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Last time

• interference of sine waves with same freq, different amplitudes

• boundary conditions

• reflection and transmission



Overview

• boundaries, reflection and transmission

• standing waves



Wave Reflection from a fixed end point

494 Chapter 16 Wave Motion

16.4 Reflection and Transmission
The traveling wave model describes waves traveling through a uniform medium 
without interacting with anything along the way. We now consider how a traveling 
wave is affected when it encounters a change in the medium. For example, consider 
a pulse traveling on a string that is rigidly attached to a support at one end as in 
Figure 16.13. When the pulse reaches the support, a severe change in the medium 
occurs: the string ends. As a result, the pulse undergoes reflection; that is, the 
pulse moves back along the string in the opposite direction.
 Notice that the reflected pulse is inverted. This inversion can be explained as 
follows. When the pulse reaches the fixed end of the string, the string produces 
an upward force on the support. By Newton’s third law, the support must exert an 
equal-magnitude and oppositely directed (downward) reaction force on the string. 
This downward force causes the pulse to invert upon reflection.
 Now consider another case. This time, the pulse arrives at the end of a string 
that is free to move vertically as in Figure 16.14. The tension at the free end is 
maintained because the string is tied to a ring of negligible mass that is free to slide 
vertically on a smooth post without friction. Again, the pulse is reflected, but this 
time it is not inverted. When it reaches the post, the pulse exerts a force on the free 
end of the string, causing the ring to accelerate upward. The ring rises as high as 
the incoming pulse, and then the downward component of the tension force pulls 
the ring back down. This movement of the ring produces a reflected pulse that is 
not inverted and that has the same amplitude as the incoming pulse.
 Finally, consider a situation in which the boundary is intermediate between these 
two extremes. In this case, part of the energy in the incident pulse is reflected and 
part undergoes transmission; that is, some of the energy passes through the bound-
ary. For instance, suppose a light string is attached to a heavier string as in Figure 
16.15. When a pulse traveling on the light string reaches the boundary between the 
two strings, part of the pulse is reflected and inverted and part is transmitted to 
the heavier string. The reflected pulse is inverted for the same reasons described 
earlier in the case of the string rigidly attached to a support.
 The reflected pulse has a smaller amplitude than the incident pulse. In Section 
16.5, we show that the energy carried by a wave is related to its amplitude. Accord-
ing to the principle of conservation of energy, when the pulse breaks up into a 
reflected pulse and a transmitted pulse at the boundary, the sum of the energies of 
these two pulses must equal the energy of the incident pulse. Because the reflected 
pulse contains only part of the energy of the incident pulse, its amplitude must be 
smaller.
 When a pulse traveling on a heavy string strikes the boundary between the heavy 
string and a lighter one as in Figure 16.16, again part is reflected and part is trans-
mitted. In this case, the reflected pulse is not inverted.
 In either case, the relative heights of the reflected and transmitted pulses 
depend on the relative densities of the two strings. If the strings are identical, there 
is no discontinuity at the boundary and no reflection takes place.
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Figure 16.13 The reflection 
of a traveling pulse at the fixed 
end of a stretched string. The 
reflected pulse is inverted, but its 
shape is otherwise unchanged.
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Figure 16.14 The reflection of 
a traveling pulse at the free end of 
a stretched string. The reflected 
pulse is not inverted.

Substitute numerical values: a 5
18.00 kg 2 160.0 m/s 22115.0 m 2 1150.0 kg 2 2 9.80 m/s2 5   3.00 m/s2

Finalize  A real cable has stiffness in addition to tension. Stiffness tends to return a wire to its original straight-line 
shape even when it is not under tension. For example, a piano wire straightens if released from a curved shape; 
package- wrapping string does not.
 Stiffness represents a restoring force in addition to tension and increases the wave speed. Consequently, for a real 
cable, the speed of 60.0 m/s that we determined is most likely associated with a smaller acceleration of the helicopter.

 

▸ 16.4 c o n t i n u e d

The reflected pulse is inverted. How does this happen?



Wave Reflection from a fixed end point

The boundary condition for a fixed end point at position x = 0 is:

y(x = 0, t) = 0

At any time, the point of the string at x = 0 cannot have any
vertical displacement. It is tied to a wall!

