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Last time

• boundaries, reflection and transmission

• standing waves



Overview

• sound

• displacement and pressure

• speed of sound

• interference of sound waves (?)



Sound Waves

An important application of standing waves is the creation of
musical instruments.

Before looking into that, we will understand sound as a
longitudinal wave that causes pressure variations in air or other
substances. (Ch 17.)



Pressure Variations

508 Chapter 17 Sound Waves

 This chapter begins with a discussion of the pressure variations in a sound wave, the speed 
of sound waves, and wave intensity, which is a function of wave amplitude. We then provide 
an alternative description of the intensity of sound waves that compresses the wide range of 
intensities to which the ear is sensitive into a smaller range for convenience. The effects of 
the motion of sources and listeners on the frequency of a sound are also investigated. 

17.1 Pressure Variations in Sound Waves
In Chapter 16, we began our investigation of waves by imagining the creation of 
a single pulse that traveled down a string (Figure 16.1) or a spring (Figure 16.3). 
Let’s do something similar for sound. We describe pictorially the motion of a one- 
dimensional longitudinal sound pulse moving through a long tube containing a 
compressible gas as shown in Figure 17.1. A piston at the left end can be quickly 
moved to the right to compress the gas and create the pulse. Before the piston 
is moved, the gas is undisturbed and of uniform density as represented by the 
uniformly shaded region in Figure 17.1a. When the piston is pushed to the right 
(Fig. 17.1b), the gas just in front of it is compressed (as represented by the more 
heavily shaded region); the pressure and density in this region are now higher than 
they were before the piston moved. When the piston comes to rest (Fig. 17.1c), the 
compressed region of the gas continues to move to the right, corresponding to a 
longitudinal pulse traveling through the tube with speed v.
 One can produce a one-dimensional periodic sound wave in the tube of gas in 
Figure 17.1 by causing the piston to move in simple harmonic motion. The results 
are shown in Figure 17.2. The darker parts of the colored areas in this figure rep-
resent regions in which the gas is compressed and the density and pressure are 
above their equilibrium values. A compressed region is formed whenever the pis-

vS

a

b

c

Before the piston moves, 
the gas is undisturbed.

The gas is compressed by 
the motion of the piston.

When the piston stops, the 
compressed pulse continues 
through the gas.

Figure 17.1 Motion of a longitudi-
nal pulse through a compressible gas. 
The compression (darker region) is 
produced by the moving piston.

Figure 17.2 A longitudinal wave 
propagating through a gas-filled 
tube. The source of the wave is an 
oscillating piston at the left.
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Sound Waves

Sound wave are longitudinal, so we imagine thin slices of air being
displaced left and right along the direction of propagation of the
wave (the x-axis).

This is similar to what we did to derive the wave equation
considering a chain of masses connected by springs.

Now let s be the magnitude of the left-right displacement of a thin
slice of air from its equilibrium position.

For a pulse wave function:

s(x , t) = f (x − vt)

For a sine-type wave function:

s(x , t) = smax cos(kx −ωt)



Sound Waves: Displacement and Pressure Variation

We wish to relate the displacement of slices of air to the pressure
variations in the air that they cause.

The relation between pressure and volume changes in air (at
constant temperature) is characterized by the bulk modulus.



Bulk Modulus: Volume Elasticity

Bulk modulus, B (or sometimes K)

The ratio of the pressure change over the outside of a material to
its fractional change in volume.

B = −
∆P

∆V /Vi

 12.4 Elastic Properties of Solids 375

As we shall see in Chapter 14, such a uniform distribution of forces occurs when an 
object is immersed in a fluid. An object subject to this type of deformation undergoes 
a change in volume but no change in shape. The volume stress is defined as the ratio 
of the magnitude of the total force F exerted on a surface to the area A of the sur-
face. The quantity P 5 F/A is called pressure, which we shall study in more detail in 
Chapter 14. If the pressure on an object changes by an amount DP 5 DF/A, the object 
experiences a volume change DV. The volume strain is equal to the change in volume 
DV divided by the initial volume Vi. Therefore, from Equation 12.5, we can character-
ize a volume (“bulk”) compression in terms of the bulk modulus, which is defined as

 B ;
volume stress
volume strain

5 2
DF/A
DV/Vi

5 2
DP

DV/Vi
 (12.8)

A negative sign is inserted in this defining equation so that B is a positive number. 
This maneuver is necessary because an increase in pressure (positive DP) causes a 
decrease in volume (negative DV) and vice versa.
 Table 12.1 lists bulk moduli for some materials. If you look up such values in a 
different source, you may find the reciprocal of the bulk modulus listed. The recip-
rocal of the bulk modulus is called the compressibility of the material.
 Notice from Table 12.1 that both solids and liquids have a bulk modulus. No 
shear modulus and no Young’s modulus are given for liquids, however, because a 
liquid does not sustain a shearing stress or a tensile stress. If a shearing force or a 
tensile force is applied to a liquid, the liquid simply flows in response.

