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Last time

• transverse speed of an element of the medium

• energy transfer by a sine wave



Overview

• power of a sine wave

• interference



Rate of Energy Transfer in Sine Wave

dK =
1

2
µ dxA2ω2 cos2(kx −ωt)

dU =
1

2
µA2ω2 cos2(kx −ωt) dx

Adding dU+ dK gives

dE = µω2A2 cos2(kx −ωt) dx

Integrating over one wavelength gives the energy per wavelength:

Eλ = µω2A2

∫λ
0

cos2(kx −ωt) dx

= µω2A2λ
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Rate of Energy Transfer in Sine Wave

For one wavelength:

Eλ =
1

2
µω2A2λ

Power averaged over one wavelength:

P =
Eλ

T
=

1

2
µω2A2 λ

T

Average power of a wave on a string:

P =
1

2
µω2A2v



Question

Quick Quiz 16.51 Which of the following, taken by itself, would
be most effective in increasing the rate at which energy is
transferred by a wave traveling along a string?

(A) reducing the linear mass density of the string by one half

(B) doubling the wavelength of the wave

(C) doubling the tension in the string

(D) doubling the amplitude of the wave

1Serway & Jewett, page 496.



Question

Quick Quiz 16.51 Which of the following, taken by itself, would
be most effective in increasing the rate at which energy is
transferred by a wave traveling along a string?

(A) reducing the linear mass density of the string by one half

(B) doubling the wavelength of the wave

(C) doubling the tension in the string

(D) doubling the amplitude of the wave ←

1Serway & Jewett, page 496.



Interference of Waves (Reminder from Lab)

When two wave disturbances interact with one another they can
amplify or cancel out.

Waves of the same frequency that are “in phase” will reinforce,
amplitude will increase; waves that are “out of phase” will cancel
out.



Interference of Waves (Reminder from Lab)

Waves that exist at the same time in the same position in space
add together.

superposition principle

If two or more traveling waves are moving through a medium, the
resultant value of the wave function at any point is the algebraic
sum of the values of the wave functions of the individual waves.

This works because the wave equation we are studying is linear.

This means solutions to the wave equations can be added:

y(x , t) = y1(x , t) + y2(x , t)

y is the resultant wave function.



Interference of Waves: Constructive Interference

 18.1 Analysis Model: Waves in Interference 535

Q uick Quiz 18.1  Two pulses move in opposite directions on a string and are iden-
tical in shape except that one has positive displacements of the elements of the 
string and the other has negative displacements. At the moment the two pulses 
completely overlap on the string, what happens? (a) The energy associated with 
the pulses has disappeared. (b) The string is not moving. (c) The string forms a 
straight line. (d) The pulses have vanished and will not reappear.

Superposition of Sinusoidal Waves
Let us now apply the principle of superposition to two sinusoidal waves traveling in 
the same direction in a linear medium. If the two waves are traveling to the right 
and have the same frequency, wavelength, and amplitude but differ in phase, we 
can express their individual wave functions as

y1 5 A sin (kx 2 vt)    y2 5 A sin (kx 2 vt 1 f)

where, as usual, k 5 2p/l, v 5 2pf, and f is the phase constant as discussed in Sec-
tion 16.2. Hence, the resultant wave function y is

y 5 y1 1 y2 5 A [sin (kx 2 vt) 1  sin (kx 2 vt 1 f)]

To simplify this expression, we use the trigonometric identity

sin a 1 sin b 5 2 cos aa 2 b
2

b sin aa 1 b
2

b

b
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d
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y2 y 1

y 1 y2
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When the pulses overlap, the 
wave function is the sum of 
the individual wave functions.

When the crests of the two 
pulses align, the amplitude is 
the sum of the individual 
amplitudes.

When the pulses no longer 
overlap, they have not been 
permanently affected by the 
interference.

Figure 18.1 Constructive interfer-
ence. Two positive pulses travel on 
a stretched string in opposite direc-
tions and overlap.
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Figure 18.2 Destructive interfer-
ence. Two pulses, one positive and 
one negative, travel on a stretched 
string in opposite directions and 
overlap.
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Superposition of Sine Waves

Consider two sine waves with the same wavelength and amplitude,
but different phases, that interfere.

y1(x , t) = A sin(kx −ωt) y2(x , t) = A sin(kx −ωt + φ)

Add them together to find the resultant wave function, using the
identity:

sin θ+ sinψ = 2 cos

(
θ−ψ

2

)
sin

(
θ+ψ

2

)
Then

y(x , t) =

[
2A cos

(
φ

2

)]
sin(kx −ωt +

φ

2
)

New amplitude Sine oscillation



Dependence on Phase Difference

The amplitude of the resultant wave is A ′ = 2A cos
(
φ
2

)
, where φ

is the phase difference.

