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Last time

e standing waves in rods and membranes

e beats



Overview

e nonsinusoidal waves & Fourier components

intensity of a wave

sound level

the Doppler effect



Nonsinusoidal Periodic Waves

Not all periodic wave functions are pure, single-frequency
sinusoidal functions.



Nonsinusoidal Periodic Waves

Not all periodic wave functions are pure, single-frequency
sinusoidal functions.
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Tuning fork

For example this is why a flute
and a clarinet playing the same

p note still sound a bit different.
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Other harmonics in addition to
the fundamental are sounded.
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Nonsinusoidal Periodic Waves

How do these patterns come about physically?

They are made up of standing sound waves in the columns of the
instruments.

The first harmonic dominates, but the second, third, fourth, and
higher harmonics are also permitted.

Interference between these higher harmonics and the first harmonic
creates these more elaborate patterns.

y(t) = A cos(2mtfit) + Ay cos(2mtfrt) + As cos(2mfst) + ...



Nonsinusoidal Periodic Waves
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Nonsinusoidal Periodic Waves
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Nonsinusoidal Periodic Waves
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Fourier’s Theorem

These particular periodic functions created by instruments can be
expressed as sums of harmonics. What about other periodic
functions?



Fourier’s Theorem

These particular periodic functions created by instruments can be
expressed as sums of harmonics. What about other periodic
functions?

Any periodic function (that is piecewise continuous) can be
represented as a discrete sum of sine and cosine functions of the
form:

on + Z A, cos(27tnft) + B, sm(27mft))

Some of the A’s and/or B’'s may be zero.

This is called a Fourier series.



Fourier’s Theorem

Why does this work?

Sine and cosine functions of the form sin(nx) and cos(nx) where n

is any positive integer form a complete othonogonal set of
functions.



Fourier’s Theorem
Why does this work?

Sine and cosine functions of the form sin(nx) and cos(nx) where n
is any positive integer form a complete othonogonal set of
functions.

If n % m (n and m are integers):
Tt s
J sin(mx) cos(nx)dx = J sin(mx) sin(nx) dx =
- _

7T
7T
= J cos(mx) cos(nx)dx =0
—7T

and 7
J sin(nx) cos(nx)dx = 0
—T7T

In this sense they are orthogonal.



Fourier's Theorem
If n % m (n and m are integers):

Jﬁ sin(mx) cos(nx)dx = Jn sin(mx) sin(nx) dx =

7T
= J cos(mx) cos(nx)dx =0
—7T

d 7T
an J sin(nx) cos(nx)dx = 0
—7T

Meanwhile:

Jﬂ sin(nx)sin(nx)dx = Jﬂ cos(nx) cos(nx)dx = 7

This makes them work like a set of independent directions. Just
like any vector in 3-dimensional space can be represented as a sum
of 3 components, any periodic function can be represented by a
sum of components of these functions.



Example: Square Wave

sin(27f t) + 3 sin(2m3F t) m m
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Sum of all terms up to 9f.
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Example: Square Wave

sin(27f t) + 3 sin(2m3F t) m m —
/\

/
NN D
sin2rf 6+ Isin2n3F 1) KA e AN oo
. ""’ NS ./ \ "' NS ./ \
+1sin(2n5f t) A\ N/
P A Square wave o A
Sum of all terms up to 9f.

For a square wave (amplitude 1):

1 1
y(t) = 7% (sin(27tft) + gsin(27c3f t) + R sin(2rt5f t) + )



Fourier’s Theorem

What about non-periodic functions? Wave pulses, for example?

The idea of a Fourier series can be extended, but now it is not
enough to consider just terms like sin(nx) where n is a positive
integer.

We need to “sum” over a continuous range of values for n.



Fourier’s Theorem

What about non-periodic functions? Wave pulses, for example?

The idea of a Fourier series can be extended, but now it is not
enough to consider just terms like sin(nx) where n is a positive
integer.