The wave function for single pulse on the string does not satisfy
this boundary condition.

y1(x , t) = f (x − vt)

This pulse will continue in the +x direction forever, past the end of
the string. Makes no sense.

What if we imagine the string continues inside the wall, and there
is a pulse traveling behind the wall in the −x direction?



1Wall at x = 2.5. Digrams by Michal Fowler http://galileo.phys.virginia.edu



Wave Reflection from a fixed end point

If we allow another wave function:

y2(x , t) = −f (−x − vt)

the total wave function will satisfy the boundary condition!

y(x , t) = y1(x , t) + y2(x , t)

y(x , t) = f (x − vt) + [−f (−x − vt)]

y(x = 0, t) = 0

−f (−x − vt) corresponds to an inverted wave pulse that is also
flipped left-to-right.

The reflected pulse is inverted.



Wave Reflection from a fixed end point

The reflected pulse is inverted.
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▸ 16.4 c o n t i n u e d



Wave Reflection from a freely movable end point

Now we have a different boundary condition.

The slope of the string at the boundary must be zero.

∂y

∂x

∣∣∣∣
x=0

= 0

This ensures that the string will stay attached to the wall and the
wall puts a horizontal force on the string.

To satisfy this boundary condition, imagine there is another pulse
that is upright but moving in the −x direction.



Wave Reflection from a freely movable end point
Imagine the free end of the string at x = 2.5. The slope there is
zero at all times.



Wave Reflection from a freely movable end point

The new boundary condition is satisfied if y2 = f (−x − vt):

Let u1 = x − vt and u2 = −x − vt.

y(x , t) = f (x − vt) + f (−x − vt)

∂y(x , t)

∂x
=

∂f (u1)

∂x
+
∂f (u2)

∂x

= f ′(u1) + (−1)f ′(u2)

The terms cancel when u1 = u2, that is, at x = 0.

∂y

∂x

∣∣∣∣
x=0

= 0

The pulse f (−x − vt) is not inverted, but is reflected left-to-right.



Transmitted and Reflected Waves at a Boundary

If two ropes of different linear mass densities, µ1 and µ2 are
attached together (under the same tension), an incoming pulse will
be partially transmitted and partially reflected.

µ1 < µ2 µ1 > µ2
 16.5 Rate of Energy Transfer by Sinusoidal Waves on Strings 495

 According to Equation 16.18, the speed of a wave on a string increases as the 
mass per unit length of the string decreases. In other words, a wave travels more 
rapidly on a light string than on a heavy string if both are under the same tension. 
The following general rules apply to reflected waves: When a wave or pulse travels 
from medium A to medium B and vA . vB (that is, when B is denser than A), it is 
inverted upon reflection. When a wave or pulse travels from medium A to medium 
B and vA , vB (that is, when A is denser than B), it is not inverted upon reflection.

16.5  Rate of Energy Transfer by Sinusoidal Waves 
on Strings

Waves transport energy through a medium as they propagate. For example, sup-
pose an object is hanging on a stretched string and a pulse is sent down the string as 
in Figure 16.17a. When the pulse meets the suspended object, the object is momen-
tarily displaced upward as in Figure 16.17b. In the process, energy is transferred to 
the object and appears as an increase in the gravitational potential energy of the 
object–Earth system. This section examines the rate at which energy is transported 
along a string. We shall assume a one-dimensional sinusoidal wave in the calcula-
tion of the energy transferred.
 Consider a sinusoidal wave traveling on a string (Fig. 16.18). The source of the 
energy is some external agent at the left end of the string. We can consider the 
string to be a nonisolated system. As the external agent performs work on the end 
of the string, moving it up and down, energy enters the system of the string and 
propagates along its length. Let’s focus our attention on an infinitesimal element 
of the string of length dx and mass dm. Each such element oscillates vertically with 
its position described by Equation 15.6. Therefore, we can model each element 
of the string as a particle in simple harmonic motion, with the oscillation in the 
y direction. All elements have the same angular frequency v and the same ampli-
tude A. The kinetic energy K associated with a moving particle is K 5 1

