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Not all periodic wave functions are pure, single-frequency
sinusoidal functions.
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18.8 Nonsinusoidal Wave Patterns
It is relatively easy to distinguish the sounds coming from a violin and a saxophone 
even when they are both playing the same note. On the other hand, a person 
untrained in music may have difficulty distinguishing a note played on a clarinet 
from the same note played on an oboe. We can use the pattern of the sound waves 
from various sources to explain these effects.
 When frequencies that are integer multiples of a fundamental frequency are 
combined to make a sound, the result is a musical sound. A listener can assign a 
pitch to the sound based on the fundamental frequency. Pitch is a psychological 
reaction to a sound that allows the listener to place the sound on a scale from low to 
high (bass to treble). Combinations of frequencies that are not integer multiples of 
a fundamental result in a noise rather than a musical sound. It is much harder for a 
listener to assign a pitch to a noise than to a musical sound.
 The wave patterns produced by a musical instrument are the result of the super-
position of frequencies that are integer multiples of a fundamental. This superposi-
tion results in the corresponding richness of musical tones. The human perceptive 
response associated with various mixtures of harmonics is the quality or timbre of 
the sound. For instance, the sound of the trumpet is perceived to have a “brassy” 
quality (that is, we have learned to associate the adjective brassy with that sound); 
this quality enables us to distinguish the sound of the trumpet from that of the sax-
ophone, whose quality is perceived as “reedy.” The clarinet and oboe, however, both 
contain air columns excited by reeds; because of this similarity, they have similar 
mixtures of frequencies and it is more difficult for the human ear to distinguish 
them on the basis of their sound quality.
 The sound wave patterns produced by the majority of musical instruments are 
nonsinusoidal. Characteristic patterns produced by a tuning fork, a flute, and a 
clarinet, each playing the same note, are shown in Figure 18.18. Each instrument 
has its own characteristic pattern. Notice, however, that despite the differences in 
the patterns, each pattern is periodic. This point is important for our analysis of 
these waves.
 The problem of analyzing nonsinusoidal wave patterns appears at first sight to 
be a formidable task. If the wave pattern is periodic, however, it can be represented 
as closely as desired by the combination of a sufficiently large number of sinusoidal 
waves that form a harmonic series. In fact, we can represent any periodic function 
as a series of sine and cosine terms by using a mathematical technique based on 
Fourier’s theorem.2 The corresponding sum of terms that represents the periodic 
wave pattern is called a Fourier series. Let y(t) be any function that is periodic in 
time with period T such that y(t 1 T) 5 y(t). Fourier’s theorem states that this func-
tion can be written as

 y(t) 5 o (An sin 2pfnt 1 Bn cos 2pfnt) (18.13)

where the lowest frequency is f1 5 1/T. The higher frequencies are integer multiples 
of the fundamental, fn 5 nf1, and the coefficients An and Bn represent the ampli-
tudes of the various waves. Figure 18.19 on page 554 represents a harmonic analysis 
of the wave patterns shown in Figure 18.18. Each bar in the graph represents one 
of the terms in the series in Equation 18.13 up to n 5 9. Notice that a struck tuning 
fork produces only one harmonic (the first), whereas the flute and clarinet produce 
the first harmonic and many higher ones.
 Notice the variation in relative intensity of the various harmonics for the flute 
and the clarinet. In general, any musical sound consists of a fundamental fre-
quency f plus other frequencies that are integer multiples of f, all having different 
intensities.

�W Fourier’s theorem

Pitfall Prevention 18.4
Pitch Versus Frequency Do not 
confuse the term pitch with fre-
quency. Frequency is the physical 
measurement of the number of 
oscillations per second. Pitch is a 
psychological reaction to sound 
that enables a person to place the 
sound on a scale from high to low 
or from treble to bass. Therefore, 
frequency is the stimulus and 
pitch is the response. Although 
pitch is related mostly (but not 
completely) to frequency, they are 
not the same. A phrase such as 
“the pitch of the sound” is incor-
rect because pitch is not a physical 
property of the sound.
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Figure 18.18  Sound wave pat-
terns produced by (a) a tuning 
fork, (b) a flute, and (c) a clarinet, 
each at approximately the same 
frequency.

