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Standing Sound Waves in air columns - Displ. wave
Two open ends One closed end
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of the pipe and the outside even though there is no change in the material of the 
medium. This change in character is sufficient to allow some reflection.
 With the boundary conditions of nodes or antinodes at the ends of the air col-
umn, we have a set of normal modes of oscillation as is the case for the string fixed 
at both ends. Therefore, the air column has quantized frequencies.
 The first three normal modes of oscillation of a pipe open at both ends are 
shown in Figure 18.13a. Notice that both ends are displacement antinodes (approx-
imately). In the first normal mode, the standing wave extends between two adjacent 
antinodes, which is a distance of half a wavelength. Therefore, the wavelength is 
twice the length of the pipe, and the fundamental frequency is f1 5 v/2L. As Figure 
18.13a shows, the frequencies of the higher harmonics are 2f1, 3f1, . . . .

In a pipe open at both ends, the natural frequencies of oscillation form a har-
monic series that includes all integral multiples of the fundamental frequency.

Because all harmonics are present and because the fundamental frequency is given 
by the same expression as that for a string (see Eq. 18.5), we can express the natural 
frequencies of oscillation as

 fn 5 n 
v

2L
    n 5 1, 2, 3, . . .  (18.8)

Despite the similarity between Equations 18.5 and 18.8, you must remember that v 
in Equation 18.5 is the speed of waves on the string, whereas v in Equation 18.8 is 
the speed of sound in air.
 If a pipe is closed at one end and open at the other, the closed end is a displace-
ment node (see Fig. 18.13b). In this case, the standing wave for the fundamental 
mode extends from an antinode to the adjacent node, which is one-fourth of a wave-
length. Hence, the wavelength for the first normal mode is 4L , and the fundamental  
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In a pipe open at both ends, the 
ends are displacement antinodes 
and the harmonic series contains 
all integer multiples of the 
fundamental.

In a pipe closed at one end, the 
open end is a displacement 
antinode and the closed end is 
a node. The harmonic series 
contains only odd integer 
multiples of the fundamental.

a b

Figure 18.13  Graphical  
representations of the motion of 
elements of air in standing lon-
gitudinal waves in (a) a column 
open at both ends and (b) a col-
umn closed at one end.

Pitfall Prevention 18.3
Sound Waves in Air Are Lon-
gitudinal, Not Transverse The 
standing longitudinal waves are 
drawn as transverse waves in Fig-
ure 18.13. Because they are in the 
same direction as the propaga-
tion, it is difficult to draw longitu-
dinal displacements. Therefore, it 
is best to interpret the red-brown 
curves in Figure 18.13 as a graphi-
cal representation of the waves 
(our diagrams of string waves are 
pictorial representations), with 
the vertical axis representing the 
horizontal displacement s(x, t) of 
the elements of the medium.

1Figure from Serway & Jewett, page 547.



Reminder: Standing Sound Waves in air columns
For double open ended tubes:

The wavelengths of the normal modes are given by the constraint
| cos(0)| = | cos(kL)| = 1:

λn =
2L

n

where n is a positive natural number (1, 2, 3...).

The natural frequencies:

fn =
nv

2L
= n f1

where n is a positive natural number.

The fundamental frequency, also called the first harmonic is the
lowest frequency sound produced in the column. It is

f1 =
v

2L



Reminder: Standing Sound Waves in air columns

For tubes with one closed end: fundamental frequency f1 =
v
4L

The wavelengths of the normal modes are given by the constraint
cos(0) = 1, | cos(kL)| = 0:

λ2n−1 =
4L

(2n − 1)

where n is a positive natural number (1, 2, 3...).

The natural frequencies:

f2n−1 =
(2n − 1)v

4L
= (2n − 1)f1

where n is a positive natural number (1, 2, 3...).

(For this case the # of nodes = # of antinodes = n.)



Musical Instruments

Didgeridoo:

Longer didgeridoos have lower pitch, but tubes that flare outward
have higher pitches this can also change the spacing of the
resonant frequencies.

1Matt Roberts via Getty Images.



Musical Instruments, Pipe Organ
The longest pipes made for organs are open-ended 64-foot stops
(tube is effectively 64 feet+ long). There are two of them in the
world. The fundamental frequency associated with such a pipe is
8 Hz.

