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Last time

• images formed by lenses

• images formed by lens combinations



Overview

• Interference of light: the Double-Slit experiment

• multiple slit interference

• diffraction gratings



Young’s Experiment: Finding the Maxima

Effectively, the two rays are parallel.
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would otherwise be shadowed. As noted in Section 35.3, this divergence of light 
from its initial line of travel is called diffraction.

37.2 Analysis Model: Waves in Interference
We discussed the superposition principle for waves on strings in Section 18.1, lead-
ing to a one-dimensional version of the waves in interference analysis model. In 
Example 18.1 on page 537, we briefly discussed a two-dimensional interference 
phenomenon for sound from two loudspeakers. In walking from point O to point P 
in Figure 18.5, the listener experienced a maximum in sound intensity at O and a 
minimum at P. This experience is exactly analogous to an observer looking at point 
O in Figure 37.3 and seeing a bright fringe and then sweeping his eyes upward to 
point R, where there is a minimum in light intensity.
 Let’s look in more detail at the two-dimensional nature of Young’s experiment 
with the help of Figure 37.5. The viewing screen is located a perpendicular distance L 
from the barrier containing two slits, S1 and S2 (Fig. 37.5a). These slits are separated 
by a distance d, and the source is monochromatic. To reach any arbitrary point P in 
the upper half of the screen, a wave from the lower slit must travel farther than a wave 
from the upper slit. The extra distance traveled from the lower slit is the path differ-
ence d (Greek letter delta). If we assume the rays labeled r1 and r2 are parallel (Fig. 
37.5b), which is approximately true if L is much greater than d, then d is given by

 d 5 r2 2 r1 5 d sin u (37.1)

The value of d determines whether the two waves are in phase when they arrive at 
point P. If d is either zero or some integer multiple of the wavelength, the two waves 
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When we assume r1 is 
parallel to r2, the path 
difference between the two 
rays is r2 ! r1 " d sin u.
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Figure 37.5  (a) Geometric 
construction for describing 
Young’s double-slit experiment 
(not to scale). (b) The slits are 
represented as sources, and the 
outgoing light rays are assumed to 
be parallel as they travel to P. To 
achieve that in practice, it is essen-
tial that L .. d.

a

Light passing through 
narrow slits does not 
behave this way.

b

Light passing through 
narrow slits diffracts.

Figure 37.4  (a) If light waves 
did not spread out after passing 
through the slits, no interference 
would occur. (b) The light waves 
from the two slits overlap as they 
spread out, filling what we expect 
to be shadowed regions with 
light and producing interference 
fringes on a screen placed to the 
right of the slits.

Looking at the right triangle with hypotenuse d (the slit separation
distance): δ = d sin θ.



Young’s Experiment: Finding the Angles of the
Maxima

Maxima (bright fringes) occur when

d sin θmax = mλ where m ∈ Z

Minima (dark fringes) occur when

d sin θmin =

(
m +

1

2

)
λ where m ∈ Z

These expressions give us the angles (measured outward from the
axis that passes through the midpoint of the slits) where the bright
and dark fringes occur.



Order Number

m is the order number. The central bright fringe is the “0th order
fringe”, the neighboring ones are the “1st order fringes”, etc.

1Figure from Quantum Mechanics and the Multiverse by Thomas D. Le.



Young’s Experiment: Finding the Position of the
Maxima

We can also predict the distance from the center of the screen, y ,
in terms of the distance from the slits to the screen, L.
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tan θ =
y

L



Young’s Experiment: Finding the Position of the
Maxima

Maxima (bright fringes) occur at

ymax = L tan θmax

Minima (dark fringes) occur at

ymin = L tan θmin



Young’s Experiment: Finding the Position of the
Maxima

When θ is also small, sin θ ≈ tan θ, and we can use our earlier
expressions for the fringe angles.

Maxima (bright fringes) occur at

ymax = L
mλ

d
(small θ)

Minima (dark fringes) occur at

ymin = L

(
m + 1

2

)
λ

d
(small θ)



Young’s Experiment Question

Quick Quiz 37.11 Which of the following causes the fringes in a
two-slit interference pattern to move farther apart?

