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Last time

e interference of sine waves with same freq, different amplitudes
e boundary conditions

e reflection and transmission



Overview

e boundaries, reflection and transmission

e standing waves



Wave Reflection from a fixed end point
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The reflected pulse is inverted. How does this happen?



Wave Reflection from a fixed end point

The boundary condition for a fixed end point at position x =0 is:

At any time, the point of the string at x = 0 cannot have any
vertical displacement. It is tied to a wall!

The wave function for single pulse on the string does not satisfy
this boundary condition.
yi(x, t) = f(x — vt)

This pulse will continue in the +x direction forever, past the end of
the string. Makes no sense.

What if we imagine the string continues inside the wall, and there
is a pulse traveling behind the wall in the —x direction?
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!Wall at x = 2.5. Digrams by Michal Fowler http://galileo.phys.virginia.edu



Wave Reflection from a fixed end point

If we allow another wave function:
ya(x, t) = —f(—x — vt)

the total wave function will satisfy the boundary condition!

yx,t) = yilx t) + yalx, t)
y(x,t) = f(x—vt)+ [—F(—x— vt)]
y(x=0,t) = 0

—f(—x — vt) corresponds to an inverted wave pulse that is also
flipped left-to-right.

The reflected pulse is inverted.



Wave Reflection from a fixed end point

The reflected pulse is inverted.
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Wave Reflection from a freely movable end point

Now we have a different boundary condition.

The slope of the string at the boundary must be zero.

%y

0X |,_o =0

This ensures that the string will stay attached to the wall and the
wall puts a horizontal force on the string.

To satisfy this boundary condition, imagine there is another pulse
that is upright but moving in the —x direction.



Wave Reflection from a freely movable end point

Imagine the free end of the string at x = 2.5. The slope there is
zero at all times.
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Wave Reflection from a freely movable end point

The new boundary condition is satisfied if y, = f(—x — vt):

Let u1 = x — vt and up = —x — vt.
y(x,t) = f(x—vt)+ f(—x—vt)
dy(x,t)  0f(w) n of (up)
0x N 0x 0x

= () + (-1)f"(u)

The terms cancel when uy = wp, that is, at x = 0.
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The pulse f(—x — vt) is not inverted, but is reflected left-to-right.



Transmitted and Reflected Waves at a Boundary

If two ropes of different linear mass densities, (3 and i, are
attached together (under the same tension), an incoming pulse will
be partially transmitted and partially reflected.

g [nCiclent e [nciclent
pulse pulse
I'he reflected pulse is The reflected pulse is not
inverted and a non-inverted inverted and a transmitted pulse
transmitted pulse moves on moves on the lighter string.
the heavier string. —_—
—_—
—
—

1Serway & Jewett, page 495.



Transmitted and Reflected Waves at a Boundary

The boundary conditions in this case are different again:

Now the y, the displacement, and %, slope of the string, must be
continuous at the boundary.



Transmitted and Reflected Waves at a Boundary
Suppose yi(x, t) = f(x — vi t).

Then the reflected wave is

yr=arf(—x—wnt)

and the transmitted wave is

Yt = at f<vl(x - V2t)> :
Vo

a, is the reflection coefficient (which is negative if the wave
function is inverted) and a; is the transmission coefficient.

To apply the boundary condition on the displacements:

yi|x:0+_)/r|x:0 = yt|x:0

f(—wvit) + a, f(—vlt) = a;f(—wit)
l1+a, = a;



Wave Reflection from a freely movable end point

And using the boundary condition:

Ay;(x, t)

ayr(X: t)
0x +

x=0 0x

x=0 0x

The reflection and transmission coefficients can be found:

Vo — V1
ar =
vi+w
2V2
dr =
vi+w

The height and width of the reflected and transmitted pulses are
determined by the waves speeds (or equivalently, the string mass
densities) on either side of the boundary.



Standing Waves

It is possible to create waves that do not seem to propagate.

They are produced by a wave moving to the left interfering with
the wave reflected back the right.



Standing Waves
The incoming wave:
y1(x, t) = Asin(kx — wt)

Reflected wave:
ya(x, t) = Asin(kx + wt)

Using the trig identity:
sin(0 1) = sin 0 cos P & cos O sin P
The resultant wave is:

y = [2Asin(kx)] cos(wt)
T T

Amplitude at x SHM oscillation



Standing Waves

y = [2Asin(kx)] cos(wt)

This does not correspond to a traveling wave!

It is a standing wave.

Points where sin kx = 0 are called nodes. At these points the
medium does not move.

Points where sin kx = 41 are called antinodes. At these points
particles in the medium undergo their largest displacement.



Nodes and Antinodes

(Remember that k = 27t/A)

Assuming x = 0 corresponds to a fixed point:

Nodes occur at

nA
X=—
2
where n is an integer.
Antinodes occur at
(2n+1)A
X =
4

where again n is an integer.



Standing Waves and Resonance on a String

For a given string, fixed at both ends, only some wavelengths can
correspond to standing waves.

The boundary conditions are now
y(x=0,t)=y(x=Lt)=0

x =0 and x = L must be the positions of nodes.



Standing Waves

Fundamental, or first harmonic

and Resonance on a String

Second harmonic

Third harmonic



Standing Waves and Resonance

These types of standing wave motions are called normal modes.

normal mode

A pattern of motion in a physical system where all parts of the
system move sinusoidally with the same frequency and in phase.




Standing Waves and Resonance on a String

The wavelengths of these normal modes are given by the
constraint sin(0) = sin(kL) = 0:

A=
n

where n is a positive natural number (1, 2, 3...).

The frequencies that correspond to these wavelengths are called
the natural frequencies:

nv
=" _hf
T

where n is a positive natural number.

For a string of density w under tension T, the wave speed is
T

constant v = e



Standing Waves and Resonance on a String

When a string is plucked, resonant (natural) frequencies tend to
persist, while other waves at other frequencies are quickly
dissipated.

Stringed instruments like guitars can be tuned by adjusting the
tension in the strings.

While playing, pressing a string against a particular fret will change
the string length or promote a specific harmonic.



Standing Waves and Resonance Question

Quick Quiz 18.3! When a standing wave is set up on a string
fixed at both ends, which of the following statements is true?

(A) The number of nodes is equal to the number of antinodes.

(B) The wavelength is equal to the length of the string divided by
an integer.

(C) The frequency is equal to the number of nodes times the
fundamental frequency.

(D) The shape of the string at any instant shows a symmetry
about the midpoint of the string.

1Serway & Jewett, page 543.
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Standing Waves and Resonance

In the following series of resonant frequencies, one frequency
(lower than 400 Hz) is missing:

150, 225, 300, 375 Hz.
(a) What is the missing frequency?

(b) What is the frequency of the seventh harmonic?



Standing Waves and Resonance

In the following series of resonant frequencies, one frequency
(lower than 400 Hz) is missing:

150, 225, 300, 375 Hz.
(a) What is the missing frequency?

(b) What is the frequency of the seventh harmonic?

()75 Hz  (b) 525 Hz



Summary

e boundaries, reflection, and transmission

e standing waves