32’ stops give 16 Hz sound, 16’ stops give 32 Hz, 8’ stops give 64
Hz, etc.

0Picture of Sydney Town Hall Grand Organ from Wikipedia, user Jason7825.
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More generally, the resonant frequencies for a pipe of length L with two
open ends correspond to the wavelengths

for n ! 1, 2, 3, . . . , (17-38)

where n is called the harmonic number. Letting v be the speed of sound, we
write the resonant frequencies for a pipe with two open ends as

for n ! 1, 2, 3, . . . (pipe, two open ends). (17-39)

Figure 17-14b shows (using string wave representations) some of the
standing sound wave patterns that can be set up in a pipe with only one
open end. As required, across the open end there is an antinode and across
the closed end there is a node. The simplest pattern requires sound waves
having a wavelength given by L ! l /4, so that l ! 4L. The next simplest
pattern requires a wavelength given by L ! 3l /4, so that l ! 4L/3, and 
so on.

More generally, the resonant frequencies for a pipe of length L with
only one open end correspond to the wavelengths

for n ! 1, 3, 5, . . . , (17-40)

in which the harmonic number n must be an odd number. The resonant frequen-
cies are then given by

for n ! 1, 3, 5, . . . (pipe, one open end). (17-41)

Note again that only odd harmonics can exist in a pipe with one open end. For
example, the second harmonic, with n ! 2, cannot be set up in such a pipe.
Note also that for such a pipe the adjective in a phrase such as “the third har-
monic” still refers to the harmonic number n (and not to, say, the third possible
harmonic). Finally note that Eqs. 17-38 and 17-39 for two open ends contain
the number 2 and any integer value of n, but Eqs. 17-40 and 17-41 for one open
end contain the number 4 and only odd values of n.

The length of a musical instrument reflects the range of frequencies over which
the instrument is designed to function, and smaller length implies higher frequen-
cies. Figure 17-15, for example, shows the saxophone and violin families, with their
frequency ranges suggested by the piano keyboard. Note that, for every instru-
ment, there is overlap with its higher- and lower-frequency neighbors.

In any oscillating system that gives rise to a musical sound, whether it is a
violin string or the air in an organ pipe, the fundamental and one or more of
the higher harmonics are usually generated simultaneously. Thus, you hear
them together — that is, superimposed as a net wave. When different instru-
ments are played at the same note, they produce the same fundamental fre-
quency but different intensities for the higher harmonics. For example, the
fourth harmonic of middle C might be relatively loud on one instrument and
relatively quiet or even missing on another. Thus, because different instru-
ments produce different net waves, they sound different to you even when
they are played at the same note. That would be the case for the two net
waves shown in Fig. 17-16, which were produced at the same note by different
instruments.
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CHECKPOINT 3

Pipe A, with length L, and pipe B, with length 2L, both have two open ends. Which 
harmonic of pipe B has the same frequency as the fundamental of pipe A?

Fig. 17-15 The saxophone and violin
families, showing the relations between in-
strument length and frequency range.The
frequency range of each instrument is indi-
cated by a horizontal bar along a frequency
scale suggested by the keyboard at the bot-
tom; the frequency increases toward the
right.

Fig. 17-16 The wave forms pro-
duced by (a) a flute and (b) an oboe
when played at the same note, with
the same first harmonic frequency.

Time

(a)

(b)

A B C D E F G A B C D E F G A B C D E F G A B C D E F G A B C D E F G A B C D E F G A B CB C D E F GA

Bass saxophone

Soprano saxophone

Bass
Cello

Viola
Violin

Baritone saxophone
Tenor saxophone

Alto saxophone

halliday_c17_445-475hr.qxd  26-10-2009  22:16  Page 458

In general, larger instruments can create lower tones, whether
string instruments or tube instruments.

0Halliday, Resnick, Walker, 9th ed, page 458.



Reminder: Speed of Sound in Air

The speed of sound in air at 20◦C

v = 343 m/s

Since the density of air varies a lot with temperature, the speed of
sound varies also.

For temperatures near room temperature:

v = (331 m/s)

√
1 +

TCel

273

where TCel is the temperature in Celsius.