2 Developed by Jean Baptiste Joseph Fourier (1786–1830).

For example this is why a flute
and a clarinet playing the same
note still sound a bit different.

Other harmonics in addition to
the fundamental are sounded.
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How do these patterns come about physically?

They are made up of standing sound waves in the columns of the
instruments.

The first harmonic dominates, but the second, third, fourth, and
higher harmonics are also permitted.

Interference between these higher harmonics and the first harmonic
creates these more elaborate patterns.

y(t) = A1 cos(2πf1t) + A2 cos(2πf2t) + A3 cos(2πf3t) + ...



Nonsinusoidal Periodic Waves

 18.8 Nonsinusoidal Wave Patterns 553

18.8 Nonsinusoidal Wave Patterns
It is relatively easy to distinguish the sounds coming from a violin and a saxophone 
even when they are both playing the same note. On the other hand, a person 
untrained in music may have difficulty distinguishing a note played on a clarinet 
from the same note played on an oboe. We can use the pattern of the sound waves 
from various sources to explain these effects.
 When frequencies that are integer multiples of a fundamental frequency are 
combined to make a sound, the result is a musical sound. A listener can assign a 
pitch to the sound based on the fundamental frequency. Pitch is a psychological 
reaction to a sound that allows the listener to place the sound on a scale from low to 
high (bass to treble). Combinations of frequencies that are not integer multiples of 
a fundamental result in a noise rather than a musical sound. It is much harder for a 
listener to assign a pitch to a noise than to a musical sound.
 The wave patterns produced by a musical instrument are the result of the super-
position of frequencies that are integer multiples of a fundamental. This superposi-
tion results in the corresponding richness of musical tones. The human perceptive 
response associated with various mixtures of harmonics is the quality or timbre of 
the sound. For instance, the sound of the trumpet is perceived to have a “brassy” 
quality (that is, we have learned to associate the adjective brassy with that sound); 
this quality enables us to distinguish the sound of the trumpet from that of the sax-
ophone, whose quality is perceived as “reedy.” The clarinet and oboe, however, both 
contain air columns excited by reeds; because of this similarity, they have similar 
mixtures of frequencies and it is more difficult for the human ear to distinguish 
them on the basis of their sound quality.
 The sound wave patterns produced by the majority of musical instruments are 
nonsinusoidal. Characteristic patterns produced by a tuning fork, a flute, and a 
clarinet, each playing the same note, are shown in Figure 18.18. Each instrument 
has its own characteristic pattern. Notice, however, that despite the differences in 
the patterns, each pattern is periodic. This point is important for our analysis of 
these waves.
 The problem of analyzing nonsinusoidal wave patterns appears at first sight to 
be a formidable task. If the wave pattern is periodic, however, it can be represented 
as closely as desired by the combination of a sufficiently large number of sinusoidal 
waves that form a harmonic series. In fact, we can represent any periodic function 
as a series of sine and cosine terms by using a mathematical technique based on 
Fourier’s theorem.2 The corresponding sum of terms that represents the periodic 
wave pattern is called a Fourier series. Let y(t) be any function that is periodic in 
time with period T such that y(t 1 T) 5 y(t). Fourier’s theorem states that this func-
tion can be written as

 y(t) 5 o (An sin 2pfnt 1 Bn cos 2pfnt) (18.13)

where the lowest frequency is f1 5 1/T. The higher frequencies are integer multiples 
of the fundamental, fn 5 nf1, and the coefficients An and Bn represent the ampli-
tudes of the various waves. Figure 18.19 on page 554 represents a harmonic analysis 
of the wave patterns shown in Figure 18.18. Each bar in the graph represents one 
of the terms in the series in Equation 18.13 up to n 5 9. Notice that a struck tuning 
fork produces only one harmonic (the first), whereas the flute and clarinet produce 
the first harmonic and many higher ones.
 Notice the variation in relative intensity of the various harmonics for the flute 
and the clarinet. In general, any musical sound consists of a fundamental fre-
quency f plus other frequencies that are integer multiples of f, all having different 
intensities.

