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Last time

• the Doppler effect

• bow and shock waves



Overview

• the nature of light

• the wave equation for light

• the speed of light



Light

We are now moving on to chapters 35-38.

Light is also a wave.



What is Light?

Physicists have long been interested in the nature and uses of
light.

Egyptians and Mesopotamians developed lenses. Later Greeks and
Indians began to develop a theory of geometric optics

Geometric optics was greatly advanced in 800-1000 by Arab
philosophers, especially Ibn al-Haytham (called Alhazen).

Newton developed a particle model of light, which explained
reflection and refraction.

Christian Huygens proposed a wave model of light (1678) and
pointed out that it could also explain reflection and refraction, but
it was less popular.



What is Light?

Thomas Young experimentally demonstrated the interference of
light, which confirmed that it needed to be considered as being
wave-like.

This fit with the understanding of Maxwell’s equations.

Hertz then discovered the Photoelectric effect and was unable to
explain it with a wave model of light.



Photoelectric Effect

Metal rod

Glass container

Zinc plate

Foil leaf

Incoming radiation

Even very intense light at a low frequency will not allow the plate
to discharge. As soon as just a little light at a high frequency falls
on the plate it begins discharging.



What is Light?
Recall the blackbody radiation distribution of wavelengths.

Classical theory, with light as a wave, could not explain the shape
of the distribution.

Max Planck suggested a model that imagined light energy came in
discrete units.

1Graph from Wikipedia, created by user Darth Kule.



What is Light?

Einstein resolved the issue of the photoelectric effect by taking
literally Planck’s quantization model and showing that light
behaves like a wave, but also like a particle.

The “particles” of light are called photons.

The energy of a photon depends on its frequency:

E = hf

where h = 6.63× 10−34 J s is Planck’s constant.



Speed of Light

Light travels very fast.

We can figure out how fast it goes from Maxwell’s laws, by deriving
a wave equation from them. (Skipping! See Ch 34 for a proof.)



Maxwell’s Equations

∮
E · dA =

qenc
ε0∮

B · dA = 0∮
E · ds = −

dΦB

dt∮
B · ds = µ0ε0

dΦE

dt
+µ0Ienc

In free space (a vacuum) with no charges qenc = 0 and Ienc = 0.

1Strictly, these are Maxwell’s equations in a vacuum.



Maxwell’s Equations Differential Form

∇ · E =
ρ

ε0

∇ · B = 0

∇× E = −
∂B

∂t

∇× B = µ0ε0
∂E

∂t
+ µ0J

In free space with no charges ρ = 0 and J = 0.



Maxwell’s Equations and the Wave Equation

By taking a derivative and plugging Maxwell’s equations into one
another:

∂2E

∂x2
= µ0ε0

∂2E

∂t2

The wave equation!



Another Implication of Maxwell’s Equations

For a wave propogating in x direction:

∂2E

∂x2
=

1

c2
∂2E

∂t2

The constant c appears as the wave speed and

c =
1

√
µ0ε0

c = 3.00× 108 m/s, is the speed of light.

The values of ε0 and µ0 together predict the speed of light!

ε0 = 8.85× 10−12 C2 N−1m−2 and µ0 = 4π× 10−7 kg m C−2



Another Implication of Maxwell’s Equations

The same process gives the same wave equation for the magnetic
field: ∂2B

∂x2
= 1

c2
∂2B
∂t2

Wave solutions:

E = E0 sin(kx −ωt)

B = B0 sin(kx −ωt)

where c = ω
k .

These two solutions are in phase. There is no offset in the angles
inside the sine functions.

The two fields peak at the same point in space and time.

At all times:
E

B
= c



Maxwell’s Equations and the Wave Equation

Wave solutions for the wave equation in for E and B:

E = E0 sin(kx −ωt)

B = B0 sin(kx −ωt)

where c = ω
k .

These two solutions are in phase. There is no offset in the angles
inside the sine functions.



Measurements of the Speed of Light

Since light propagates so quickly it is difficult to measure its speed
in practice.

Galileo and others tried to measure it with procedures that relied
on human reactions.

Human reactions are way too slow! This error dominates the data.

Many clever alternative methods were developed.