Question

Quick Quiz 18.51 Balboa Park in San Diego has an outdoor
organ. When the air temperature increases, the fundamental
frequency of one of the organ pipes

(A) stays the same,

(B) goes down,

(C) goes up,

(D) is impossible to determine.

1Serway & Jewett, page 548.



Question

Quick Quiz 18.51 Balboa Park in San Diego has an outdoor
organ. When the air temperature increases, the fundamental
frequency of one of the organ pipes

(A) stays the same,

(B) goes down,

(C) goes up, ←
(D) is impossible to determine.

1Serway & Jewett, page 548.



Standing waves in rods
Both longitudinal and transverse standing waves can be created in
rods.

Illustration of a longitudinal standing oscillation in a rod, free at
the ends, and clamped in the middle:

550 Chapter 18 Superposition and Standing Waves

01 11 21 02 31 12

1 1.59 2.14 2.30 2.65 2.92

41 22 03 51 32 61

3.16 3.50 3.60 3.65 4.06 4.15

Elements of the medium moving 
out of the page at an instant of time.

Elements of the medium moving 
into the page at an instant of time.

Below each pattern 
is a factor by which 
the frequency of the 
mode is larger than 
that of the 01 mode. 
The frequencies of 
oscillation do not 
form a harmonic 
series because these 
factors are not 
integers.

Figure 18.16  Representation 
of some of the normal modes 
possible in a circular membrane 
fixed at its perimeter. The pair of 
numbers above each pattern cor-
responds to the number of radial 
nodes and the number of circular 
nodes, respectively. In each dia-
gram, elements of the membrane 
on either side of a nodal line move 
in opposite directions, as indicated 
by the colors. (Adapted from T. D. 
Rossing, The Science of Sound, 3rd 
ed., Reading, Massachusetts, Addison-
Wesley Publishing Co., 2001)

18.6 Standing Waves in Rods and Membranes
Standing waves can also be set up in rods and membranes. A rod clamped in the 
middle and stroked parallel to the rod at one end oscillates as depicted in Figure 
18.15a. The oscillations of the elements of the rod are longitudinal, and so the red-
brown curves in Figure 18.15 represent longitudinal displacements of various parts 
of the rod. For clarity, the displacements have been drawn in the transverse direc-
tion as they were for air columns. The midpoint is a displacement node because it 
is fixed by the clamp, whereas the ends are displacement antinodes because they 
are free to oscillate. The oscillations in this setup are analogous to those in a pipe 
open at both ends. The red-brown lines in Figure 18.15a represent the first normal 
mode, for which the wavelength is 2L and the frequency is f 5 v/2L, where v is the 
speed of longitudinal waves in the rod. Other normal modes may be excited by 
clamping the rod at different points. For example, the second normal mode (Fig. 
18.15b) is excited by clamping the rod a distance L/4 away from one end.
 It is also possible to set up transverse standing waves in rods. Musical instru-
ments that depend on transverse standing waves in rods or bars include triangles, 
marimbas, xylophones, glockenspiels, chimes, and vibraphones. Other devices that 
make sounds from vibrating bars include music boxes and wind chimes.
 Two-dimensional oscillations can be set up in a flexible membrane stretched 
over a circular hoop such as that in a drumhead. As the membrane is struck at 
some point, waves that arrive at the fixed boundary are reflected many times. The 
resulting sound is not harmonic because the standing waves have frequencies that 
are not related by integer multiples. Without this relationship, the sound may be 
more correctly described as noise rather than as music. The production of noise 
is in contrast to the situation in wind and stringed instruments, which produce 
sounds that we describe as musical.
 Some possible normal modes of oscillation for a two-dimensional circular mem-
brane are shown in Figure 18.16. Whereas nodes are points in one-dimensional 
standing waves on strings and in air columns, a two-dimensional oscillator has 
curves along which there is no displacement of the elements of the medium. The 
lowest normal mode, which has a frequency f1, contains only one nodal curve; this 
curve runs around the outer edge of the membrane. The other possible normal 
modes show additional nodal curves that are circles and straight lines across the 
diameter of the membrane.