�W Fourier’s theorem

Pitfall Prevention 18.4
Pitch Versus Frequency Do not 
confuse the term pitch with fre-
quency. Frequency is the physical 
measurement of the number of 
oscillations per second. Pitch is a 
psychological reaction to sound 
that enables a person to place the 
sound on a scale from high to low 
or from treble to bass. Therefore, 
frequency is the stimulus and 
pitch is the response. Although 
pitch is related mostly (but not 
completely) to frequency, they are 
not the same. A phrase such as 
“the pitch of the sound” is incor-
rect because pitch is not a physical 
property of the sound.

Tuning fork

Flute

Clarinet

t

t

t

b

c

a

Figure 18.18  Sound wave pat-
terns produced by (a) a tuning 
fork, (b) a flute, and (c) a clarinet, 
each at approximately the same 
frequency.

2 Developed by Jean Baptiste Joseph Fourier (1786–1830).

554 Chapter 18 Superposition and Standing Waves

Square wave

5f

f

3f

f

3f

b

c

a
Waves of frequency f and 
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One more odd harmonic 
of frequency 5f  is added 
to give the green curve.

The synthesis curve 
(red-brown) approaches 
closer to the square wave 
(black curve) when odd 
frequencies up to 9f  are 
added.

Figure 18.20 Fourier synthesis 
of a square wave, represented by 
the sum of odd multiples of the 
first harmonic, which has fre-
quency f.

 We have discussed the analysis of a wave pattern using Fourier’s theorem. The 
analysis involves determining the coefficients of the harmonics in Equation 18.13 
from a knowledge of the wave pattern. The reverse process, called Fourier synthesis, 
can also be performed. In this process, the various harmonics are added together 
to form a resultant wave pattern. As an example of Fourier synthesis, consider the 
building of a square wave as shown in Figure 18.20. The symmetry of the square 
wave results in only odd multiples of the fundamental frequency combining in its 
synthesis. In Figure 18.20a, the blue curve shows the combination of f and 3f. In 
Figure 18.20b, we have added 5f to the combination and obtained the green curve. 
Notice how the general shape of the square wave is approximated, even though the 
upper and lower portions are not flat as they should be.
 Figure 18.20c shows the result of adding odd frequencies up to 9f. This approxi-
mation (red-brown curve) to the square wave is better than the approximations 
in Figures 18.20a and 18.20b. To approximate the square wave as closely as pos-
sible, we must add all odd multiples of the fundamental frequency, up to infinite 
frequency.
 Using modern technology, musical sounds can be generated electronically by 
mixing different amplitudes of any number of harmonics. These widely used elec-
tronic music synthesizers are capable of producing an infinite variety of musical 
tones.
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Figure 18.19  Harmonics of the wave patterns shown in Figure 18.18. Notice the variations in inten-
sity of the various harmonics. Parts (a), (b), and (c) correspond to those in Figure 18.18.
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wave results in only odd multiples of the fundamental frequency combining in its 
synthesis. In Figure 18.20a, the blue curve shows the combination of f and 3f. In 
Figure 18.20b, we have added 5f to the combination and obtained the green curve. 
Notice how the general shape of the square wave is approximated, even though the 
upper and lower portions are not flat as they should be.
 Figure 18.20c shows the result of adding odd frequencies up to 9f. This approxi-
mation (red-brown curve) to the square wave is better than the approximations 
in Figures 18.20a and 18.20b. To approximate the square wave as closely as pos-
sible, we must add all odd multiples of the fundamental frequency, up to infinite 
frequency.
 Using modern technology, musical sounds can be generated electronically by 
mixing different amplitudes of any number of harmonics. These widely used elec-
tronic music synthesizers are capable of producing an infinite variety of musical 
tones.
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Figure 18.19  Harmonics of the wave patterns shown in Figure 18.18. Notice the variations in inten-
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Fourier’s Theorem

These particular periodic functions created by instruments can be
expressed as sums of harmonics. What about other periodic
functions?

