
Waves
Interference

Reflections and Boundaries

Lana Sheridan

De Anza College

May 26, 2020



Last time

• power of a wave on a string

• interference



Overview

• interference of sine waves with same freq, different amplitudes

• boundary conditions

• reflection and transmission



Question

Here are four possible phase differences between two identical
waves, expressed in wavelengths:

0.20, 0.45, 0.60, and 0.80.

Rank them according to the amplitude of the resultant wave,
greatest first.

(A) 0.20, 0.45, 0.60, 0.80

(B) 0.80, 0.60, 0.45, 0.20

(C) (0.20 and 0.80), 0.60, 0.45

(D) 0.45, 0.60, (0.20 and 0.80)

1Halliday, Resnick, Walker, page 427.
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Phasors
We can represent sine waves and their addition with a phasor
diagram.

This works for sine waves with equal wavelengths, even if they
have different amplitudes.

Each wave function at point (x , t) is represented by a vector.
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These are the
projections of
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This is the
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Adding the two phasors as vectors
gives the resultant phasor of the
resultant wave.
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by    radiansφ

This projection matches this
displacement of the dot as
the wave moves through it.
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Fig. 16-14 (a)–(d) A phasor of magnitude ym1 rotating about an origin at angular speed v repre-
sents a sinusoidal wave.The phasor’s projection y1 on the vertical axis represents the displacement
of a point through which the wave passes. (e) A second phasor, also of angular speed v but of mag-
nitude ym2 and rotating at a constant angle f from the first phasor, represents a second wave, with a
phase constant f. (f) The resultant wave is represented by the vector sum y!m of the two phasors.
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1Figures from Halliday, Resnick, & Walker, 9th ed, page 429.



Phasors

Add the vectors to find the sum.
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In the diagram A ′ = y ′
m is the amplitude of the resulting wave.



Example

Two sinusoidal waves y1(x , t) and y2(x , t) have the same
wavelength and travel together in the same direction along a
string. Their amplitudes are A1 = 4.0 mm and A2 = 3.0 mm, and
their phase constants are 0 and π/3 rad, respectively.

What are the amplitude A ′ and phase constant φ ′ of the resultant
wave? Also give resultant wave function.

A ′ = 6.1 mm ; φ ′ = 0.44 rad

y ′(x , t) = (6.1 mm) sin(kx −ωt + 0.44)
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Wave Reflection



Boundaries and Wave Reflection and Transmission

When waves reach the end of their medium, or move from one
medium to another, they can be reflected.

The behavior is different in difference circumstances. (You saw this
in lab!)

We can describe the different circumstances mathematically using
boundary conditions on our wave function.

These will help us to correctly predict how a wave will reflect or be
transmitted.



Wave Reflection from a fixed end point

494 Chapter 16 Wave Motion

16.4 Reflection and Transmission
The traveling wave model describes waves traveling through a uniform medium 
without interacting with anything along the way. We now consider how a traveling 
wave is affected when it encounters a change in the medium. For example, consider 
a pulse traveling on a string that is rigidly attached to a support at one end as in 
Figure 16.13. When the pulse reaches the support, a severe change in the medium 
occurs: the string ends. As a result, the pulse undergoes reflection; that is, the 
pulse moves back along the string in the opposite direction.
 Notice that the reflected pulse is inverted. This inversion can be explained as 
follows. When the pulse reaches the fixed end of the string, the string produces 
an upward force on the support. By Newton’s third law, the support must exert an 
equal-magnitude and oppositely directed (downward) reaction force on the string. 
This downward force causes the pulse to invert upon reflection.
 Now consider another case. This time, the pulse arrives at the end of a string 
that is free to move vertically as in Figure 16.14. The tension at the free end is 
maintained because the string is tied to a ring of negligible mass that is free to slide 
vertically on a smooth post without friction. Again, the pulse is reflected, but this 
time it is not inverted. When it reaches the post, the pulse exerts a force on the free 
end of the string, causing the ring to accelerate upward. The ring rises as high as 
the incoming pulse, and then the downward component of the tension force pulls 
the ring back down. This movement of the ring produces a reflected pulse that is 
not inverted and that has the same amplitude as the incoming pulse.
 Finally, consider a situation in which the boundary is intermediate between these 
two extremes. In this case, part of the energy in the incident pulse is reflected and 
part undergoes transmission; that is, some of the energy passes through the bound-
ary. For instance, suppose a light string is attached to a heavier string as in Figure 
16.15. When a pulse traveling on the light string reaches the boundary between the 
two strings, part of the pulse is reflected and inverted and part is transmitted to 
the heavier string. The reflected pulse is inverted for the same reasons described 
earlier in the case of the string rigidly attached to a support.
 The reflected pulse has a smaller amplitude than the incident pulse. In Section 
16.5, we show that the energy carried by a wave is related to its amplitude. Accord-
ing to the principle of conservation of energy, when the pulse breaks up into a 
reflected pulse and a transmitted pulse at the boundary, the sum of the energies of 
these two pulses must equal the energy of the incident pulse. Because the reflected 
pulse contains only part of the energy of the incident pulse, its amplitude must be 
smaller.
 When a pulse traveling on a heavy string strikes the boundary between the heavy 
string and a lighter one as in Figure 16.16, again part is reflected and part is trans-
mitted. In this case, the reflected pulse is not inverted.
 In either case, the relative heights of the reflected and transmitted pulses 
depend on the relative densities of the two strings. If the strings are identical, there 
is no discontinuity at the boundary and no reflection takes place.