18.7 Beats: Interference in Time
The interference phenomena we have studied so far involve the superposition of 
two or more waves having the same frequency. Because the amplitude of the oscil-

b
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f2 ! ! 2f1 
v
L

Figure 18.15  Normal-mode 
longitudinal vibrations of a rod 
of length L (a) clamped at the 
middle to produce the first nor-
mal mode and (b) clamped at 
a distance L/4 from one end to 
produce the second normal mode. 
Notice that the red-brown curves 
are graphical representations of 
oscillations parallel to the rod 
(longitudinal waves).

A N A

L

f1 ! ! 
v v

2Ll1

l1 ! 2L 

a

The brown curve represents
left-right displacement of the
particles in the rod.

Some musical instruments make use of transverse standing waves,
eg. triangle, glockenspiel, chimes.



Standing waves in membranes
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to be a two-loop pattern. For the left-going and right-going waves to set it up,
they must have a wavelength l ! L.A third pattern is shown in Fig. 16-20c. It has
four nodes, three antinodes, and three loops, and the wavelength is l ! L.We could
continue this progression by drawing increasingly more complicated patterns. In
each step of the progression, the pattern would have one more node and one
more antinode than the preceding step, and an additional l/2 would be fitted into
the distance L.

Thus, a standing wave can be set up on a string of length L by a wave with a
wavelength equal to one of the values

for n ! 1, 2, 3, . . . . (16-65)

The resonant frequencies that correspond to these wavelengths follow from
Eq. 16-13:

for n ! 1, 2, 3, . . . . (16-66)

Here v is the speed of traveling waves on the string.
Equation 16-66 tells us that the resonant frequencies are integer multiples of

the lowest resonant frequency, f ! v/2L, which corresponds to n ! 1. The oscilla-
tion mode with that lowest frequency is called the fundamental mode or the first
harmonic. The second harmonic is the oscillation mode with n ! 2, the third har-
monic is that with n ! 3, and so on. The frequencies associated with these modes
are often labeled f1, f2, f3, and so on. The collection of all possible oscillation
modes is called the harmonic series, and n is called the harmonic number of the
nth harmonic.

For a given string under a given tension, each resonant frequency corre-
sponds to a particular oscillation pattern. Thus, if the frequency is in the audi-
ble range, you can hear the shape of the string. Resonance can also occur in
two dimensions (such as on the surface of the kettledrum in Fig. 16-21) and in
three dimensions (such as in the wind-induced swaying and twisting of a tall
building).

f !
v
"

! n 
v

2L
,

" !
2L
n

,

2
3

Fig. 16-21 One of many possible stand-
ing wave patterns for a kettledrum head,
made visible by dark powder sprinkled on
the drumhead.As the head is set into oscil-
lation at a single frequency by a mechani-
cal oscillator at the upper left of the photo-
graph, the powder collects at the nodes,
which are circles and straight lines in this
two-dimensional example. (Courtesy
Thomas D. Rossing, Northern Illinois
University)

CHECKPOINT 6

In the following series of resonant frequencies, one frequency (lower than 400 Hz) is
missing: 150, 225, 300, 375 Hz. (a) What is the missing frequency? (b) What is the fre-
quency of the seventh harmonic?

Sample Problem

Resonance of transverse waves, standing waves, harmonics

Figure 16-22 shows a pattern of resonant oscillation of a
string of mass m ! 2.500 g and length L ! 0.800 m and that is
under tension t ! 325.0 N. What is the wavelength l of the
transverse waves producing the standing-wave pattern, and
what is the harmonic number n? What is the frequency f of
the transverse waves and of the oscillations of the moving
string elements? What is the maximum magnitude of the
transverse velocity um of the element oscillating at coordinate
x ! 0.180 m (note the x axis in the figure)? At what point

Fig. 16-22 Resonant oscillation of a string under tension.

0.800

x (m)

y

8.00 mm

0

during the element’s oscillation is the transverse velocity
maximum?

halliday_c16_413-444hr.qxd  26-10-2009  22:13  Page 434

1Dust on a kettledrum, Halliday, Resnick, Walker, page 434.