Any periodic function (that is piecewise continuous) can be
represented as a discrete sum of sine and cosine functions of the
form:

y(t) =
1

2
A0 +

∞∑
n=1

(
An cos(2πnft) + Bn sin(2πnft)

)

Some of the A’s and/or B’s may be zero.

This is called a Fourier series.
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Fourier’s Theorem

Why does this work?

Sine and cosine functions of the form sin(nx) and cos(nx) where n
is any positive integer form a complete othonogonal set of
functions.

If n 6= m (n and m are integers):∫π
−π

sin(mx) cos(nx) dx =

∫π
−π

sin(mx) sin(nx) dx =

=

∫π
−π

cos(mx) cos(nx) dx = 0

and ∫π
−π

sin(nx) cos(nx) dx = 0

In this sense they are orthogonal.
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Example: Square Wave

sin(2π f t) + 1
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5 sin(2π 5f t)

Sum of all terms up to 9f .
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sity of the various harmonics. Parts (a), (b), and (c) correspond to those in Figure 18.18.
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Fourier’s Theorem

What about non-periodic functions? Wave pulses, for example?

The idea of a Fourier series can be extended, but now it is not
enough to consider just terms like sin(nx) where n is a positive
integer.

We need to “sum” over a continuous range of values for n.

This becomes a Fourier transform.

y(t) =

∫∞
−∞ g(f )e2πift df

g(f ) gives “amplitudes” as a complex-valued function of frequency.

e inx = cos nx + i sin nx
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1Figure from the National Radio Astronomy Observatory, Charlottesville,
website.



Intensity of a Wave

Intensity

the average power of a wave per unit area

I =
Pavg

A

Intensity is used for waves that move on 3 dimensional media, such
as sound or light.

The waves travel in one direction, and the area A is arranged
perpendicular to the direction of the wave travel.



Intensity of a Waves from Point Sources

When a point source emits waves the waves propagate outward
with spherical wave fronts.

 17.3 Intensity of Periodic Sound Waves 513

5 rvvAsmax sin 1kx 2 vt 2 4 3vsmax sin 1kx 2 vt 2 4
5 rvv2As 2

max sin2 1kx 2 vt 2
We now find the time average power over one period of the oscillation. For any 
given value of x, which we can choose to be x 5 0, the average value of sin2 (kx 2 vt) 
over one period T is

1
T
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0
 sin2 10 2 vt 2  dt 5
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 sin2 vt dt 5
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T
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sin 2vt
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b ` T
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5 1
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Therefore, 1Power 2 avg 5 1
2 rvv2As2

max

 We define the intensity I of a wave, or the power per unit area, as the rate at 
which the energy transported by the wave transfers through a unit area A perpen-
dicular to the direction of travel of the wave:

 I ;
1Power 2 avg

A
 (17.11)

In this case, the intensity is therefore

I 5 1
2 rv 1vsmax 22

 Hence, the intensity of a periodic sound wave is proportional to the square of the 
displacement amplitude and to the square of the angular frequency. This expres-
sion can also be written in terms of the pressure amplitude DPmax; in this case, we 
use Equation 17.10 to obtain

 I 5
1DPmax 22

2rv
 (17.12)

 The string waves we studied in Chapter 16 are constrained to move along the 
one-dimensional string, as discussed in the introduction to this chapter. The sound 
waves we have studied with regard to Figures 17.1 through 17.3 and 17.5 are con-
strained to move in one dimension along the length of the tube. As we mentioned 
in the introduction, however, sound waves can move through three-dimensional 
bulk media, so let’s place a sound source in the open air and study the results. 
 Consider the special case of a point source emitting sound waves equally in all 
directions. If the air around the source is perfectly uniform, the sound power radi-
ated in all directions is the same, and the speed of sound in all directions is the 
same. The result in this situation is called a spherical wave. Figure 17.6 shows these 
spherical waves as a series of circular arcs concentric with the source. Each arc rep-
resents a surface over which the phase of the wave is constant. We call such a sur-
face of constant phase a wave front. The radial distance between adjacent wave 
fronts that have the same phase is the wavelength l of the wave. The radial lines 
pointing outward from the source, representing the direction of propagation of 
the waves, are called rays.
 The average power emitted by the source must be distributed uniformly over 
each spherical wave front of area 4pr 2. Hence, the wave intensity at a distance r 
from the source is

 I 5
1Power 2 avg

A
5

1Power 2 avg

4pr 2  (17.13)

The intensity decreases as the square of the distance from the source. This inverse-
square law is reminiscent of the behavior of gravity in Chapter 13.