(A) decreasing the wavelength of the light

(B) decreasing the screen distance L

(C) decreasing the slit spacing d

(D) immersing the entire apparatus in water

1Serway & Jewett, page 1138.



Young’s Experiment Question

Quick Quiz 37.11 Which of the following causes the fringes in a
two-slit interference pattern to move farther apart?

(A) decreasing the wavelength of the light

(B) decreasing the screen distance L
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Double-Slit Fringes of Two Wavelengths, Ex 37.2

A light source emits visible light of two wavelengths: λ = 430 nm
and λ ′ = 510 nm. The source is used in a double-slit interference
experiment in which L = 1.50 m and d = 0.0250 mm.

Find the separation distance between the third-order bright fringes
for the two wavelengths.

∆y = y ′
max − ymax

= L
mλ ′

d
− L

mλ

d

= L
m

d
(λ ′ − λ)

= 1.44 cm
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Young’s Experiment: Intensity Distribution
Consider the electric field at a certain point P on the screen from
each slit:

E1 = E0 sin(ωt)

E2 = E0 sin(ωt + φ)

Using

sinα+ sinβ = 2 cos

(
α− β

2

)
sin

(
α+ β

2

)
We see that the net E-field at that point P is:

EP = E1 + E2

=

[
2E0 cos

(
φ

2

)]
sin

(
ωt +

φ

2

)
Amplitude Time-fluctuation
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Young’s Experiment: Intensity Distribution

EP,max = 2E0 cos

(
φ

2

)
Relating E-field to intensity, recall (Ch. 34):

I ∝ E 2
P,max

So,

I = Imax cos2
(
φ

2

)
The phase difference is related to δ, the path difference by:

φ

2π
=
δ

λ

So, using δ = d sin θ (and φ = 2πd sin θ/λ)

I = Imax cos2
(
πd sin θ

λ

)



Young’s Experiment: Intensity Distribution

I = Imax cos2
(
πd sin θ

λ

)
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where Imax is the maximum intensity on the screen and the expression represents 
the time average. Substituting the value for f given by Equation 37.10 into this 
expression gives

 I 5 Imax cos2 apd sin u
l

b (37.14)

Alternatively, because sin u < y/L for small values of u in Figure 37.5, we can write 
Equation 37.14 in the form

 I 5 Imax cos2 apd
lL

 yb 1small angles 2  (37.15)

 Constructive interference, which produces light intensity maxima, occurs when 
the quantity pdy/lL is an integral multiple of p, corresponding to y 5 (lL/d)m, 
where m is the order number. This result is consistent with Equation 37.7.
 A plot of light intensity versus d sin u is given in Figure 37.6. The interference pat-
tern consists of equally spaced fringes of equal intensity. 
 Figure 37.7 shows similar plots of light intensity versus d sin u for light passing 
through multiple slits. For more than two slits, we would add together more electric 
field magnitudes than the two in Equation 37.9. In this case, the pattern contains 
primary and secondary maxima. For three slits, notice that the primary maxima are 
nine times more intense than the secondary maxima as measured by the height of 
the curve because the intensity varies as E 2. For N slits, the intensity of the primary 
maxima is N 2 times greater than that for the secondary maxima. As the number 
of slits increases, the primary maxima increase in intensity and become narrower, 
while the secondary maxima decrease in intensity relative to the primary maxima. 
Figure 37.7 also shows that as the number of slits increases, the number of sec-
ondary maxima also increases. In fact, the number of secondary maxima is always  
N 2 2, where N is the number of slits. In Section 38.4, we shall investigate the pat-
tern for a very large number of slits in a device called a diffraction grating.

Q uick Quiz 37.2  Using Figure 37.7 as a model, sketch the interference pattern 
from six slits.

N ! 2 

0

Primary maximum
Secondary maximum

I
Imax

d sin u
"2l 2ll

For any value of N, the decrease in 
intensity in maxima to the left and 
right of the central maximum, 
indicated by the blue dashed arcs, 
is due to diffraction patterns from 
the individual slits, which are 
discussed in Chapter 38.

N ! 3 

N ! 4 

N ! 5

N ! 10 
"l

Figure 37.7  Multiple-slit interference patterns. As N, the number of slits, is 
increased, the primary maxima (the tallest peaks in each graph) become narrower 
but remain fixed in position and the number of secondary maxima increases.