Standing waves in membranes

The standing solutions are called Bessel functions, specifically,
cylindrical functions.
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of some of the normal modes 
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numbers above each pattern cor-
responds to the number of radial 
nodes and the number of circular 
nodes, respectively. In each dia-
gram, elements of the membrane 
on either side of a nodal line move 
in opposite directions, as indicated 
by the colors. (Adapted from T. D. 
Rossing, The Science of Sound, 3rd 
ed., Reading, Massachusetts, Addison-
Wesley Publishing Co., 2001)

18.6 Standing Waves in Rods and Membranes
Standing waves can also be set up in rods and membranes. A rod clamped in the 
middle and stroked parallel to the rod at one end oscillates as depicted in Figure 
18.15a. The oscillations of the elements of the rod are longitudinal, and so the red-
brown curves in Figure 18.15 represent longitudinal displacements of various parts 
of the rod. For clarity, the displacements have been drawn in the transverse direc-
tion as they were for air columns. The midpoint is a displacement node because it 
is fixed by the clamp, whereas the ends are displacement antinodes because they 
are free to oscillate. The oscillations in this setup are analogous to those in a pipe 
open at both ends. The red-brown lines in Figure 18.15a represent the first normal 
mode, for which the wavelength is 2L and the frequency is f 5 v/2L, where v is the 
speed of longitudinal waves in the rod. Other normal modes may be excited by 
clamping the rod at different points. For example, the second normal mode (Fig. 
18.15b) is excited by clamping the rod a distance L/4 away from one end.
 It is also possible to set up transverse standing waves in rods. Musical instru-
ments that depend on transverse standing waves in rods or bars include triangles, 
marimbas, xylophones, glockenspiels, chimes, and vibraphones. Other devices that 
make sounds from vibrating bars include music boxes and wind chimes.
 Two-dimensional oscillations can be set up in a flexible membrane stretched 
over a circular hoop such as that in a drumhead. As the membrane is struck at 
some point, waves that arrive at the fixed boundary are reflected many times. The 
resulting sound is not harmonic because the standing waves have frequencies that 
are not related by integer multiples. Without this relationship, the sound may be 
more correctly described as noise rather than as music. The production of noise 
is in contrast to the situation in wind and stringed instruments, which produce 
sounds that we describe as musical.
 Some possible normal modes of oscillation for a two-dimensional circular mem-
brane are shown in Figure 18.16. Whereas nodes are points in one-dimensional 
standing waves on strings and in air columns, a two-dimensional oscillator has 
curves along which there is no displacement of the elements of the medium. The 
lowest normal mode, which has a frequency f1, contains only one nodal curve; this 
curve runs around the outer edge of the membrane. The other possible normal 
modes show additional nodal curves that are circles and straight lines across the 
diameter of the membrane.

18.7 Beats: Interference in Time
The interference phenomena we have studied so far involve the superposition of 
two or more waves having the same frequency. Because the amplitude of the oscil-
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Figure 18.15  Normal-mode 
longitudinal vibrations of a rod 
of length L (a) clamped at the 
middle to produce the first nor-
mal mode and (b) clamped at 
a distance L/4 from one end to 
produce the second normal mode. 
Notice that the red-brown curves 
are graphical representations of 
oscillations parallel to the rod 
(longitudinal waves).
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1Serway & Jewett, page 550.



Beats

We already considered interference of sine waves when both waves
had the same frequency. But what if they do not?

Consider two waves with the same amplitude but different
frequencies, f , and therefore different angular frequencies, ω:

y1(x , t) = A sin(k1x −ω1t + φ1)

y2(x , t) = A sin(k2x −ω2t + φ2)

Now let’s consider the effect of these waves at the point x = 0,
and suppose φ1 = φ2 =

π
2 .

(This choice is arbitrary, but we must pick a point in space.)
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Beats

The wave functions at this point are:

y1(0, t) = A sin(
π

2
−ω1t) = A cos(2πf1t)

y2(0, t) = A sin(
π

2
−ω2t) = A cos(2πf2t)

