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Interference of Sound Waves

45117-5 I NTE R FE R E NCE
PART 2

17-5 Interference
Like transverse waves, sound waves can undergo interference. Let us consider,
in particular, the interference between two identical sound waves traveling in
the same direction. Figure 17-7a shows how we can set up such a situation: Two
point sources S1 and S2 emit sound waves that are in phase and of identical
wavelength l. Thus, the sources themselves are said to be in phase; that is, as the
waves emerge from the sources, their displacements are always identical. We are
interested in the waves that then travel through point P in Fig. 17-7a. We assume
that the distance to P is much greater than the distance between the sources so
that we can approximate the waves as traveling in the same direction at P.

If the waves traveled along paths with identical lengths to reach point P,
they would be in phase there. As with transverse waves, this means that they
would undergo fully constructive interference there. However, in Fig. 17-7a, path
L2 traveled by the wave from S2 is longer than path L1 traveled by the wave from
S1. The difference in path lengths means that the waves may not be in
phase at point P. In other words, their phase difference f at P depends on their
path length difference !L " |L2 # L1|.

To relate phase difference f to path length difference !L, we recall (from
Section 16-4) that a phase difference of 2p rad corresponds to one wavelength.Thus,
we can write the proportion

, (17-20)

from which

(17-21)

Fully constructive interference occurs when f is zero, 2p, or any integer multiple
of 2p. We can write this condition as

f " m(2p), for m " 0, 1, 2, . . . (fully constructive interference). (17-22)

From Eq. 17-21, this occurs when the ratio !L/l is

" 0, 1, 2, . . . (fully constructive interference). (17-23)

For example, if the path length difference !L " |L2 # L1| in Fig. 17-7a is equal to 2l,
then !L/l " 2 and the waves undergo fully constructive interference at point P (Fig.
17-7b). The interference is fully constructive because the wave from S2 is phase-
shifted relative to the wave from S1 by 2l, putting the two waves exactly in phase at P.

Fully destructive interference occurs when f is an odd multiple of p:

f " (2m $ 1)p, for m " 0, 1, 2, . . . (fully destructive interference). (17-24)

From Eq. 17-21, this occurs when the ratio !L/l is

" 0.5, 1.5, 2.5, . . . (fully destructive interference). (17-25)

For example, if the path length difference !L " |L2 # L1| in Fig. 17-7a is equal to
2.5l, then !L/l " 2.5 and the waves undergo fully destructive interference at
point P (Fig. 17-7c). The interference is fully destructive because the wave from
S2 is phase-shifted relative to the wave from S1 by 2.5 wavelengths, which puts the
two waves exactly out of phase at P.

Of course, two waves could produce intermediate interference as, say, when
!L/l " 1.2. This would be closer to fully constructive interference (!L/l " 1.0)
than to fully destructive interference (!L/l " 1.5).
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The interference at P
depends on the difference
in the path lengths to reach P.

If the difference is equal to,
say, 2.0  , then the waves
arrive exactly in phase. This
is how transverse waves
would look.

λ

If the difference is equal to,
say, 2.5  , then the waves
arrive exactly out of phase.
This is how transverse 
waves would look.

λ

Fig. 17-7 (a) Two point sources S1 and S2

emit spherical sound waves in phase.The
rays indicate that the waves pass through a
common point P. The waves (represented
with transverse waves) arrive at P (b) exactly
in phase and (c) exactly out of phase.
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This is because the path difference will correspond to a phase
offset of the arriving waves at P:

∆P = ∆P1 + ∆P2

= ∆Pmax(sin(kL1 −ωt) + sin(kL2 −ωt))

=

[
2∆Pmax cos

(
k(L2 − L1)

2

)]
sin

(
k(L2 + L1)

2
−ωt

)
new amplitude
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The new amplitude could be written as:

2∆Pmax cos

(
π(L2 − L1)

λ

)

When |L2 − L1| = nλ and n = 0, 1, 2, ... the sound from the two
speakers is loudest (a maximum).

When |L2 − L1| =
(2n+1)λ

2 and n = 0, 1, 2, ... the sound from the
two speakers is cancelled out (a minimum).