2mv 2. If we 
apply this equation to the infinitesimal element, the kinetic energy dK associated 
with the up and down motion of this element is

 dK 5 1
2 1dm 2vy

2 

where vy is the transverse speed of the element. If m is the mass per unit length of 
the string, the mass dm of the element of length dx is equal to m dx. Hence, we can 
express the kinetic energy of an element of the string as

 dK 5 1
2 1m dx 2vy

2 (16.19)
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The reflected pulse is 
inverted and a non-inverted 
transmitted pulse moves on 
the heavier string.

b

a

Figure 16.15 (a) A pulse traveling to the right on a 
light string approaches the junction with a heavier string. 
(b) The situation after the pulse reaches the junction.

Figure 16.16 (a) A pulse traveling to the right on a 
heavy string approaches the junction with a lighter string. 
(b) The situation after the pulse reaches the junction.

Incident
pulse

The reflected pulse is not 
inverted and a transmitted pulse 
moves on the lighter string.
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The pulse lifts the block, 
increasing the gravitational 
potential energy of the 
block–Earth system.

m

m
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Figure 16.17  (a) A pulse travels 
to the right on a stretched string, 
carrying energy with it. (b) The 
energy of the pulse arrives at the 
hanging block.

dm

Each element of the string is a 
simple harmonic oscillator and 
therefore has kinetic energy and 
potential energy associated with it.

Figure 16.18  A sinusoidal 
wave traveling along the x axis 
on a stretched string. 

1Serway & Jewett, page 495.



Transmitted and Reflected Waves at a Boundary

The boundary conditions in this case are different again:

Now the y , the displacement, and ∂y
∂x , slope of the string, must be

continuous at the boundary.



Transmitted and Reflected Waves at a Boundary
Suppose yi (x , t) = f (x − v1t).

Then the reflected wave is

yr = ar f (−x − v1t)

and the transmitted wave is

yt = at f

(
v1
v2

(x − v2t)

)
.

ar is the reflection coefficient (which is negative if the wave
function is inverted) and at is the transmission coefficient.

To apply the boundary condition on the displacements:

yi |x=0 + yr |x=0 = yt |x=0

f (−v1t) + ar f (−v1t) = at f (−v1t)

1 + ar = at



Wave Reflection from a freely movable end point

And using the boundary condition:

∂yi (x , t)

∂x

∣∣∣∣
x=0

+
∂yr (x , t)

∂x

∣∣∣∣
x=0

=
∂yt(x , t)

∂x

∣∣∣∣
x=0

The reflection and transmission coefficients can be found:

ar =
v2 − v1
v1 + v2

at =
2v2

v1 + v2

The height and width of the reflected and transmitted pulses are
determined by the waves speeds (or equivalently, the string mass
densities) on either side of the boundary.



Standing Waves

It is possible to create waves that do not seem to propagate.

They are produced by a wave moving to the left interfering with
the wave reflected back the right.



Standing Waves

The incoming wave:

y1(x , t) = A sin(kx −ωt)

Reflected wave:
y2(x , t) = A sin(kx +ωt)

Using the trig identity:

sin(θ±ψ) = sin θ cosψ± cos θ sinψ

The resultant wave is:

y = [2A sin(kx)] cos(ωt)

↑ ↑
Amplitude at x SHM oscillation



Standing Waves

y = [2A sin(kx)] cos(ωt)

This does not correspond to a traveling wave!

It is a standing wave.

Points where sin kx = 0 are called nodes. At these points the
medium does not move.

Points where sin kx = ±1 are called antinodes. At these points
particles in the medium undergo their largest displacement.



Nodes and Antinodes

(Remember that k = 2π/λ)

Assuming x = 0 corresponds to a fixed point:

Nodes occur at

x =
nλ

2

where n is an integer.

Antinodes occur at

x =
(2n + 1)λ

4

where again n is an integer.



Standing Waves and Resonance on a String

For a given string, fixed at both ends, only some wavelengths can
correspond to standing waves.