Using the trig identity:

cos θ+ cosψ = 2 cos

(
θ−ψ

2

)
cos

(
θ+ψ

2

)

y(x , t) = y1 + y2

=

[
2A cos

(
2π

f1 − f2
2

t

)]
cos

(
2π

f1 + f2
2

t

)
time-varying amplitude fast oscillation



Beats

y(x , t) =

[
2A cos

(
2π

f1 − f2
2

t

)]
cos

(
2π

f1 + f2
2

t

)
y vs t (position, x fixed):
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y

y

t

tb

a

Figure 18.17 Beats are formed 
by the combination of two waves 
of slightly different frequencies. 
(a) The individual waves. (b) The 
combined wave. The envelope 
wave (dashed line) represents the 
beating of the combined sounds.

lation of elements of the medium varies with the position in space of the element 
in such a wave, we refer to the phenomenon as spatial interference. Standing waves in 
strings and pipes are common examples of spatial interference.
 Now let’s consider another type of interference, one that results from the super-
position of two waves having slightly different frequencies. In this case, when the two 
waves are observed at a point in space, they are periodically in and out of phase. 
That is, there is a temporal (time) alternation between constructive and destructive 
interference. As a consequence, we refer to this phenomenon as interference in time 
or temporal interference. For example, if two tuning forks of slightly different frequen-
cies are struck, one hears a sound of periodically varying amplitude. This phenom-
enon is called beating.

Beating is the periodic variation in amplitude at a given point due to the 
superposition of two waves having slightly different frequencies.

 The number of amplitude maxima one hears per second, or the beat frequency, 
equals the difference in frequency between the two sources as we shall show below. 
The maximum beat frequency that the human ear can detect is about 20 beats/s. 
When the beat frequency exceeds this value, the beats blend indistinguishably with 
the sounds producing them.
 Consider two sound waves of equal amplitude and slightly different frequencies 
f1 and f2 traveling through a medium. We use equations similar to Equation 16.13 to 
represent the wave functions for these two waves at a point that we identify as x 5 0.  
We also choose the phase angle in Equation 16.13 as f 5 p/2:

 y1 5 A sin ap

2
2 v1tb 5 A cos 12pf1t 2

 y2 5 A sin ap

2
2 v2tb 5 A cos 12pf 2t 2

Using the superposition principle, we find that the resultant wave function at this 
point is

y 5 y1 1 y2 5 A (cos 2pf1t 1 cos 2pf2t)

The trigonometric identity

cos a 1 cos b 5 2 cos aa 2 b
2

b cos aa 1 b
2

b
allows us to write the expression for y as

 y 5 c2A cos 2pa f1 2 f2

2
bt d  cos 2pa f1 1 f2

2
bt  (18.10)

Graphs of the individual waves and the resultant wave are shown in Figure 18.17. 
From the factors in Equation 18.10, we see that the resultant wave has an effective 

�W Definition of beating

�W  Resultant of two waves of 
different frequencies but 
equal amplitude

t = 1
2(f1−f2)

t = 3
2(f1−f2)

t = 5
2(f1−f2)



Beats
The time difference between minima is ∆t = 1

|f1−f2|
.

Thus the frequency of the beats is

fbeat = |f1 − f2|

If f1 and f2 are similar the beat frequency is much smaller than
either f1 or f2.

Humans cannot hear beats if fbeat & 30 Hz.

If the two frequencies are very different we hear a chord.

If the two frequencies are very close, we hear periodic variations in
the sound level.

This is used to tune musical instruments. When instruments are
coming into tune with each other the beats get less and less
frequent, and vanish entirely when they are perfectly in tune.
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Question

A tuning fork is known to vibrate with frequency 262 Hz. When it
is sounded along with a mandolin string, four beats are heard every
second. Next, a bit of tape is put onto each tine of the tuning
fork, and the tuning fork now produces five beats per second with
the same mandolin string. What is the frequency of the string?

(A) 257 Hz

(B) 258 Hz

(C) 266 Hz

(D) 267 Hz

1Serway & Jewett, objective question 7.
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Nonsinusoidal Periodic Waves