�W Intensity of a sound wave

Ray

Source

l

Wave front

The rays are radial lines pointing 
outward from the source, 
perpendicular to the wave fronts.

Figure 17.6  Spherical waves 
emitted by a point source. The 
circular arcs represent the spheri-
cal wave fronts that are concentric 
with the source.

Rays are directed lines that trace out the direction of travel of the
wave.

Each surface moving out has larger area than the last: A = 4πr2



Intensity of a Waves from Point Sources
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At a distance r the intensity is

I =
Pavg

4πr2

1Figure from Serway & Jewett, page 513.



Intensity Question

The figure indicates the location of three small patches 1, 2, and 3
that lie on the surfaces of two imaginary spheres; the spheres are
centered on an isotropic point source S of sound. The rates at
which energy is transmitted through the three patches by
the sound waves are equal. Rank the patches according to the
intensity of the sound on them, greatest first.
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The figure indicates three small patches 1, 2, and 3 that lie
on the surfaces of two imaginary spheres; the spheres are
centered on an isotropic point source S of sound. The
rates at which energy is transmitted through the three
patches by the sound waves are equal. Rank the patches
according to (a) the intensity of the sound on them and
(b) their area, greatest first.

S
3

1

2

The Decibel Scale
The displacement amplitude at the human ear ranges from about 10!5 m for
the loudest tolerable sound to about 10!11 m for the faintest detectable sound,
a ratio of 106. From Eq. 17-27 we see that the intensity of a sound varies as the
square of its amplitude, so the ratio of intensities at these two limits of the hu-
man auditory system is 1012. Humans can hear over an enormous range of 
intensities.

We deal with such an enormous range of values by using logarithms.
Consider the relation

y " log x,

in which x and y are variables. It is a property of this equation that if we multiply
x by 10, then y increases by 1.To see this, we write

y# " log(10x) " log 10 $ log x " 1 $ y.

Similarly, if we multiply x by 1012, y increases by only 12.
Thus, instead of speaking of the intensity I of a sound wave, it is much more

convenient to speak of its sound level b, defined as

(17-29)

Here dB is the abbreviation for decibel, the unit of sound level, a name that was
chosen to recognize the work of Alexander Graham Bell. I0 in Eq. 17-29 is a
standard reference intensity (" 10!12 W/m2), chosen because it is near the lower
limit of the human range of hearing. For I " I0, Eq. 17-29 gives b " 10 log 1 " 0,
so our standard reference level corresponds to zero decibels. Then b increases
by 10 dB every time the sound intensity increases by an order of magnitude (a fac-
tor of 10). Thus, b " 40 corresponds to an intensity that is 104 times the standard
reference level.Table 17-2 lists the sound levels for a variety of environments.

Derivation of Eq. 17-27
Consider, in Fig. 17-4a, a thin slice of air of thickness dx, area A, and mass dm,
oscillating back and forth as the sound wave of Eq. 17-12 passes through it. The
kinetic energy dK of the slice of air is

(17-30)
Here vs is not the speed of the wave but the speed of the oscillating element of air,
obtained from Eq. 17-12 as

Using this relation and putting dm " rA dx allow us to rewrite Eq. 17-30 as

dK " (rA dx)(!vsm)2 sin2(kx ! vt). (17-31)1
2

vs "
%s
%t

" !&sm sin(kx ! &t).

dK " 1
2 dm v2

s.

' " (10 dB) log 
I
I0

.