Figure 37.6  Light intensity versus d sin u for a 
double-slit interference pattern when the screen is 
far from the two slits (L .. d).

I

"2l 2l0
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l
d sin u

"l



Young’s Experiment: Intensity Distribution

E = 2E0 cos

(
φ

2

)
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PART 4

Proof of Eqs. 35-22 and 35-23
We shall combine the electric field components E1 and E2, given by Eqs. 35-20
and 35-21, respectively, by the method of phasors as is discussed in Section 16-11.
In Fig. 35-13a, the waves with components E1 and E2 are represented by phasors
of magnitude E0 that rotate around the origin at angular speed v. The values
of E1 and E2 at any time are the projections of the corresponding phasors on the
vertical axis. Figure 35-13a shows the phasors and their projections at an arbitrary
time t. Consistent with Eqs. 35-20 and 35-21, the phasor for E1 has a rotation
angle vt and the phasor for E2 has a rotation angle vt ! f (it is phase-shifted
ahead of E1). As each phasor rotates, its projection on the vertcal axis varies with
time in the same way that the sinusoidal functions of Eqs. 35-20 and 35-21 vary
with time.

To combine the field components E1 and E2 at any point P in Fig. 35-10, we
add their phasors vectorially, as shown in Fig. 35-13b.The magnitude of the vector
sum is the amplitude E of the resultant wave at point P, and that wave has a cer-
tain phase constant b.To find the amplitude E in Fig. 35-13b, we first note that the
two angles marked b are equal because they are opposite equal-length sides of
a triangle. From the theorem (for triangles) that an exterior angle (here f, as
shown in Fig. 35-13b) is equal to the sum of the two opposite interior angles (here
that sum is b ! b), we see that .Thus, we have

(35-28)

If we square each side of this relation, we obtain

(35-29)

Now, from Eq. 33-24, we know that the intensity of an electromagnetic wave is
proportional to the square of its amplitude.Therefore, the waves we are combining
in Fig. 35-13b, whose amplitudes are E0, each has an intensity I0 that is proportional
to , and the resultant wave, with amplitude E, has an intensity I that is propor-
tional to E2.Thus,

Substituting Eq. 35-29 into this equation and rearranging then yield

which is Eq. 35-22, which we set out to prove.
We still must prove Eq. 35-23, which relates the phase difference f between

the waves arriving at any point P on the screen of Fig. 35-10 to the angle u that
serves as a locator of that point.

The phase difference f in Eq. 35-21 is associated with the path length differ-
ence S1b in Fig. 35-10b. If S1b is , then f is p ; if S1b is l, then f is 2p, and so on.
This suggests

(35-30)

The path length difference S1b in Fig. 35-10b is d sin u ; so Eq. 35-30 for the phase
difference between the two waves arriving at point P on the screen becomes

which is Eq. 35-23, the other equation that we set out to prove to relate f to the
angle u that locates P.
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Fig. 35-13 (a) Phasors representing, at
time t, the electric field components given
by Eqs. 35-20 and 35-21. Both phasors have
magnitude E0 and rotate with angular
speed v.Their phase difference is f. (b)
Vector addition of the two phasors gives
the phasor representing the resultant wave,
with amplitude E and phase constant b.
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I = Imax cos2
(
φ

2

)



Interference with Three Slits

E1 = E0 sin(ωt) , E2 = E0 sin(ωt + φ) , E3 = E0 sin(ωt + 2φ)



Interference with Three Slits
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where Imax is the maximum intensity on the screen and the expression represents 
the time average. Substituting the value for f given by Equation 37.10 into this 
expression gives

 I 5 Imax cos2 apd sin u
l

b (37.14)

Alternatively, because sin u < y/L for small values of u in Figure 37.5, we can write 
Equation 37.14 in the form

 I 5 Imax cos2 apd
lL

 yb 1small angles 2  (37.15)