 18.3 Analysis Model: Waves Under Boundary Conditions 541

18.3  Analysis Model: Waves Under  
Boundary Conditions

Consider a string of length L fixed at both ends as shown in Figure 18.9. We will use 
this system as a model for a guitar string or piano string. Waves can travel in both 
directions on the string. Therefore, standing waves can be set up in the string by a 
continuous superposition of waves incident on and reflected from the ends. Notice 
that there is a boundary condition for the waves on the string: because the ends of 
the string are fixed, they must necessarily have zero displacement and are there-
fore nodes by definition. The condition that both ends of the string must be nodes 
fixes the wavelength of the standing wave on the string according to Equation 18.2, 
which, in turn, determines the frequency of the wave. The boundary condition 
results in the string having a number of discrete natural patterns of oscillation, 
called normal modes, each of which has a characteristic frequency that is easily cal-
culated. This situation in which only certain frequencies of oscillation are allowed 
is called quantization. Quantization is a common occurrence when waves are sub-
ject to boundary conditions and is a central feature in our discussions of quantum 
physics in the extended version of this text. Notice in Figure 18.8 that there are 
no boundary conditions, so standing waves of any frequency can be established; 
there is no quantization without boundary conditions. Because boundary condi-
tions occur so often for waves, we identify an analysis model called waves under 
boundary conditions for the discussion that follows.
 The normal modes of oscillation for the string in Figure 18.9 can be described 
by imposing the boundary conditions that the ends be nodes and that the nodes be 
separated by one-half of a wavelength with antinodes halfway between the nodes. 
The first normal mode that is consistent with these requirements, shown in Figure 
18.10a (page 542), has nodes at its ends and one antinode in the middle. This normal  

From the equations for the waves, we see that A 5 4.0 cm, 
k 5 3.0 rad/cm, and v 5 2.0 rad/s. Use Equation 18.1 to 
write an expression for the standing wave:

y 5 (2A sin kx) cos vt 5 8.0 sin 3.0x cos 2.0t

Find the amplitude of the simple harmonic motion of 
the element at the position x 5 2.3 cm by evaluating the 
sine function at this position:

ymax 5 (8.0 cm) sin 3.0x |x 5 2.3

5 (8.0 cm) sin (6.9 rad) 5   4.6 cm

Find the wavelength of the traveling waves: k 5
2p

l
5 3.0 rad/cm S l 5

2p

3.0
 cm

Use Equation 18.2 to find the locations of the nodes: x 5 n 
l

2
5 n a p

3.0
b cm n 5 0, 1, 2, 3, c

Use Equation 18.3 to find the locations of the antinodes: x 5 n 
l

4
5 n a p

6.0
b cm n 5 1, 3, 5, 7, c

(B)  Find the positions of the nodes and antinodes if one end of the string is at x 5 0.

S O L U T I O N

L

Figure 18.9  A string of length L 
fixed at both ends.

Conceptualize  The waves described by the given equations are identical except for their directions of travel, so they 
indeed combine to form a standing wave as discussed in this section. We can represent the waves graphically by the 
blue and green curves in Figure 18.8.

Categorize  We will substitute values into equations developed in this section, so we categorize this example as a sub-
stitution problem.

S O L U T I O N

 

▸ 18.2 c o n t i n u e d

The boundary conditions are now

y(x = 0, t) = y(x = L, t) = 0

x = 0 and x = L must be the positions of nodes.



Standing Waves and Resonance on a String

542 Chapter 18 Superposition and Standing Waves

mode is the longest-wavelength mode that is consistent with our boundary condi-
tions. The first normal mode occurs when the wavelength l1 is equal to twice the 
length of the string, or l1 5 2L. The section of a standing wave from one node to 
the next node is called a loop. In the first normal mode, the string is vibrating in 
one loop. In the second normal mode (see Fig. 18.10b), the string vibrates in two 
loops. When the left half of the string is moving upward, the right half is moving 
downward. In this case, the wavelength l2 is equal to the length of the string, as 
expressed by l2 5 L. The third normal mode (see Fig. 18.10c) corresponds to the 
case in which l3 5 2L/3, and the string vibrates in three loops. In general, the wave-
lengths of the various normal modes for a string of length L fixed at both ends are

 ln 5
2L
n  n 5 1, 2, 3, c (18.4)

where the index n refers to the nth normal mode of oscillation. These modes are 
possible. The actual modes that are excited on a string are discussed shortly.
 The natural frequencies associated with the modes of oscillation are obtained 
from the relationship f 5 v/l, where the wave speed v is the same for all frequen-
cies. Using Equation 18.4, we find that the natural frequencies fn of the normal 
modes are

 fn 5
v
ln

5 n 
v

2L
 n 5 1, 2, 3, c (18.5)

