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Last time

• sound

• displacement and pressure variation

• started speed of sound



Overview

• finish finding speed of sound

• interference and sound

• standing waves and sound (?)



Speed of Sound waves

As we did for waves on a string, imagine a pulse moving to the
right.

Now let us choose a reference frame where we move with the
pulse and the air moves back to the left.

call ← +ve

The speed of the air outside the pulse is v . (This is the speed of
sound relative to the air.)
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Speed of Sound waves
Think about how the speed of the air thin packet changes as it
moves into the higher-pressure pulse and is compressed.

It goes v → v + ∆v , where ∆v is a negative number (it slows).

The relative volume change can be related to the speed change:

∆V

V
=

A∆v ∆t

Av ∆t
=
∆v

v

Now use Newton’s 2nd law:

Fnet = (∆m)a

PA− (P + ∆P)A = (ρA∆x)

(
∆v

∆t

)

∆P��A = −ρ��A v��∆t
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∆v

��∆t

)

∆P = −ρv2
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Speed of Sound waves

Rearranging:

ρv2 = −
∆P

∆v/v

Using ∆V
V = ∆v

v :

ρv2 = −
∆P

∆V /V

And noticing that the LHS is the definition of B:

ρv2 = B

The speed of sound

v =

√
B

ρ



Speed of Sound waves

v =

√
B

ρ

Compare this expression to the speed of a pulse on a string.

v =

√
T

µ

Both of these expressions can be thought of as:

v =

√
elastic quantity

inertial quantity

These expressions are the same in spirit, but the precise quantities
are the ones that represent elasticity and inertia in each case.



Speed of Sound in Air

For air the adiabatic bulk modulus

B = 1.42× 105 Pa

and
ρ = 1.2041 kg/m3

at 20◦C.

This gives a speed of sound in air at 20◦C of

v = 343 m/s

This is approximately 1/3 km/s or 1/5 mi/s.



Speed of Sound in Air

The speed of sound in air at 20◦C

v = 343 m/s

Since the density of air vary with temperature, the speed of sound
varies also.

For temperatures near room temperature:

v = (331 m/s)

√
1 +

TCel

273

where TCel is the temperature in Celsius.

1The bulk modulus depends on the pressure.



Pressure Waves

∆P(x , t) = ∆Pmax sin(kx −ωt)

where
∆Pmax = B smaxk

It is easier to express the amplitude in terms of the wave speed,
since it is usually easier to look up the wave speed than the bulk
modulus:

∆Pmax = (ρv2) smax
ω

v

Then
∆Pmax = ρvωsmax



Sound Waves

Displacement:
s(x , t) = smax cos(kx −ωt)

Pressure:
∆P(x , t) = ∆Pmax sin(kx −ωt)

where
∆Pmax = B smaxk = ρvωsmax



Interference of Sound Waves

Imagine two point sources of sinusoidal sound waves that emit
identical signals: same amplitude, wavelength, and phase.

∆P1(x , t) = ∆P2(x , t) = ∆Pmax sin(kx −ωt)
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17-5 Interference
Like transverse waves, sound waves can undergo interference. Let us consider,
in particular, the interference between two identical sound waves traveling in
the same direction. Figure 17-7a shows how we can set up such a situation: Two
point sources S1 and S2 emit sound waves that are in phase and of identical
wavelength l. Thus, the sources themselves are said to be in phase; that is, as the
waves emerge from the sources, their displacements are always identical. We are
interested in the waves that then travel through point P in Fig. 17-7a. We assume
that the distance to P is much greater than the distance between the sources so
that we can approximate the waves as traveling in the same direction at P.

If the waves traveled along paths with identical lengths to reach point P,
they would be in phase there. As with transverse waves, this means that they
would undergo fully constructive interference there. However, in Fig. 17-7a, path
L2 traveled by the wave from S2 is longer than path L1 traveled by the wave from
S1. The difference in path lengths means that the waves may not be in
phase at point P. In other words, their phase difference f at P depends on their
path length difference !L " |L2 # L1|.

To relate phase difference f to path length difference !L, we recall (from
Section 16-4) that a phase difference of 2p rad corresponds to one wavelength.Thus,
we can write the proportion

, (17-20)

from which

(17-21)

Fully constructive interference occurs when f is zero, 2p, or any integer multiple
of 2p. We can write this condition as

f " m(2p), for m " 0, 1, 2, . . . (fully constructive interference). (17-22)

From Eq. 17-21, this occurs when the ratio !L/l is

" 0, 1, 2, . . . (fully constructive interference). (17-23)

For example, if the path length difference !L " |L2 # L1| in Fig. 17-7a is equal to 2l,
then !L/l " 2 and the waves undergo fully constructive interference at point P (Fig.
17-7b). The interference is fully constructive because the wave from S2 is phase-
shifted relative to the wave from S1 by 2l, putting the two waves exactly in phase at P.