Roemer’s Method (Skipping)

Ole Roemer observed the orbit of Io, a moon of Jupiter.
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Roemer’s Method
In 1675, Danish astronomer Ole Roemer (1644–1710) made the first successful esti-
mate of the speed of light. Roemer’s technique involved astronomical observations 
of Io, one of the moons of Jupiter. Io has a period of revolution around Jupiter of 
approximately 42.5 h. The period of revolution of Jupiter around the Sun is about 
12 yr; therefore, as the Earth moves through 90° around the Sun, Jupiter revolves 
through only ( 1

12)90° 5 7.5° (Fig. 35.1).
 An observer using the orbital motion of Io as a clock would expect the orbit to 
have a constant period. After collecting data for more than a year, however, Roemer 
observed a systematic variation in Io’s period. He found that the periods were lon-
ger than average when the Earth was receding from Jupiter and shorter than aver-
age when the Earth was approaching Jupiter. Roemer attributed this variation in 
period to the distance between the Earth and Jupiter changing from one observa-
tion to the next.
 Using Roemer’s data, Huygens estimated the lower limit for the speed of light to 
be approximately 2.3 3 108 m/s. This experiment is important historically because it 
demonstrated that light does have a finite speed and gave an estimate of this speed.

Fizeau’s Method
The first successful method for measuring the speed of light by means of purely ter-
restrial techniques was developed in 1849 by French physicist Armand H. L. Fizeau 
(1819–1896). Figure 35.2 represents a simplified diagram of Fizeau’s apparatus. 
The basic procedure is to measure the total time interval during which light travels 
from some point to a distant mirror and back. If d is the distance between the light 
source (considered to be at the location of the wheel) and the mirror and if the 
time interval for one round trip is Dt, the speed of light is c 5 2d/Dt.
 To measure the transit time, Fizeau used a rotating toothed wheel, which con-
verts a continuous beam of light into a series of light pulses. The rotation of such a 
wheel controls what an observer at the light source sees. For example, if the pulse 
traveling toward the mirror and passing the opening at point A in Figure 35.2 
should return to the wheel at the instant tooth B had rotated into position to cover 
the return path, the pulse would not reach the observer. At a greater rate of rota-
tion, the opening at point C could move into position to allow the reflected pulse to 
reach the observer. Knowing the distance d, the number of teeth in the wheel, and 
the angular speed of the wheel, Fizeau arrived at a value of 3.1 3 108 m/s. Similar 
measurements made by subsequent investigators yielded more precise values for c, 
which led to the currently accepted value of 2.997 924 58 3 108 m/s.
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Figure 35.2  Fizeau’s method for 
measuring the speed of light using 
a rotating toothed wheel. The 
light source is considered to be at 
the location of the wheel; there-
fore, the distance d is known.

Example 35.1   Measuring the Speed of Light with Fizeau’s Wheel 

Assume Fizeau’s wheel has 360 teeth and rotates at 27.5 rev/s when a pulse of light passing through opening A in Fig-
ure 35.2 is blocked by tooth B on its return. If the distance to the mirror is 7 500 m, what is the speed of light?

Conceptualize  Imagine a pulse of light passing through opening A in Figure 35.2 and reflecting from the mirror. By 
the time the pulse arrives back at the wheel, tooth B has rotated into the position previously occupied by opening A.

Categorize  The wheel is a rigid object rotating at constant angular speed. We model the pulse of light as a particle 
under constant speed.

Analyze  The wheel has 360 teeth, so it must have 360 openings. Therefore, because the light passes through opening 
A but is blocked by the tooth immediately adjacent to A, the wheel must rotate through an angular displacement of  
1

720 rev in the time interval during which the light pulse makes its round trip.

AM

S O L U T I O N

Use Equation 10.2, with the angular speed constant, to 
find the time interval for the pulse’s round trip:

Dt 5
Du

v
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720 rev

27.5 rev/s
5 5.05 3 1025 s

J1
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E2
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In the time interval during which 
the Earth travels 90! around the 
Sun (three months), Jupiter 
travels only about 7.5!.

Figure 35.1  Roemer’s method 
for measuring the speed of light 
(drawing not to scale).

If light travels infinitely fast, the orbit should always be observed to
have the same period. Instead it appears to have a slightly shorter
period as Earth approaches Jupiter and longer when Earth moves
away.

Roemer’s 1675 lower limit for c : 2.3× 108 m/s.



Wheatstone’s Rotating Mirror (Skipping)

Charles Wheatstone created a rotating mirror arrangement to
study fast phenomena in electricity.

He told Françios Arago that he thought this could be used to
measure the speed of light.

Arago passed on the suggestion to Armand Fizeau and Léon
Foucault who were collaborating on various optical studies. He
suggested it might be useful to measure the speed of light in water
as well as air to compare them.

Fizeau and Foucault then fell out and stopped working together.
Both pursued their investigation separately.



Fizeau’s Method

Fizeau sent a beam of light through a gear-tooth wheel toward a
mirror 5 miles (8 km) away.
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wheel controls what an observer at the light source sees. For example, if the pulse 
traveling toward the mirror and passing the opening at point A in Figure 35.2 
should return to the wheel at the instant tooth B had rotated into position to cover 
the return path, the pulse would not reach the observer. At a greater rate of rota-
tion, the opening at point C could move into position to allow the reflected pulse to 
reach the observer. Knowing the distance d, the number of teeth in the wheel, and 
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measurements made by subsequent investigators yielded more precise values for c, 
which led to the currently accepted value of 2.997 924 58 3 108 m/s.
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Figure 35.2  Fizeau’s method for 
measuring the speed of light using 
a rotating toothed wheel. The 
light source is considered to be at 
the location of the wheel; there-
fore, the distance d is known.