Example 18.1

Two identical loudspeakers placed 3.00 m apart are driven by the
same oscillator. A listener is originally at point O, located 8.00 m
from the center of the line connecting the two speakers. The
listener then moves to point P, which is a perpendicular distance
0.350 m from O, and she experiences the first minimum in sound
intensity. What is the frequency of the oscillator?
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a T-shaped junction. Half the sound energy travels in one direction, and half travels 
in the opposite direction. Therefore, the sound waves that reach the receiver R can 
travel along either of the two paths. The distance along any path from speaker to 
receiver is called the path length r. The lower path length r1 is fixed, but the upper 
path length r2 can be varied by sliding the U-shaped tube, which is similar to that 
on a slide trombone. When the difference in the path lengths Dr 5 |r2 2 r1| is either 
zero or some integer multiple of the wavelength l (that is, Dr 5 nl, where n 5  
0, 1, 2, 3, . . .), the two waves reaching the receiver at any instant are in phase and 
interfere constructively as shown in Figure 18.3a. For this case, a maximum in the 
sound intensity is detected at the receiver. If the path length r2 is adjusted such that 
the path difference Dr 5 l/2, 3l/2, . . . , nl/2 (for n odd), the two waves are exactly 
p rad, or 180°, out of phase at the receiver and hence cancel each other. In this case 
of destructive interference, no sound is detected at the receiver. This simple experi-
ment demonstrates that a phase difference may arise between two waves generated 
by the same source when they travel along paths of unequal lengths. This impor-
tant phenomenon will be indispensable in our investigation of the interference of 
light waves in Chapter 37.

Example 18.1   Two Speakers Driven by the Same Source 

Two identical loudspeakers placed 3.00 m apart are driven by the same oscillator (Fig. 18.5). A listener is originally at 
point O, located 8.00 m from the center of the line connecting the two speakers. The listener then moves to point P, 
which is a perpendicular distance 0.350 m from O, and she experiences the first minimum in sound intensity. What is 
the frequency of the oscillator?

Conceptualize  In Figure 18.4, a sound wave enters a 
tube and is then acoustically split into two different paths 
before recombining at the other end. In this example, 
a signal representing the sound is electrically split and 
sent to two different loudspeakers. After leaving the 
speakers, the sound waves recombine at the position of 
the listener. Despite the difference in how the splitting 
occurs, the path difference discussion related to Figure 
18.4 can be applied here.

Categorize  Because the sound waves from two separate sources combine, we apply the waves in interference analysis 
model.
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Figure 18.5  (Example 18.1) Two identical loudspeakers emit 
sound waves to a listener at P.

continued

Imagine two waves traveling 
in the same location through 
a medium. The displacement 
of elements of the medium is 
affected by both waves. Accord-
ing to the principle of superpo-
sition, the displacement is the 
sum of the individual displace-
ments that would be caused by 
each wave. When the waves are in phase, constructive interference 
occurs and the resultant displacement is larger than the individual 
displacements. Destructive interference occurs when the waves are 
out of phase. 

Analysis Model   Waves in Interference

Examples: 

and a tuning fork vibrating together 
and notices beats (Section 18.7)

combine to form an interference pat-
tern on a screen (Chapter 37)

swirls of color (Chapter 37)

combine to form a Laue pattern  
(Chapter 38)

y1 ! y2

y1 ! y2

Destructive
interference

Constructive
interference

y1 y2

y2
y1

0Serway & Jewett, page 537
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P is first minimum.

That means r2 − r1 =
λ
2 . If we find λ, we can find f , since we

know the speed of sound.

λ = 2(
√

1.852 + 82 −
√

1.152 + 82) = 0.26 m

f =
v

λ
=

343 m/s

0.26 m
= 1.3 kHz
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Standing Sound Waves in air columns

Standing sound waves can be set up in hollow tubes.

This is the idea behind how pipe organs, clarinets, didgeridoos,
etc. work.

Displacement fluctuation:

s(x , t) = [2smax cos(kx)] cos(ωt)



Question

Quick Quiz 17.11 If you blow across the top of an empty
soft-drink bottle, a pulse of sound travels down through the air in
the bottle. At the moment the pulse reaches the bottom of the
bottle, what is the correct description of the displacement of
elements of air from their equilibrium positions and the pressure of
the air at this point?

(A) The displacement and pressure are both at a maximum.

(B) The displacement and pressure are both at a minimum.

(C) The displacement is zero, and the pressure is a maximum.

(D) The displacement is zero, and the pressure is a minimum.

1Serway & Jewett, page 510.
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Standing Sound Waves in air columns

Displacement fluctuation:

s(x , t) = [2smax cos(kx)] cos(ωt)

For a tube with a closed end, the closed end forms a
displacement node.

This is logical because the air cannot move past the sealed end.