Not all periodic wave functions are pure, single-frequency
sinusoidal functions.
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18.8 Nonsinusoidal Wave Patterns
It is relatively easy to distinguish the sounds coming from a violin and a saxophone 
even when they are both playing the same note. On the other hand, a person 
untrained in music may have difficulty distinguishing a note played on a clarinet 
from the same note played on an oboe. We can use the pattern of the sound waves 
from various sources to explain these effects.
 When frequencies that are integer multiples of a fundamental frequency are 
combined to make a sound, the result is a musical sound. A listener can assign a 
pitch to the sound based on the fundamental frequency. Pitch is a psychological 
reaction to a sound that allows the listener to place the sound on a scale from low to 
high (bass to treble). Combinations of frequencies that are not integer multiples of 
a fundamental result in a noise rather than a musical sound. It is much harder for a 
listener to assign a pitch to a noise than to a musical sound.
 The wave patterns produced by a musical instrument are the result of the super-
position of frequencies that are integer multiples of a fundamental. This superposi-
tion results in the corresponding richness of musical tones. The human perceptive 
response associated with various mixtures of harmonics is the quality or timbre of 
the sound. For instance, the sound of the trumpet is perceived to have a “brassy” 
quality (that is, we have learned to associate the adjective brassy with that sound); 
this quality enables us to distinguish the sound of the trumpet from that of the sax-
ophone, whose quality is perceived as “reedy.” The clarinet and oboe, however, both 
contain air columns excited by reeds; because of this similarity, they have similar 
mixtures of frequencies and it is more difficult for the human ear to distinguish 
them on the basis of their sound quality.
 The sound wave patterns produced by the majority of musical instruments are 
nonsinusoidal. Characteristic patterns produced by a tuning fork, a flute, and a 
clarinet, each playing the same note, are shown in Figure 18.18. Each instrument 
has its own characteristic pattern. Notice, however, that despite the differences in 
the patterns, each pattern is periodic. This point is important for our analysis of 
these waves.
 The problem of analyzing nonsinusoidal wave patterns appears at first sight to 
be a formidable task. If the wave pattern is periodic, however, it can be represented 
as closely as desired by the combination of a sufficiently large number of sinusoidal 
waves that form a harmonic series. In fact, we can represent any periodic function 
as a series of sine and cosine terms by using a mathematical technique based on 
Fourier’s theorem.2 The corresponding sum of terms that represents the periodic 
wave pattern is called a Fourier series. Let y(t) be any function that is periodic in 
time with period T such that y(t 1 T) 5 y(t). Fourier’s theorem states that this func-
tion can be written as

 y(t) 5 o (An sin 2pfnt 1 Bn cos 2pfnt) (18.13)

where the lowest frequency is f1 5 1/T. The higher frequencies are integer multiples 
of the fundamental, fn 5 nf1, and the coefficients An and Bn represent the ampli-
tudes of the various waves. Figure 18.19 on page 554 represents a harmonic analysis 
of the wave patterns shown in Figure 18.18. Each bar in the graph represents one 
of the terms in the series in Equation 18.13 up to n 5 9. Notice that a struck tuning 
fork produces only one harmonic (the first), whereas the flute and clarinet produce 
the first harmonic and many higher ones.
 Notice the variation in relative intensity of the various harmonics for the flute 
and the clarinet. In general, any musical sound consists of a fundamental fre-
quency f plus other frequencies that are integer multiples of f, all having different 
intensities.

�W Fourier’s theorem

Pitfall Prevention 18.4
Pitch Versus Frequency Do not 
confuse the term pitch with fre-
quency. Frequency is the physical 
measurement of the number of 
oscillations per second. Pitch is a 
psychological reaction to sound 
that enables a person to place the 
sound on a scale from high to low 
or from treble to bass. Therefore, 
frequency is the stimulus and 
pitch is the response. Although 
pitch is related mostly (but not 
completely) to frequency, they are 
not the same. A phrase such as 
“the pitch of the sound” is incor-
rect because pitch is not a physical 
property of the sound.
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Figure 18.18  Sound wave pat-
terns produced by (a) a tuning 
fork, (b) a flute, and (c) a clarinet, 
each at approximately the same 
frequency.

2 Developed by Jean Baptiste Joseph Fourier (1786–1830).

For example this is why a flute
and a clarinet playing the same
note still sound a bit different.

Other harmonics in addition to
the fundamental are sounded.
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Summary

• musical instruments

• standing waves in rods and membranes

• beats

Test Tuesday, June 9.

Homework Serway & Jewett (suggested):

• Ch 17, onward from page 523. Probs: 30

• Ch 18, onward from page 555. Probs: 60