Example 35.1   Measuring the Speed of Light with Fizeau’s Wheel 

Assume Fizeau’s wheel has 360 teeth and rotates at 27.5 rev/s when a pulse of light passing through opening A in Fig-
ure 35.2 is blocked by tooth B on its return. If the distance to the mirror is 7 500 m, what is the speed of light?

Conceptualize  Imagine a pulse of light passing through opening A in Figure 35.2 and reflecting from the mirror. By 
the time the pulse arrives back at the wheel, tooth B has rotated into the position previously occupied by opening A.

Categorize  The wheel is a rigid object rotating at constant angular speed. We model the pulse of light as a particle 
under constant speed.

Analyze  The wheel has 360 teeth, so it must have 360 openings. Therefore, because the light passes through opening 
A but is blocked by the tooth immediately adjacent to A, the wheel must rotate through an angular displacement of  
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720 rev in the time interval during which the light pulse makes its round trip.
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Figure 35.1  Roemer’s method 
for measuring the speed of light 
(drawing not to scale).

The teeth broke up the beam into pulses as it rotated.

When the wheel rotates fast enough, the light passing through gap
A is blocked by tooth B on its return from the mirror.



Fizeau’s Wheel Example
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Assume Fizeau’s wheel has 360 teeth and rotates at 27.5 rev/s
when a pulse of light passing through opening A is blocked by
tooth B on its return. If the distance to the mirror is 7500 m, what
is the speed of light?

∆t =
∆θ

ω
c =

2d

∆t

c = 2.97× 108 m/s
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Foucault’s Method

Foucault used a rotating mirror, to send light from a source to a
stationary mirror and back again.

(Foucault did not use a laser, obviously.)

1Figure from Wikipedia, by user Rhodesl.



Foucault’s Method

The angle formed between the source and the returning light beam
allowed him to figure out how much the mirror had rotated
(therefore how much time had passed) while the light traveled
from R to M and back.

Foucault could only separate the mirrors by a distance of 20m, due
to limitations on his mirrors and lenses.

1Figure from Wikipedia, by user Stigmatella aurantiaca.



Michelson’s Refinement

Albert Michelson adapted Foucault’s apparatus to increase path
length of the light to 22 miles!

He used two observatories on adjacent mountains.

In spite of a forest fire and an earthquake, he got the value of

299, 796± 4 km/s

This is only 4 km/s faster that the current accepted value.

He later worked on the famous Michelson-Morley experiment which
showed that light needs no medium.



Summary

• light and the wave equation

Homework Serway & Jewett: (will appear on WebAssign)

• Ch 35, onward from page 1077. CQs: 15; Probs: 1, 3



Appendix: Notation

The differential operators in 3 dimensions.

Gradient of a scalar field at a point, f :

∇f =
∂f

∂x
i +

∂f

∂y
j +

∂f

∂z
k

Divergence of a vector field at a point v = [vx , vy , vz ]:

∇ · v =
∂vx
∂x

+
∂vy
∂y

+
∂vz
∂z

Curl of a vector field at a point v:

∇× v =

(
∂vz
∂y

−
∂vy
∂z

)
i +

(
∂vx
∂z

−
∂vz
∂x

)
j +

(
∂vy
∂x

−
∂vx
∂y

)
k



Appendix: Maxwell’s Equations and the Wave
Equation (More complete derivation)

∇ · E = 0

∇ · B = 0

∇× E = −
∂B

∂t

∇× B = µ0ε0
∂E

∂t

Take the curl of both sides of equation 3:

∇× (∇× E) = −
∂

∂t
(∇× B)

Using the vector triple product rule, a× (b× c) = b(a · c)− c(a ·b)

∇(∇ · E) − (∇ ·∇)E = −
∂

∂t
(∇× B)



Maxwell’s Equations and the Wave Equation

∇(∇ · E) −∇2E = −
∂

∂t
(∇× B)

Using the 1st equation:

∇2E =
∂

∂t
(∇× B)

Using the 4th equation,

∇2E = µ0ε0
∂2E

∂t2



Another Implication of Maxwell’s Equations

Starting from the curl of the 4th equation a similar equation can
be found for B, givings a pair of wave equations for the electric
and magnetic fields:

∇2E =
1

c2
∂2E

∂t2

∇2B =
1

c2
∂2B

∂t2

with wave solutions:

E = E0 sin(k · r −ωt)

B = B0 sin(k · r −ωt)

where c = ω
k .