 Constructive interference, which produces light intensity maxima, occurs when 
the quantity pdy/lL is an integral multiple of p, corresponding to y 5 (lL/d)m, 
where m is the order number. This result is consistent with Equation 37.7.
 A plot of light intensity versus d sin u is given in Figure 37.6. The interference pat-
tern consists of equally spaced fringes of equal intensity. 
 Figure 37.7 shows similar plots of light intensity versus d sin u for light passing 
through multiple slits. For more than two slits, we would add together more electric 
field magnitudes than the two in Equation 37.9. In this case, the pattern contains 
primary and secondary maxima. For three slits, notice that the primary maxima are 
nine times more intense than the secondary maxima as measured by the height of 
the curve because the intensity varies as E 2. For N slits, the intensity of the primary 
maxima is N 2 times greater than that for the secondary maxima. As the number 
of slits increases, the primary maxima increase in intensity and become narrower, 
while the secondary maxima decrease in intensity relative to the primary maxima. 
Figure 37.7 also shows that as the number of slits increases, the number of sec-
ondary maxima also increases. In fact, the number of secondary maxima is always  
N 2 2, where N is the number of slits. In Section 38.4, we shall investigate the pat-
tern for a very large number of slits in a device called a diffraction grating.

Q uick Quiz 37.2  Using Figure 37.7 as a model, sketch the interference pattern 
from six slits.

N ! 2 

0

Primary maximum
Secondary maximum

I
Imax

d sin u
"2l 2ll

For any value of N, the decrease in 
intensity in maxima to the left and 
right of the central maximum, 
indicated by the blue dashed arcs, 
is due to diffraction patterns from 
the individual slits, which are 
discussed in Chapter 38.

N ! 3 

N ! 4 

N ! 5

N ! 10 
"l

Figure 37.7  Multiple-slit interference patterns. As N, the number of slits, is 
increased, the primary maxima (the tallest peaks in each graph) become narrower 
but remain fixed in position and the number of secondary maxima increases.

Figure 37.6  Light intensity versus d sin u for a 
double-slit interference pattern when the screen is 
far from the two slits (L .. d).
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Interference Patterns from Many Slits

N ! 2 

0

Primary maximum
Secondary maximum

I
Imax

d sin u
"2l 2ll

For any value of 
intensity in maxima to the left and 
right of the central maximum, 
indicated by the blue dashed arcs, 
is due to diffraction patterns
the individual slits, which are 
discussed in Chapter 38.

N ! 3 

N ! 4 

N ! 5

N ! 10 
"l



Diffraction Grating

A diffraction grating is a device that works in a similar way to
Young’s two slits, but produces a brighter set of fringes for the
same source, and the bright fringes are narrower.

It breaks the light from a source up into very, very many coherent
sources. (Young’s slit does the same, but only breaks the light into
2 sources.)

It is used mainly for spectroscopy (determining the spectrum of a
type of atom or molecule) and in monochromators (devices that
select a particular frequency of light).



Interference Pattern from a Diffraction Grating

A diffraction grating has so many slits that effectively N →∞.

With monochromatic light, the peaks are sharp and well-separated.

1170 Chapter 38 Diffraction Patterns and Polarization

 We can use this expression to calculate the wavelength if we know the grating 
spacing d and the angle ubright. If the incident radiation contains several wave-
lengths, the mth-order maximum for each wavelength occurs at a specific angle. All 
wavelengths are seen at u 5 0, corresponding to m 5 0, the zeroth-order maximum. 
The first-order maximum (m 5 1) is observed at an angle that satisfies the relation-
ship sin ubright 5 l/d, the second-order maximum (m 5 2) is observed at a larger 
angle ubright, and so on. For the small values of d typical in a diffraction grating, the 
angles ubright are large, as we see in Example 38.5.
 The intensity distribution for a diffraction grating obtained with the use of a 
monochromatic source is shown in Figure 38.13. Notice the sharpness of the 
principal maxima and the broadness of the dark areas compared with the broad 
bright fringes characteristic of the two-slit interference pattern (see Fig. 37.6). You 
should also review Figure 37.7, which shows that the width of the intensity maxima 
decreases as the number of slits increases. Because the principal maxima are so 
sharp, they are much brighter than two-slit interference maxima.