We need to “sum” over a continuous range of values for n.
This becomes a Fourier transform.
Oo .
v = | g(nentar
—0o0

g(f) gives “amplitudes” as a complex-valued function of frequency.



Fourier’s Theorem

What about non-periodic functions? Wave pulses, for example?

The idea of a Fourier series can be extended, but now it is not
enough to consider just terms like sin(nx) where n is a positive
integer.

We need to “sum” over a continuous range of values for n.
This becomes a Fourier transform.
Oo .
v = | g(nentar
—00
g(f) gives “amplitudes” as a complex-valued function of frequency.

e'™ = cos nx 4 isin nx



Fourier’s Theorem

Gaussian Gaussian

Narrow — broad
Broad — narrow

'Figure from the National Radio Astronomy Observatory, Charlottesville,
website.



Intensity of a Wave

Intensity

the average power of a wave per unit area

Pay
I=2%
A

Intensity is used for waves that move on 3 dimensional media, such
as sound or light.

The waves travel in one direction, and the area A is arranged
perpendicular to the direction of the wave travel.



Intensity of a Waves from Point Sources

When a point source emits waves the waves propagate outward
with spherical wave fronts.

Rays are directed lines that trace out the direction of travel of the
wave.

Each surface moving out has larger area than the last: A = 47tr?



Intensity of a Waves from Point Sources

Wave front

Source

At a distance r the intensity is

P avg

I =

4712

'Figure from Serway & Jewett, page 513.



Intensity Question

The figure indicates the location of three small patches 1, 2, and 3
that lie on the surfaces of two imaginary spheres; the spheres are
centered on an isotropic point source S of sound. The rates at
which energy is transmitted through the three patches by
the sound waves are equal. Rank the patches according to the
intensity of the sound on them, greatest first.

(A) 1,2 3
[s (B) (1and?2), 3
°s /s (C) 3, (1 and 2)
~ (D) all the same

1HaIIiday, Resnick, Walker, page 454.
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Intensity Question

The figure indicates the location of three small patches 1, 2, and 3
that lie on the surfaces of two imaginary spheres; the spheres are
centered on an isotropic point source S of sound. The rates at
which energy is transmitted through the three patches by
the sound waves are equal. Rank the patches according to their
area, greatest first.

(A) 1,2, 3
[s (B) (1and?2), 3
°s /s (C) 3, (Land2) <—
~ (D) all the same

1Halliday, Resnick, Walker, page 454.



Power and Intensity of Sound Waves

Power = F - v

Consider a sound wave traveling in the x direction. A is area.

F = (AP)Aiand v = i

0
Power = (AP)Aa(smaxcos(kx—wt))

= PvWASmaxsin(kx — wt) (WSmax sin(kx — wt))
sin?(kx — wt)

_ 2,4 2
= pvwAs;.,



Power and Intensity of Sound Waves

2

Power = pvw?A Spax sin?(kx — wt)

To find the average power, we need to average this power arriving

at a point over a full cycle, time period T.

Consider a fixed position so that x is a constant.

1T
Powera,g = T J (pvw?A 52, sin?(kx — wt)) dt
0

1 T
= pvw?Asi., _,_J sin?(kx — wt) dt
0

1 (71
_ 2,2 L0 Lo -
= PVW ASH.y TJo 2(1 cos(2kx — 2wt)) dt

Power of a sound wave:

Power,yg = Epvw2A 2



Power and Intensity of Sound Waves

Power of a sound wave:

Dividing this by the area gives the intensity of a sound arriving on
that area:

1
I = Epv(wsmax)2

This can be written in terms of the pressure variation amplitude,

APax = PVWSmax:
(AIDYTIBX)2

I =
2pv



Summary

e Fourier components and nonsine waveforms
e intensity

e sound level
5th Test Tuesday, June 9.

Homework Serway & Jewett (suggested, same as yesterday):

e Ch 17, onward from page 523. Probs: 30
e Ch 18, onward from page 555. Probs: 60