(But that does also mean that the closed end is a pressure
antinode. Here we will speak about sound waves in terms of
displacement.)



Standing Sound Waves in air columns

The open end or ends of a tube are approximately2 displacement
antinode.

This can be thought of as being because the pressure outside the
tube is atmospheric pressure, P0, so the open end is a pressure
node, therefore a displacement antinode.

The waves are partially reflected from the open end because the air
outside the tube can expand in 3-dimensions, rather than just one,
so it behaves very differently than the air in the tube.

It is effectively a change of medium.

2This is not exactly true. Actually the antinode is located just beyond the
end of the tube. For this course, we will say the the open end is an antinode.



Standing Sound Waves in air columns - Displ. wave
Two open ends One closed end
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of the pipe and the outside even though there is no change in the material of the 
medium. This change in character is sufficient to allow some reflection.
 With the boundary conditions of nodes or antinodes at the ends of the air col-
umn, we have a set of normal modes of oscillation as is the case for the string fixed 
at both ends. Therefore, the air column has quantized frequencies.
 The first three normal modes of oscillation of a pipe open at both ends are 
shown in Figure 18.13a. Notice that both ends are displacement antinodes (approx-
imately). In the first normal mode, the standing wave extends between two adjacent 
antinodes, which is a distance of half a wavelength. Therefore, the wavelength is 
twice the length of the pipe, and the fundamental frequency is f1 5 v/2L. As Figure 
18.13a shows, the frequencies of the higher harmonics are 2f1, 3f1, . . . .

In a pipe open at both ends, the natural frequencies of oscillation form a har-
monic series that includes all integral multiples of the fundamental frequency.

Because all harmonics are present and because the fundamental frequency is given 
by the same expression as that for a string (see Eq. 18.5), we can express the natural 
frequencies of oscillation as

 fn 5 n 
v

2L
    n 5 1, 2, 3, . . .  (18.8)

Despite the similarity between Equations 18.5 and 18.8, you must remember that v 
in Equation 18.5 is the speed of waves on the string, whereas v in Equation 18.8 is 
the speed of sound in air.
 If a pipe is closed at one end and open at the other, the closed end is a displace-
ment node (see Fig. 18.13b). In this case, the standing wave for the fundamental 
mode extends from an antinode to the adjacent node, which is one-fourth of a wave-
length. Hence, the wavelength for the first normal mode is 4L , and the fundamental  
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In a pipe open at both ends, the 
ends are displacement antinodes 
and the harmonic series contains 
all integer multiples of the 
fundamental.

In a pipe closed at one end, the 
open end is a displacement 
antinode and the closed end is 
a node. The harmonic series 
contains only odd integer 
multiples of the fundamental.

a b

Figure 18.13  Graphical  
representations of the motion of 
elements of air in standing lon-
gitudinal waves in (a) a column 
open at both ends and (b) a col-
umn closed at one end.

Pitfall Prevention 18.3
Sound Waves in Air Are Lon-
gitudinal, Not Transverse The 
standing longitudinal waves are 
drawn as transverse waves in Fig-
ure 18.13. Because they are in the 
same direction as the propaga-
tion, it is difficult to draw longitu-
dinal displacements. Therefore, it 
is best to interpret the red-brown 
curves in Figure 18.13 as a graphi-
cal representation of the waves 
(our diagrams of string waves are 
pictorial representations), with 
the vertical axis representing the 
horizontal displacement s(x, t) of 
the elements of the medium.

1Figure from Serway & Jewett, page 547.



Standing Sound Waves in air columns
For double open ended tubes:

The wavelengths of the normal modes are given by the constraint
| cos(0)| = | cos(kL)| = 1:

λn =
2L

n

where n is a positive natural number (1, 2, 3...).

The natural frequencies:

fn =
nv

2L
= n f1

where n is a positive natural number.

The fundamental frequency, also called the first harmonic is the
lowest frequency sound produced in the column. It is

f1 =
v

2L



Standing Sound Waves in air columns

For tubes with one closed end: fundamental frequency f1 =
v
4L

The wavelengths of the normal modes are given by the constraint
cos(0) = 1, | cos(kL)| = 0:

λ2n−1 =
4L

(2n − 1)

where n is a positive natural number (1, 2, 3...).

The natural frequencies:

f2n−1 =
(2n − 1)v

4L
= (2n − 1)f1

where n is a positive natural number (1, 2, 3...).

(For this case the # of nodes = # of antinodes = n.)



Summary

• interference of sound example

• standing waves and sound