Sound can cause the wall of a drinking glass
to oscillate. If the sound produces a
standing wave of oscillations and if the
intensity of the sound is large enough, the
glass will shatter. (Ben Rose/The Image
Bank/Getty Images)

Some Sound Levels (dB)

Hearing threshold 0
Rustle of leaves 10
Conversation 60
Rock concert 110
Pain threshold 120
Jet engine 130

Table 17-2

halliday_c17_445-475hr.qxd  26-10-2009  22:16  Page 454

(A) 1, 2, 3

(B) (1 and 2), 3

(C) 3, (1 and 2)

(D) all the same

1Halliday, Resnick, Walker, page 454.
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standing wave of oscillations and if the
intensity of the sound is large enough, the
glass will shatter. (Ben Rose/The Image
Bank/Getty Images)

Some Sound Levels (dB)

Hearing threshold 0
Rustle of leaves 10
Conversation 60
Rock concert 110
Pain threshold 120
Jet engine 130

Table 17-2
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(A) 1, 2, 3

(B) (1 and 2), 3 ←
(C) 3, (1 and 2)

(D) all the same

1Halliday, Resnick, Walker, page 454.
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limit of the human range of hearing. For I " I0, Eq. 17-29 gives b " 10 log 1 " 0,
so our standard reference level corresponds to zero decibels. Then b increases
by 10 dB every time the sound intensity increases by an order of magnitude (a fac-
tor of 10). Thus, b " 40 corresponds to an intensity that is 104 times the standard
reference level.Table 17-2 lists the sound levels for a variety of environments.

Derivation of Eq. 17-27
Consider, in Fig. 17-4a, a thin slice of air of thickness dx, area A, and mass dm,
oscillating back and forth as the sound wave of Eq. 17-12 passes through it. The
kinetic energy dK of the slice of air is

(17-30)
Here vs is not the speed of the wave but the speed of the oscillating element of air,
obtained from Eq. 17-12 as

Using this relation and putting dm " rA dx allow us to rewrite Eq. 17-30 as

dK " (rA dx)(!vsm)2 sin2(kx ! vt). (17-31)1
2

vs "
%s
%t

" !&sm sin(kx ! &t).

dK " 1
2 dm v2

s.

' " (10 dB) log 
I
I0

.

Sound can cause the wall of a drinking glass
to oscillate. If the sound produces a
standing wave of oscillations and if the
intensity of the sound is large enough, the
glass will shatter. (Ben Rose/The Image
Bank/Getty Images)

Some Sound Levels (dB)

Hearing threshold 0
Rustle of leaves 10
Conversation 60
Rock concert 110
Pain threshold 120
Jet engine 130

Table 17-2

halliday_c17_445-475hr.qxd  26-10-2009  22:16  Page 454

(A) 1, 2, 3

(B) (1 and 2), 3

(C) 3, (1 and 2)

(D) all the same

1Halliday, Resnick, Walker, page 454.



Intensity Question

The figure indicates the location of three small patches 1, 2, and 3
that lie on the surfaces of two imaginary spheres; the spheres are
centered on an isotropic point source S of sound. The rates at
which energy is transmitted through the three patches by
the sound waves are equal. Rank the patches according to their
area, greatest first.

454 CHAPTE R 17 WAVE S—I I

CHECKPOINT 2

The figure indicates three small patches 1, 2, and 3 that lie
on the surfaces of two imaginary spheres; the spheres are
centered on an isotropic point source S of sound. The
rates at which energy is transmitted through the three
patches by the sound waves are equal. Rank the patches
according to (a) the intensity of the sound on them and
(b) their area, greatest first.

S
3

1

2

The Decibel Scale
The displacement amplitude at the human ear ranges from about 10!5 m for
the loudest tolerable sound to about 10!11 m for the faintest detectable sound,
a ratio of 106. From Eq. 17-27 we see that the intensity of a sound varies as the
square of its amplitude, so the ratio of intensities at these two limits of the hu-
man auditory system is 1012. Humans can hear over an enormous range of 
intensities.

