done on the system (at the input end) to push the entering
fluid into the tube and by the system (at the output end) to push forward the fluid
that is located ahead of the emerging fluid. In general, the work done by a force
of magnitude F, acting on a fluid sample contained in a tube of area A to move
the fluid through a distance "x, is

F "x ! ( pA)("x) ! p(A "x) ! p "V.

The work done on the system is then p1 "V, and the work done by the system
is #p2 "V.Their sum Wp is
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Summary

• fluid dynamics

• the continuity equation

• Bernoulli’s equation

Test Wednesday, April 22, in class.