Reflected
pulse

Incident
pulse

b

c

a

Figure 16.13 The reflection 
of a traveling pulse at the fixed 
end of a stretched string. The 
reflected pulse is inverted, but its 
shape is otherwise unchanged.

Incident
pulse

Reflected
pulse

b

c

a

Figure 16.14 The reflection of 
a traveling pulse at the free end of 
a stretched string. The reflected 
pulse is not inverted.

Substitute numerical values: a 5
18.00 kg 2 160.0 m/s 22115.0 m 2 1150.0 kg 2 2 9.80 m/s2 5   3.00 m/s2

Finalize  A real cable has stiffness in addition to tension. Stiffness tends to return a wire to its original straight-line 
shape even when it is not under tension. For example, a piano wire straightens if released from a curved shape; 
package- wrapping string does not.
 Stiffness represents a restoring force in addition to tension and increases the wave speed. Consequently, for a real 
cable, the speed of 60.0 m/s that we determined is most likely associated with a smaller acceleration of the helicopter.

 

▸ 16.4 c o n t i n u e d

The reflected pulse is inverted. How does this happen?



Wave Reflection from a fixed end point

The boundary condition for a fixed end point at position x = 0 is:

y(x = 0, t) = 0

At any time, the point of the string at x = 0 cannot have any
vertical displacement. It is tied to a wall!

The wave function for single pulse on the string does not satisfy
this boundary condition.

y1(x , t) = f (x − vt)

This pulse will continue in the +x direction forever, past the end of
the string. Makes no sense.

What if we imagine the string continues inside the wall, and there
is a pulse traveling behind the wall in the −x direction?
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1Wall at x = 2.5. Digrams by Michal Fowler http://galileo.phys.virginia.edu



Wave Reflection from a fixed end point

If we allow another wave function:

y2(x , t) = −f (−x − vt)

the total wave function will satisfy the boundary condition!

y(x , t) = y1(x , t) + y2(x , t)

y(x , t) = f (x − vt) + [−f (−x − vt)]

y(x = 0, t) = 0

−f (−x − vt) corresponds to an inverted wave pulse that is also
flipped left-to-right.

The reflected pulse is inverted.



Wave Reflection from a fixed end point

The reflected pulse is inverted.
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▸ 16.4 c o n t i n u e d



Wave Reflection from a freely movable end point

Now we have a different boundary condition.

The slope of the string at the boundary must be zero.

∂y

∂x

∣∣∣∣
x=0

= 0

This ensures that the string will stay attached to the wall and
there will not be an infinite force on the last tiny bit of string.

To satisfy this boundary condition, imagine there is another pulse
that is upright but moving in the −x direction.



Wave Reflection from a freely movable end point
Imagine the free end of the string at x = 2.5. The slope there is
zero at all times.



Wave Reflection from a freely movable end point

The new boundary condition is satisfied if y2 = f (−x − vt):

Let u1 = x − vt and u2 = −x − vt.

y(x , t) = f (x − vt) + f (−x − vt)

∂y(x , t)

∂x
=

∂f (u1)

∂x
+
∂f (u2)

∂x

= f ′(u1) + (−1)f ′(u2)

The terms cancel when u1 = u2, that is, at x = 0.

∂y

∂x

∣∣∣∣
x=0

= 0

The pulse f (−x − vt) is not inverted, but is reflected left-to-right.



Transmitted and Reflected Waves at a Boundary

If two ropes of different linear mass densities, µ1 and µ2 are
attached together (under the same tension), an incoming pulse will
be partially transmitted and partially reflected.