Q uick Quiz 12.4  For the three parts of this Quick Quiz, choose from the fol-
lowing choices the correct answer for the elastic modulus that describes the 
relationship between stress and strain for the system of interest, which is in ital-
ics: (a) Young’s modulus (b) shear modulus (c) bulk modulus (d) none of those 
choices (i) A block of iron is sliding across a horizontal floor. The friction force 
between the sliding block and the floor causes the block to deform. (ii) A tra-
peze artist swings through a circular arc. At the bottom of the swing, the wires 
supporting the trapeze are longer than when the trapeze artist simply hangs 
from the trapeze due to the increased tension in them. (iii) A spacecraft carries 
a steel sphere to a planet on which atmospheric pressure is much higher than on 
the Earth. The higher pressure causes the radius of the sphere to decrease.

Prestressed Concrete
If the stress on a solid object exceeds a certain value, the object fractures. The max-
imum stress that can be applied before fracture occurs—called the tensile strength, 
compressive strength, or shear strength—depends on the nature of the material and 
on the type of applied stress. For example, concrete has a tensile strength of about  
2 3 106 N/m2, a compressive strength of 20 3 106 N/m2, and a shear strength of  
2 3 106 N/m2. If the applied stress exceeds these values, the concrete fractures. It is 
common practice to use large safety factors to prevent failure in concrete structures.
 Concrete is normally very brittle when it is cast in thin sections. Therefore, concrete 
slabs tend to sag and crack at unsupported areas as shown in Figure 12.15a. The slab 
can be strengthened by the use of steel rods to reinforce the concrete as illustrated 
in Figure 12.15b. Because concrete is much stronger under compression (squeezing) 
than under tension (stretching) or shear, vertical columns of concrete can support 

�W Bulk modulus

Figure 12.14 A cube is under 
uniform pressure and is therefore 
compressed on all sides by forces 
normal to its six faces. The arrow-
heads of force vectors on the sides 
of the cube that are not visible are 
hidden by the cube.
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The cube undergoes a change in 
volume but no change in shape.

a b c

Concrete Cracks
Load force Steel

reinforcing
rod

Steel rod
under

tension

Figure 12.15  (a) A concrete  
slab with no reinforcement tends  
to crack under a heavy load.  
(b) The strength of the concrete is 
increased by using steel reinforce-
ment rods. (c) The concrete is fur-
ther strengthened by prestressing 
it with steel rods under tension.

The negative sign ensures B will be
a positive number. Units are
Pascals, Pa.

The reciprocal of the bulk modulus,
1/B, is the compressibility of the
material.

1See Serway & Jewett, Chapter 12 section 4.



Pressure and Sound

From the definition

∆P = −B
∆V

Vi
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ton is pushed into the tube. This compressed region, called a compression, moves 
through the tube, continuously compressing the region just in front of itself. When 
the piston is pulled back, the gas in front of it expands and the pressure and density 
in this region fall below their equilibrium values (represented by the lighter parts 
of the colored areas in Fig. 17.2). These low-pressure regions, called rarefactions, 
also propagate along the tube, following the compressions. Both regions move at 
the speed of sound in the medium.
 As the piston oscillates sinusoidally, regions of compression and rarefaction are 
continuously set up. The distance between two successive compressions (or two suc-
cessive rarefactions) equals the wavelength l of the sound wave. Because the sound 
wave is longitudinal, as the compressions and rarefactions travel through the tube, 
any small element of the gas moves with simple harmonic motion parallel to the 
direction of the wave. If s(x, t) is the position of a small element relative to its equi-
librium position,1 we can express this harmonic position function as

 s(x, t) 5 smax cos (kx 2 vt) (17.1)

where smax is the maximum position of the element relative to equilibrium. This 
parameter is often called the displacement amplitude of the wave. The parame-
ter k is the wave number, and v is the angular frequency of the wave. Notice that 
the displacement of the element is along x, in the direction of propagation of the 
sound wave.
 The variation in the gas pressure DP measured from the equilibrium value is 
also periodic with the same wave number and angular frequency as for the dis-
placement in Equation 17.1. Therefore, we can write

 DP 5 DPmax sin (kx 2 vt) (17.2)

where the pressure amplitude DPmax is the maximum change in pressure from the 
equilibrium value.
 Notice that we have expressed the displacement by means of a cosine function 
and the pressure by means of a sine function. We will justify this choice in the 
procedure that follows and relate the pressure amplitude Pmax to the displacement 
amplitude smax. Consider the piston–tube arrangement of Figure 17.1 once again. 
In Figure 17.3a, we focus our attention on a small cylindrical element of undis-
turbed gas of length Dx and area A. The volume of this element is Vi 5 A Dx.
 Figure 17.3b shows this element of gas after a sound wave has moved it to a new 
position. The cylinder’s two flat faces move through different distances s1 and s2.  
The change in volume DV of the element in the new position is equal to A Ds, 
where Ds 5 s1 2 s2.
 From the definition of bulk modulus (see Eq. 12.8), we express the pressure vari-
ation in the element of gas as a function of its change in volume:

DP 5 2B 
DV
Vi

Let’s substitute for the initial volume and the change in volume of the element:

DP 5 2B 
A Ds
A Dx

Let the length Dx of the cylinder approach zero so that the ratio Ds/Dx becomes a 
partial derivative:

 DP 5 2B 
's
'x

 (17.3)

Area A

Undisturbed gas

!x

s1

s2b

a

Figure 17.3  (a) An undisturbed 
element of gas of length Dx in a 
tube of cross-sectional area A.  
(b) When a sound wave propagates 
through the gas, the element is 
moved to a new position and has a 
different length. The parameters 
s1 and s2 describe the displace-
ments of the ends of the element 
from their equilibrium positions.

1We use s(x, t) here instead of y(x, t) because the displacement of elements of the medium is not perpendicular to 
the x direction.

For a column of air of cross sectional
area A:

Vi = A∆x , ∆V = A∆s

∆s = s2 − s1

Then letting ∆x → 0

∆P = −B
∂s

∂x



Pressure and Sound

∆P = −B
∂s

∂x

Recalling for a sine-type wave: s(x , t) = smax cos(kx −ωt),

∆P = B smaxk sin(kx −ωt)

Look at B smaxk . The units are:

[Pa] [m] [m−1] = [Pa]

So, B smaxk is a pressure.

Let
∆Pmax = B smaxk



Pressure and Sound

We can now express sound as a pressure wave:

∆P(x , t) = (∆Pmax) sin(kx −ωt)

∆P is the variation of the pressure from the ambient (background)
pressure.

If the sound wave is in air at sea level, the background pressure is
P0 = 1.013× 105 Pa. ∆P will be much smaller than this!



Example
A sound wave in air has a sinusoidal pressure variation, measured
in Pascals:

∆P(x , t) = 0.900 sin(10πx − 3430πt)

with the wavenumber in m−1 and the angular frequency in rad/s.

What is the wavelength and frequency of this wave?

λ = 0.200 m , f = 1715 Hz

Write the corresponding displacement wave expression for this
sound wave. (Bair = 1.42× 105 Pa)

s(x , t) = (202 nm) cos(kx −ωt)
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Speed of Sound waves

As we did for waves on a string, imagine a pulse moving to the
right.

Now let us choose a reference frame where we move with the
pulse and the air moves back to the left.

call ← +ve

The speed of the air outside the pulse is v . (This is the speed of
sound relative to the air.)



Speed of Sound waves
Think about how the speed of the air thin packet changes as it
moves into the higher-pressure pulse and is compressed.

It goes v → v + ∆v , where ∆v is a negative number (it slows).

The relative volume change can be related to the speed change:

∆V

V
=

A∆v ∆t

Av ∆t
=
∆v

v

Now use Newton’s 2nd law:

Fnet = (∆m)a

PA− (P + ∆P)A = (ρA∆x)

(
∆v

∆t

)
∆P��A = −ρ��A v��∆t

(
∆v

��∆t

)
∆P = −ρv2

∆v

v



Speed of Sound waves

Rearranging:

ρv2 = −
∆P

∆v/v

Using ∆V
V = ∆v

v :

ρv2 = −
∆P

∆V /V

And noticing that the LHS is the definition of B:

ρv2 = B

The speed of sound

v =

√
B

ρ



Speed of Sound waves

v =

√
B

ρ

Compare this expression to the speed of a pulse on a string.

v =

√
T

µ

Both of these expressions can be thought of as:

v =

√
elastic quantity

inertial quantity

These expressions are the same in spirit, but the precise quantities
are the ones that represent elasticity and inertia in each case.



Speed of Sound in Air

For air the adiabatic bulk modulus

B = 1.42× 105 Pa

and
ρ = 1.2041 kg/m3

at 20◦C.

This gives a speed of sound in air at 20◦C of

v = 343 m/s

This is approximately 1/3 km/s or 1/5 mi/s.
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Speed of Sound in Air

The speed of sound in air at 20◦C

v = 343 m/s

Since the density of air varies a lot with temperature, the speed of
sound varies also.

For temperatures near room temperature:

v = (331 m/s)

√
1 +

TCel

273

where TCel is the temperature in Celsius.



Summary

• sound

• displacement and pressure

• speed of sound

• interference of sound waves (?)

Homework Serway & Jewett (suggested):

• Ch 17, onward from page 523. OQs: 1, 7; CQs: 5; Probs: 16

• Ch 21, page 650, problem 56. (sound and adiabatic processes)


