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Last time

e power of a wave on a string

e interference



Overview

e interference of sine waves with same freq, different amplitudes
e boundary conditions

e reflection and transmission



Question

Here are four possible phase differences between two identical
waves, expressed in wavelengths:

0.20, 0.45, 0.60, and 0.80.

Rank them according to the amplitude of the resultant wave,
greatest first.

(A) 0.20, 0.45, 0.60, 0.80
(B) 0.80, 0.60, 0.45, 0.20

(C) (0.20 and 0.80), 0.60, 0.45
(D) 0.45, 0.60, (0.20 and 0.80)

1Halliday, Resnick, Walker, page 427.
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Phasors

We can represent sine waves and their addition with a phasor
diagram.

This works for sine waves with equal wavelengths, even if they
have different amplitudes.

Each wave function at point (x, t) is represented by a vector.

This projection matches this
displacement of the dot as Zero projection,
the wave moves through it. zero displacement

N Ymi

n=0

'Figures from Halliday, Resnick, & Walker, 9th ed, page 429.



Phasors
Add the vectors to find the sum.

Wave 2, delayed
‘ by ¢ radians
These are the o
projections of
the two phasors.

N
Wave 1

(e)

This is the
projection of
the resultant
phasor.

In the diagram A’ = y/ is the amplitude of the resulting wave.
g Ym



Example

Two sinusoidal waves y;(x, t) and y»(x, t) have the same
wavelength and travel together in the same direction along a
string. Their amplitudes are A; = 4.0 mm and A, = 3.0 mm, and
their phase constants are 0 and 7t/3 rad, respectively.

What are the amplitude A’ and phase constant ¢’ of the resultant
wave? Also give resultant wave function.
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Example

Two sinusoidal waves y;(x, t) and y»(x, t) have the same
wavelength and travel together in the same direction along a
string. Their amplitudes are A; = 4.0 mm and A, = 3.0 mm, and
their phase constants are 0 and 7t/3 rad, respectively.

What are the amplitude A’ and phase constant ¢’ of the resultant
wave? Also give resultant wave function.

A'=61mm; ¢’ =0.44rad

y'(x,t) = (6.1 mm)sin(kx — wt + 0.44)



Wave Reflection




Boundaries and Wave Reflection and Transmission

When waves reach the end of their medium, or move from one
medium to another, they can be reflected.

The behavior is different in difference circumstances. (You saw this
in lab!)

We can describe the different circumstances mathematically using
boundary conditions on our wave function.

These will help us to correctly predict how a wave will reflect or be
transmitted.



Wave Reflection from a fixed end point

Incident
pulse

(g

Reflected
pulse

The reflected pulse is inverted. How does this happen?



Wave Reflection from a fixed end point

The boundary condition for a fixed end point at position x =0 is:

At any time, the point of the string at x = 0 cannot have any
vertical displacement. It is tied to a wall!



Wave Reflection from a fixed end point

The boundary condition for a fixed end point at position x =0 is:

At any time, the point of the string at x = 0 cannot have any
vertical displacement. It is tied to a wall!

The wave function for single pulse on the string does not satisfy
this boundary condition.

yi(x, t) = f(x — vt)

This pulse will continue in the +x direction forever, past the end of
the string. Makes no sense.



Wave Reflection from a fixed end point

The boundary condition for a fixed end point at position x =0 is:

At any time, the point of the string at x = 0 cannot have any
vertical displacement. It is tied to a wall!

The wave function for single pulse on the string does not satisfy
this boundary condition.
yi(x, t) = f(x — vt)

This pulse will continue in the +x direction forever, past the end of
the string. Makes no sense.

What if we imagine the string continues inside the wall, and there
is a pulse traveling behind the wall in the —x direction?
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!Wall at x = 2.5. Digrams by Michal Fowler http://galileo.phys.virginia.edu



Wave Reflection from a fixed end point

If we allow another wave function:
ya(x, t) = —f(—x — vt)

the total wave function will satisfy the boundary condition!

yx,t) = yilx t) + yalx, t)
y(x,t) = f(x—vt)+ [—F(—x— vt)]
y(x=0,t) = 0

—f(—x — vt) corresponds to an inverted wave pulse that is also
flipped left-to-right.

The reflected pulse is inverted.



Wave Reflection from a fixed end point

The reflected pulse is inverted.

Incident
pulse

C Reflected
“ pulse



Wave Reflection from a freely movable end point

Now we have a different boundary condition.

The slope of the string at the boundary must be zero.

%y

0X |,_o =0

This ensures that the string will stay attached to the wall and
there will not be an infinite force on the last tiny bit of string.

To satisfy this boundary condition, imagine there is another pulse
that is upright but moving in the —x direction.



Wave Reflection from a freely movable end point

Imagine the free end of the string at x = 2.5. The slope there is
zero at all times.
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Wave Reflection from a freely movable end point

The new boundary condition is satisfied if y, = f(—x — vt):

Let u1 = x — vt and up = —x — vt.
y(x,t) = f(x—vt)+ f(—x—vt)
dy(x,t)  0f(w) n of (up)
0x N 0x 0x

= () + (-1)f"(u)

The terms cancel when uy = wp, that is, at x = 0.

4

=0
0X |,—g

The pulse f(—x — vt) is not inverted, but is reflected left-to-right.



Transmitted and Reflected Waves at a Boundary

If two ropes of different linear mass densities, (3 and i, are
attached together (under the same tension), an incoming pulse will
be partially transmitted and partially reflected.

g [nCiclent e [nciclent
pulse pulse
I'he reflected pulse is The reflected pulse is not
inverted and a non-inverted inverted and a transmitted pulse
transmitted pulse moves on moves on the lighter string.
the heavier string. —_—
—_—
—
—

1Serway & Jewett, page 495.



Transmitted and Reflected Waves at a Boundary

The boundary conditions in this case are different again:

Now the y, the displacement, and %, slope of the string, must be
continuous at the boundary.



Transmitted and Reflected Waves at a Boundary
Suppose yi(x, t) = f(x — vi t).

Then the reflected wave is

yr=arf(—x—wnt)

and the transmitted wave is

Yt = at f<vl(x - V2t)> :
Vo

a, is the reflection coefficient (which is negative if the wave
function is inverted) and a; is the transmission coefficient.

To apply the boundary condition on the displacements:

yi|x:0+_)/r|x:0 = yt|x:0

f(—wvit) + a, f(—vlt) = a;f(—wit)
l1+a, = a;



Wave Reflection from a freely movable end point

And using the boundary condition:

Ay;(x, t)

ayr(X: t)
0x +

x=0 0x

x=0 0x

The reflection and transmission coefficients can be found:

Vo — V1
ar =
vi+w
2V2
dr =
vi+w

The height and width of the reflected and transmitted pulses are
determined by the waves speeds (or equivalently, the string mass
densities) on either side of the boundary.



Summary

e interference of sine waves with same freq, different amplitudes
e boundary conditions

e reflection and transmission

Test this Friday (TBC).

Homework
e WebAssign due tonight
e more WebAssigns posted