These natural frequencies are also called the quantized frequencies associated with the  
vibrating string fixed at both ends.
 Because v 5 !T/m (see Eq. 16.18) for waves on a string, where T is the tension 
in the string and m is its linear mass density, we can also express the natural fre-
quencies of a taut string as

 fn 5
n

2L
 ÅT

m
 n 5 1, 2, 3, c (18.6)

The lowest frequency f1, which corresponds to n 5 1, is called either the fundamen-
tal or the fundamental frequency and is given by

 f1 5
1

2L
 ÅT

m
 (18.7)

 The frequencies of the remaining normal modes are integer multiples of the 
fundamental frequency (Eq. 18.5). Frequencies of normal modes that exhibit such 
an integer- multiple relationship form a harmonic series, and the normal modes 
are called harmonics. The fundamental frequency f1 is the frequency of the first 
harmonic, the frequency f2 5 2f1 is that of the second harmonic, and the frequency 
fn 5 nf1 is that of the nth harmonic. Other oscillating systems, such as a drumhead, 
exhibit normal modes, but the frequencies are not related as integer multiples of 
a fundamental (see Section 18.6). Therefore, we do not use the term harmonic in 
association with those types of systems.

Wavelengths of X
normal modes

Natural frequencies of X
normal modes as functions 
of wave speed and length 

of string

Natural frequencies of X 
normal modes as functions 

of string tension and 
linear mass density

Fundamental frequency
of a taut string X

n ! 1

N
A

N

L ! – 1
1
2
l

f1

a

Fundamental, or first harmonic

N NA A N

n ! 2 L ! 2l

f2

b

Second harmonic

n  ! 3

N N N NA A A

L  ! – 3
3
2
l

f3

c

Third harmonic

Figure 18.10 The normal modes of vibration of the string in Figure 18.9 form a harmonic series. 
The string vibrates between the extremes shown.λ1 = 2L λ2 = L λ3 =

2L
3



Standing Waves and Resonance

These types of standing wave motions are called normal modes.

normal mode

A pattern of motion in a physical system where all parts of the
system move sinusoidally with the same frequency and in phase.



Standing Waves and Resonance on a String

The wavelengths of these normal modes are given by the
constraint sin(0) = sin(kL) = 0:

λn =
2L

n

where n is a positive natural number (1, 2, 3...).

The frequencies that correspond to these wavelengths are called
the natural frequencies:

fn =
nv

2L
= n f1

where n is a positive natural number.

For a string of density µ under tension T , the wave speed is

constant v =
√

T
µ .



Standing Waves and Resonance on a String

When a string is plucked, resonant (natural) frequencies tend to
persist, while other waves at other frequencies are quickly
dissipated.

Stringed instruments like guitars can be tuned by adjusting the
tension in the strings.

While playing, pressing a string against a particular fret will change
the string length or promote a specific harmonic.



Standing Waves and Resonance Question

Quick Quiz 18.31 When a standing wave is set up on a string
fixed at both ends, which of the following statements is true?

(A) The number of nodes is equal to the number of antinodes.

(B) The wavelength is equal to the length of the string divided by
an integer.

(C) The frequency is equal to the number of nodes times the
fundamental frequency.

(D) The shape of the string at any instant shows a symmetry
about the midpoint of the string.

1Serway & Jewett, page 543.
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Standing Waves and Resonance

In the following series of resonant frequencies, one frequency
(lower than 400 Hz) is missing:

150, 225, 300, 375 Hz.

(a) What is the missing frequency?

(b) What is the frequency of the seventh harmonic?

(a) 75 Hz (b) 525 Hz



Standing Waves and Resonance
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Summary

• boundaries, reflection, and transmission

• standing waves