For what value of φ is A ′ maximized?

φ = 0 or φ = 2π,−2π, 4π,
etc.

The waves are “in phase” and constructively interfere.536 Chapter 18 Superposition and Standing Waves

Letting a 5 kx 2 vt and b 5 kx 2 vt 1 f, we find that the resultant wave function y 
reduces to

y 5 2A cos af

2
b sin akx 2 vt 1

f

2
b

This result has several important features. The resultant wave function y also is 
sinusoidal and has the same frequency and wavelength as the individual waves 
because the sine function incorporates the same values of k and v that appear in 
the original wave functions. The amplitude of the resultant wave is 2A cos (f/2), 
and its phase constant is f/2. If the phase constant f of the original wave equals 0,  
then cos (f/2) 5 cos 0 5 1 and the amplitude of the resultant wave is 2A, twice the 
amplitude of either individual wave. In this case, the crests of the two waves are at 
the same locations in space and the waves are said to be everywhere in phase and 
therefore interfere constructively. The individual waves y1 and y2 combine to form 
the red-brown curve y of amplitude 2A shown in Figure 18.3a. Because the indi-
vidual waves are in phase, they are indistinguishable in Figure 18.3a, where they 
appear as a single blue curve. In general, constructive interference occurs when 
cos (f/2) 5 61. That is true, for example, when f 5 0, 2p, 4p, . . . rad, that is, when 
f is an even multiple of p.
 When f is equal to p rad or to any odd multiple of p, then cos (f/2) 5 cos (p/2) 5 
0 and the crests of one wave occur at the same positions as the troughs of the sec-
ond wave (Fig. 18.3b). Therefore, as a consequence of destructive interference, the 
resultant wave has zero amplitude everywhere as shown by the straight red-brown 
line in Figure 18.3b. Finally, when the phase constant has an arbitrary value other 
than 0 or an integer multiple of p rad (Fig. 18.3c), the resultant wave has an ampli-
tude whose value is somewhere between 0 and 2A.
 In the more general case in which the waves have the same wavelength but dif-
ferent amplitudes, the results are similar with the following exceptions. In the in-
phase case, the amplitude of the resultant wave is not twice that of a single wave, 
but rather is the sum of the amplitudes of the two waves. When the waves are p rad 
out of phase, they do not completely cancel as in Figure 18.3b. The result is a wave 
whose amplitude is the difference in the amplitudes of the individual waves.

Interference of Sound Waves
One simple device for demonstrating interference of sound waves is illustrated in 
Figure 18.4. Sound from a loudspeaker S is sent into a tube at point P, where there is 

Resultant of two traveling X 
sinusoidal waves

y

x

x

x

y
y1 y2 y

y y y1 y2

! 60°

y

f

! 180°f

! 0°f

The individual waves are in phase 
and therefore indistinguishable.

Constructive interference: the 
amplitudes add.

The individual waves are 180° out 
of phase.

Destructive interference: the 
waves cancel.

This intermediate result is neither 
constructive nor destructive.

b

c

a

Figure 18.3 The superposition 
of two identical waves y1 and y2 
(blue and green, respectively) to 
yield a resultant wave (red-brown).

A sound wave from the speaker 
(S) propagates into the tube and 
splits into two parts at point P.

Path length r1

Path length r2

R

S

P

The two waves, which combine 
at the opposite side, are 
detected at the receiver (R).

Figure 18.4  An acoustical 
system for demonstrating interfer-
ence of sound waves. The upper 
path length r2 can be varied by 
sliding the upper section.
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Dependence on Phase Difference

If φ = π,−π, 3π,−3π, etc. A ′ = 0. Destructive interference.
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Interference of Two Sine Waves (equal wavelength)

y(x , t) =

[
2A cos

(
φ

2

)]
sin(kx −ωt +

φ

2
)
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Phase Differences

We can count phase differences in terms of wavelengths also.

If two waves have a phase difference of 1 wavelength then φ = 2π.
Constructive interference.

If two waves have a phase difference of half a wavelength then
φ = π. Destructive interference.



Summary

• energy transfer by a sine wave

• interference

Homework
• WebAssign due Tuesday night