Q uick Quiz 38.5  Ultraviolet light of wavelength 350 nm is incident on a diffrac-
tion grating with slit spacing d and forms an interference pattern on a screen 
a distance L away. The angular positions ubright of the interference maxima are 
large. The locations of the bright fringes are marked on the screen. Now red 
light of wavelength 700 nm is used with a diffraction grating to form another 
diffraction pattern on the screen. Will the bright fringes of this pattern be 
located at the marks on the screen if (a) the screen is moved to a distance 2L 
from the grating, (b) the screen is moved to a distance L/2 from the grating, 
(c) the grating is replaced with one of slit spacing 2d, (d) the grating is replaced 
with one of slit spacing d/2, or (e) nothing is changed?

d

P

Incoming plane
wave of light

First-order
maximum
(m ! 1)

First-order
maximum
(m ! "1)

Central or
zeroth-order
maximum
(m ! 0)

Diffraction
grating

P

u u

d ! d sin u

Figure 38.12  Side view of a dif-
fraction grating. The slit separa-
tion is d, and the path difference 
between adjacent slits is d sin u.
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m

2l
d" d" d

2l
d

ll
sin u

"2 "1 0 1 2

Figure 38.13 Intensity versus 
sin u for a diffraction grating. The 
zeroth-, first-, and second-order 
maxima are shown.

Conceptual Example 38.4   A Compact Disc Is a Diffraction Grating

Light reflected from the surface of a compact 
disc is multicolored as shown in Figure 38.14. 
The colors and their intensities depend on the 
orientation of the CD relative to the eye and rela-
tive to the light source. Explain how that works.

The surface of a CD has a spiral grooved track 
(with adjacent grooves having a separation on 
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Figure 38.14  (Conceptual 
Example 38.4) A compact disc 
observed under white light. The 
colors observed in the reflected 
light and their intensities depend 
on the orientation of the CD  
relative to the eye and relative  
to the light source.

For light that is composed of several frequencies, the peaks for
each will be separated out.



Diffraction Gratings

There are two types of diffraction grating.
Transmission gratings:

P

Incoming plane
wave of light

First-order
maximum
(m ! 1)

First-order
maximum
(m ! "1)

Central or
zeroth-order
maximum
(m ! 0)

Diffraction
grating

P

Many slits allow light to pass through.



Diffraction Gratings

Reflection gratings:

Light reflects off of a series of mirrored surfaces.

1http://exoplanet.as.arizona.edu/∼lclose/a302/lecture14/lecture 14.html



Diffraction Grating Pattern



Diffraction Grating
We can find the maxima (bright fringes) of the pattern produced in
a diffraction grating in exactly the same way we did for Young’s
slits.

1170 Chapter 38 Diffraction Patterns and Polarization

 We can use this expression to calculate the wavelength if we know the grating 
spacing d and the angle ubright. If the incident radiation contains several wave-
lengths, the mth-order maximum for each wavelength occurs at a specific angle. All 
wavelengths are seen at u 5 0, corresponding to m 5 0, the zeroth-order maximum. 
The first-order maximum (m 5 1) is observed at an angle that satisfies the relation-
ship sin ubright 5 l/d, the second-order maximum (m 5 2) is observed at a larger 
angle ubright, and so on. For the small values of d typical in a diffraction grating, the 
angles ubright are large, as we see in Example 38.5.
 The intensity distribution for a diffraction grating obtained with the use of a 
monochromatic source is shown in Figure 38.13. Notice the sharpness of the 
principal maxima and the broadness of the dark areas compared with the broad 
bright fringes characteristic of the two-slit interference pattern (see Fig. 37.6). You 
should also review Figure 37.7, which shows that the width of the intensity maxima 
decreases as the number of slits increases. Because the principal maxima are so 
sharp, they are much brighter than two-slit interference maxima.

Q uick Quiz 38.5  Ultraviolet light of wavelength 350 nm is incident on a diffrac-
tion grating with slit spacing d and forms an interference pattern on a screen 
a distance L away. The angular positions ubright of the interference maxima are 
large. The locations of the bright fringes are marked on the screen. Now red 
light of wavelength 700 nm is used with a diffraction grating to form another 
diffraction pattern on the screen. Will the bright fringes of this pattern be 
located at the marks on the screen if (a) the screen is moved to a distance 2L 
from the grating, (b) the screen is moved to a distance L/2 from the grating, 
(c) the grating is replaced with one of slit spacing 2d, (d) the grating is replaced 
with one of slit spacing d/2, or (e) nothing is changed?
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Figure 38.12  Side view of a dif-
fraction grating. The slit separa-
tion is d, and the path difference 
between adjacent slits is d sin u.
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sin u for a diffraction grating. The 
zeroth-, first-, and second-order 
maxima are shown.