We deal with such an enormous range of values by using logarithms.
Consider the relation

y " log x,

in which x and y are variables. It is a property of this equation that if we multiply
x by 10, then y increases by 1.To see this, we write

y# " log(10x) " log 10 $ log x " 1 $ y.

Similarly, if we multiply x by 1012, y increases by only 12.
Thus, instead of speaking of the intensity I of a sound wave, it is much more

convenient to speak of its sound level b, defined as

(17-29)

Here dB is the abbreviation for decibel, the unit of sound level, a name that was
chosen to recognize the work of Alexander Graham Bell. I0 in Eq. 17-29 is a
standard reference intensity (" 10!12 W/m2), chosen because it is near the lower
limit of the human range of hearing. For I " I0, Eq. 17-29 gives b " 10 log 1 " 0,
so our standard reference level corresponds to zero decibels. Then b increases
by 10 dB every time the sound intensity increases by an order of magnitude (a fac-
tor of 10). Thus, b " 40 corresponds to an intensity that is 104 times the standard
reference level.Table 17-2 lists the sound levels for a variety of environments.

Derivation of Eq. 17-27
Consider, in Fig. 17-4a, a thin slice of air of thickness dx, area A, and mass dm,
oscillating back and forth as the sound wave of Eq. 17-12 passes through it. The
kinetic energy dK of the slice of air is

(17-30)
Here vs is not the speed of the wave but the speed of the oscillating element of air,
obtained from Eq. 17-12 as

Using this relation and putting dm " rA dx allow us to rewrite Eq. 17-30 as

dK " (rA dx)(!vsm)2 sin2(kx ! vt). (17-31)1
2

vs "
%s
%t

" !&sm sin(kx ! &t).

dK " 1
2 dm v2

s.

' " (10 dB) log 
I
I0

.

Sound can cause the wall of a drinking glass
to oscillate. If the sound produces a
standing wave of oscillations and if the
intensity of the sound is large enough, the
glass will shatter. (Ben Rose/The Image
Bank/Getty Images)

Some Sound Levels (dB)

Hearing threshold 0
Rustle of leaves 10
Conversation 60
Rock concert 110
Pain threshold 120
Jet engine 130

Table 17-2

halliday_c17_445-475hr.qxd  26-10-2009  22:16  Page 454

(A) 1, 2, 3

(B) (1 and 2), 3

(C) 3, (1 and 2) ←
(D) all the same

1Halliday, Resnick, Walker, page 454.



Power and Intensity of Sound Waves

Power = F · v

Consider a sound wave traveling in the x direction. A is area.

F = (∆P)Ai and v = ∂s
∂t i

Power = (∆P)A
∂

∂t
(smax cos(kx −ωt))

= ρvωAsmax sin(kx −ωt) (ωsmax sin(kx −ωt))

= ρvω2A s2max sin2(kx −ωt)



Power and Intensity of Sound Waves

Power = ρvω2A s2max sin2(kx −ωt)

To find the average power, we need to average this power arriving
at a point over a full cycle, time period T .

Consider a fixed position so that x is a constant.

Poweravg =
1

T

∫T
0

(
ρvω2A s2max sin2(kx −ωt)

)
dt

= ρvω2A s2max

1

T

∫T
0

sin2(kx −ωt) dt

= ρvω2A s2max

1

T

∫T
0

1

2
(1 − cos(2kx − 2ωt)) dt

Power of a sound wave:

Poweravg =
1

2
ρvω2A s2max



Power and Intensity of Sound Waves

Power of a sound wave:

Poweravg =
1

2
ρAω2 s2maxv

Dividing this by the area gives the intensity of a sound arriving on
that area:

I =
1

2
ρv(ωsmax)

2

This can be written in terms of the pressure variation amplitude,
∆Pmax = ρvωsmax:

I =
(∆Pmax)

2

2ρv



Summary

• Fourier components and nonsine waveforms

• intensity

• sound level

5th Test Tuesday, June 9.

Homework Serway & Jewett (suggested, same as yesterday):

• Ch 17, onward from page 523. Probs: 30

• Ch 18, onward from page 555. Probs: 60