µ1 < µ2 µ1 > µ2
 16.5 Rate of Energy Transfer by Sinusoidal Waves on Strings 495

 According to Equation 16.18, the speed of a wave on a string increases as the 
mass per unit length of the string decreases. In other words, a wave travels more 
rapidly on a light string than on a heavy string if both are under the same tension. 
The following general rules apply to reflected waves: When a wave or pulse travels 
from medium A to medium B and vA . vB (that is, when B is denser than A), it is 
inverted upon reflection. When a wave or pulse travels from medium A to medium 
B and vA , vB (that is, when A is denser than B), it is not inverted upon reflection.

16.5  Rate of Energy Transfer by Sinusoidal Waves 
on Strings

Waves transport energy through a medium as they propagate. For example, sup-
pose an object is hanging on a stretched string and a pulse is sent down the string as 
in Figure 16.17a. When the pulse meets the suspended object, the object is momen-
tarily displaced upward as in Figure 16.17b. In the process, energy is transferred to 
the object and appears as an increase in the gravitational potential energy of the 
object–Earth system. This section examines the rate at which energy is transported 
along a string. We shall assume a one-dimensional sinusoidal wave in the calcula-
tion of the energy transferred.
 Consider a sinusoidal wave traveling on a string (Fig. 16.18). The source of the 
energy is some external agent at the left end of the string. We can consider the 
string to be a nonisolated system. As the external agent performs work on the end 
of the string, moving it up and down, energy enters the system of the string and 
propagates along its length. Let’s focus our attention on an infinitesimal element 
of the string of length dx and mass dm. Each such element oscillates vertically with 
its position described by Equation 15.6. Therefore, we can model each element 
of the string as a particle in simple harmonic motion, with the oscillation in the 
y direction. All elements have the same angular frequency v and the same ampli-
tude A. The kinetic energy K associated with a moving particle is K 5 1

2mv 2. If we 
apply this equation to the infinitesimal element, the kinetic energy dK associated 
with the up and down motion of this element is

 dK 5 1
2 1dm 2vy

2 

where vy is the transverse speed of the element. If m is the mass per unit length of 
the string, the mass dm of the element of length dx is equal to m dx. Hence, we can 
express the kinetic energy of an element of the string as

 dK 5 1
2 1m dx 2vy

2 (16.19)

Incident
pulse

The reflected pulse is 
inverted and a non-inverted 
transmitted pulse moves on 
the heavier string.

b

a

Figure 16.15 (a) A pulse traveling to the right on a 
light string approaches the junction with a heavier string. 
(b) The situation after the pulse reaches the junction.

Figure 16.16 (a) A pulse traveling to the right on a 
heavy string approaches the junction with a lighter string. 
(b) The situation after the pulse reaches the junction.

Incident
pulse

The reflected pulse is not 
inverted and a transmitted pulse 
moves on the lighter string.

a

b

The pulse lifts the block, 
increasing the gravitational 
potential energy of the 
block–Earth system.

m

m

a

b

Figure 16.17  (a) A pulse travels 
to the right on a stretched string, 
carrying energy with it. (b) The 
energy of the pulse arrives at the 
hanging block.

dm

Each element of the string is a 
simple harmonic oscillator and 
therefore has kinetic energy and 
potential energy associated with it.

Figure 16.18  A sinusoidal 
wave traveling along the x axis 
on a stretched string. 

1Serway & Jewett, page 495.



Transmitted and Reflected Waves at a Boundary

The boundary conditions in this case are different again:

Now the y , the displacement, and ∂y
∂x , slope of the string, must be

continuous at the boundary.



Transmitted and Reflected Waves at a Boundary
Suppose yi (x , t) = f (x − v1t).

Then the reflected wave is

yr = ar f (−x − v1t)

and the transmitted wave is

yt = at f

(
v1
v2

(x − v2t)

)
.

ar is the reflection coefficient (which is negative if the wave
function is inverted) and at is the transmission coefficient.

To apply the boundary condition on the displacements:

yi |x=0 + yr |x=0 = yt |x=0

f (−v1t) + ar f (−v1t) = at f (−v1t)

1 + ar = at



Wave Reflection from a freely movable end point

And using the boundary condition:

∂yi (x , t)

∂x

∣∣∣∣
x=0

+
∂yr (x , t)

∂x

∣∣∣∣
x=0

=
∂yt(x , t)

∂x

∣∣∣∣
x=0

The reflection and transmission coefficients can be found:

ar =
v2 − v1
v1 + v2

at =
2v2

v1 + v2

The height and width of the reflected and transmitted pulses are
determined by the waves speeds (or equivalently, the string mass
densities) on either side of the boundary.



Summary

• interference of sine waves with same freq, different amplitudes

• boundary conditions

• reflection and transmission

Test this Friday (TBC).

Homework
• WebAssign due tonight

• more WebAssigns posted