Conceptual Example 38.4   A Compact Disc Is a Diffraction Grating

Light reflected from the surface of a compact 
disc is multicolored as shown in Figure 38.14. 
The colors and their intensities depend on the 
orientation of the CD relative to the eye and rela-
tive to the light source. Explain how that works.

The surface of a CD has a spiral grooved track 
(with adjacent grooves having a separation on 

S O L U T I O N

Ca
rlo

s E
.  

Sa
nt

a 
M

ar
ia

/S
hu

tt
er

st
oc

k.
co

m

Figure 38.14  (Conceptual 
Example 38.4) A compact disc 
observed under white light. The 
colors observed in the reflected 
light and their intensities depend 
on the orientation of the CD  
relative to the eye and relative  
to the light source.



Diffraction Grating

Once again, light from different slits interferes constructively when
the path differnce δ = mλ (m is an integer).

δ = d sin θ

Maxima (bright fringes) occur when

d sin θmax = mλ where m ∈ Z



Diffraction

We already know that light and other waves that travel through a
small gap (< λ) diverge, and that the smaller the gap, the more
divergence.
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35.3 The Ray Approximation in Ray Optics
The field of ray optics (sometimes called geometric optics) involves the study of the 
propagation of light. Ray optics assumes light travels in a fixed direction in a straight 
line as it passes through a uniform medium and changes its direction when it meets 
the surface of a different medium or if the optical properties of the medium are 
nonuniform in either space or time. In our study of ray optics here and in Chapter 
36, we use what is called the ray approximation. To understand this approximation, 
first notice that the rays of a given wave are straight lines perpendicular to the wave 
fronts as illustrated in Figure 35.3 for a plane wave. In the ray approximation, a 
wave moving through a medium travels in a straight line in the direction of its rays.
 If the wave meets a barrier in which there is a circular opening whose diameter 
is much larger than the wavelength as in Figure 35.4a, the wave emerging from the 
opening continues to move in a straight line (apart from some small edge effects); 
hence, the ray approximation is valid. If the diameter of the opening is on the 
order of the wavelength as in Figure 35.4b, the waves spread out from the opening 
in all directions. This effect, called diffraction, will be studied in Chapter 37. Finally, 
if the opening is much smaller than the wavelength, the opening can be approxi-
mated as a point source of waves as shown in Fig. 35.4c.
 Similar effects are seen when waves encounter an opaque object of dimension d. 
In that case, when l ,, d, the object casts a sharp shadow.
 The ray approximation and the assumption that l ,, d are used in this chapter 
and in Chapter 36, both of which deal with ray optics. This approximation is very 
good for the study of mirrors, lenses, prisms, and associated optical instruments 
such as telescopes, cameras, and eyeglasses.

35.4 Analysis Model: Wave Under Reflection
We introduced the concept of reflection of waves in a discussion of waves on 
strings in Section 16.4. As with waves on strings, when a light ray traveling in one 
medium encounters a boundary with another medium, part of the incident light 

From the particle under constant speed model, find the 
speed of the pulse of light:

c 5
2d
Dt

5
2 17 500 m 2

5.05 3 1025 s
5 2.97 3 108 m/s

Finalize  This result is very close to the actual value of the speed of light.

Rays

Wave fronts 

The rays, which always point in 
the direction of the wave 
propagation, are straight lines 
perpendicular to the wave fronts.

Figure 35.3  A plane wave prop-
agating to the right.

d

l ,, d l .. d

a b c

l ! d

When l ,, d, the rays continue 
in a straight-line path and the 
ray approximation remains valid.

When l ! d, the rays 
spread out after passing 
through the opening.

When l .. d, the opening 
behaves as a point source 
emitting spherical waves.

Figure 35.4 A plane wave of 
wavelength l is incident on a bar-
rier in which there is an opening 
of diameter d.

 

▸ 35.1 c o n t i n u e d

The intensity of light in each direction is not the same however.