Fully destructive interference occurs when f is an odd multiple of p:

f " (2m $ 1)p, for m " 0, 1, 2, . . . (fully destructive interference). (17-24)

From Eq. 17-21, this occurs when the ratio !L/l is

" 0.5, 1.5, 2.5, . . . (fully destructive interference). (17-25)

For example, if the path length difference !L " |L2 # L1| in Fig. 17-7a is equal to
2.5l, then !L/l " 2.5 and the waves undergo fully destructive interference at
point P (Fig. 17-7c). The interference is fully destructive because the wave from
S2 is phase-shifted relative to the wave from S1 by 2.5 wavelengths, which puts the
two waves exactly out of phase at P.

Of course, two waves could produce intermediate interference as, say, when
!L/l " 1.2. This would be closer to fully constructive interference (!L/l " 1.0)
than to fully destructive interference (!L/l " 1.5).
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The interference at P
depends on the difference
in the path lengths to reach P.

If the difference is equal to,
say, 2.0  , then the waves
arrive exactly in phase. This
is how transverse waves
would look.
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If the difference is equal to,
say, 2.5  , then the waves
arrive exactly out of phase.
This is how transverse 
waves would look.

λ

Fig. 17-7 (a) Two point sources S1 and S2

emit spherical sound waves in phase.The
rays indicate that the waves pass through a
common point P. The waves (represented
with transverse waves) arrive at P (b) exactly
in phase and (c) exactly out of phase.
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The sound will be louder at different points, depending on the
difference in the path lengths that the sound waves take.



Interference of Sound Waves

Interference pattern from two sources, with equal wavelength and
in phase:

Constructive Interference at t = 0

Similarly, constructive interference corresponds to the upper signs in eq. (40), in which
case we have at time t = 0,

Etot(t = 0) = 0, Btot(t = 0) = 2B(x), (45)

UE,tot(t = 0) =
∫

E2
tot

8π
dVol = 0, (46)

UM,tot(t = 0) =
∫

B2
tot

8π
dVol = 4

∫
B2

2
dVol = 4UM , (47)

Utot(t = 0) = UE,tot(t = 0) + UM,tot(t = 0) = 4UM = Utotal, (48)

and again energy is conserved. Constructive interference doubles the magnetic energy, but
destroys the electric energy.

2.2 The Double Slit Experiment with a Single Source

Following Young,3 we consider a line source of cylindrical light waves of wavelength λ that
impinge on a planar screen that is parallel to the line source at closest distance large compared
to λ The screen has two narrow line slits, parallel to the line source and separated by distance
D, located symmetrically about the line on the screen closest to the source. Beyond the
planar screen is a cylindrical screen of radius R ≫ λ on which the intensity of the light is
observed.

We first to consider scalar waves (i.e., scalar diffraction theory), with amplitude A e−iωt

at each of the two slits, where A is a complex number, ω = kc = 2πc/λ and c is the speed of
light in vacuum The intensity of a wave at some point is proportional to the absolute square
of its amplitude there. We suppose the units of A are such that the (time-average) power
per unit length passing through each slit is A2. The intensity on the cylindrical screen is
uniform, with total power P0 = A2 per unit length, and hence the angular distribution of
(time-average) power per unit length on the half-cylinder screen from the light that passes

3T. Young, On the Nature of Light and Colours, Lecture 39, Course of Lectures on Natural Philosophy
and Mechanical Arts (London, 1897),
http://physics.princeton.edu/~mcdonald/examples/optics/young_lecture_39.pdf.

6

1Thomas Young, On the Nature of Light and Colours, Lecture 39, Course of
Lectures on Natural Philosophy and Mechanical Arts (London, 1897)



Interference of Sound Waves
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This is because the path difference will correspond to a phase
offset of the arriving waves at P:

∆P = ∆P1 + ∆P2

= ∆Pmax(sin(kL1 −ωt) + sin(kL2 −ωt))

=

[
2∆Pmax cos

(
k(L2 − L1)

2

)]
sin

(
k(L2 + L1)

2
−ωt

)

new amplitude



Interference of Sound Waves

The new amplitude could be written as:

2∆Pmax cos

(
π(L2 − L1)

λ

)

When |L2 − L1| = nλ and n = 0, 1, 2, ... the sound from the two
speakers is loudest (a maximum).

When |L2 − L1| =
(2n+1)λ

2 and n = 0, 1, 2, ... the sound from the
two speakers is cancelled out (a minimum).



Summary

• speed of sound

• interference with sound

• standing waves and sound (?)