Diffraction Patterns
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a Fraunhofer diffraction pattern. A bright fringe is observed along the axis at u 5 0, 
with alternating dark and bright fringes on each side of the central bright fringe.
 Until now, we have assumed slits are point sources of light. In this section, we 
abandon that assumption and see how the finite width of slits is the basis for under-
standing Fraunhofer diffraction. We can explain some important features of this 
phenomenon by examining waves coming from various portions of the slit as shown 
in Figure 38.5. According to Huygens’s principle, each portion of the slit acts as a 
source of light waves. Hence, light from one portion of the slit can interfere with 
light from another portion, and the resultant light intensity on a viewing screen 
depends on the direction u. Based on this analysis, we recognize that a diffraction 
pattern is actually an interference pattern in which the different sources of light are 
different portions of the single slit! Therefore, the diffraction patterns we discuss 
in this chapter are applications of the waves in interference analysis model.
 To analyze the diffraction pattern, let’s divide the slit into two halves as shown in 
Figure 38.5. Keeping in mind that all the waves are in phase as they leave the slit, 
consider rays 1 and 3. As these two rays travel toward a viewing screen far to the 
right of the figure, ray 1 travels farther than ray 3 by an amount equal to the path 
difference (a/2) sin u, where a is the width of the slit. Similarly, the path difference 
between rays 2 and 4 is also (a/2) sin u, as is that between rays 3 and 5. If this path 
difference is exactly half a wavelength (corresponding to a phase difference of 180°), 
the pairs of waves cancel each other and destructive interference results. This cancel-
lation occurs for any two rays that originate at points separated by half the slit width 
because the phase difference between two such points is 180°. Therefore, waves from 
the upper half of the slit interfere destructively with waves from the lower half when

a
2

 sin u 5
l

2

or, if we consider waves at angle u both above the dashed line in Figure 38.5 and 
below,

sin u 5  6
l

a

 Dividing the slit into four equal parts and using similar reasoning, we find that 
the viewing screen is also dark when

sin u 5 62 
l

a

Likewise, dividing the slit into six equal parts shows that darkness occurs on the 
screen when

sin u 5 63 
l

a

Pitfall Prevention 38.1
Diffraction Versus Diffraction 
Pattern Diffraction refers to the 
general behavior of waves spread-
ing out as they pass through a slit. 
We used diffraction in explaining 
the existence of an interference 
pattern in Chapter 37. A diffraction 
pattern is actually a misnomer, but 
is deeply entrenched in the lan-
guage of physics. The diffraction 
pattern seen on a screen when a 
single slit is illuminated is actually 
another interference pattern. The 
interference is between parts of 
the incident light illuminating dif-
ferent regions of the slit.

Figure 38.4 (a) Geometry for 
analyzing the Fraunhofer diffrac-
tion pattern of a single slit. (Draw-
ing not to scale.) (b) Simulation  
of a single-slit Fraunhofer diffrac-
tion pattern.

Slit

min

min

min

min

max

max

max

Incoming
wave Viewing screen

u

The pattern consists of a 
central bright fringe flanked 
by much weaker maxima 
alternating with dark fringes.

a b

L

Each portion of the slit acts as 
a point source of light waves.

a

a/2

a/2

2

3

2

5

4

1

u

The path difference between 
rays 1 and 3, rays 2 and 4, or 
rays 3 and 5 is (a/ 2) sin u.

sin u
a 

Figure 38.5  Paths of light rays 
that encounter a narrow slit of 
width a and diffract toward a 
screen in the direction described 
by angle u (not to scale).



Diffraction Spikes

1NASA, ESA, and H. Richer (University of British Columbia); Svon
Halenbach



Diffraction Spikes in Camera Apertures

Iris diaphragms adjust the amount of light allowed into a camera
body.

They cause characteristic diffraction patterns on photos taken of
bright lights.

1Wikipedia user Cmglee



Diffraction Patterns: Arago Spot
Directly in the center of the shadow produced by a round object lit
with coherent light, a spot of light can be observed!

This is called the Arago spot, Fresnel bright spot, or Poisson spot.

1Photo taken at Exploratorium in SF, own work.



Summary

• two-slit interference

• multiple slit interference

• diffraction gratings

Final Exam 9:15-11:15am, Tuesday, June 23.

Homework Serway & Jewett:

• new: Ch 38, onward from page 1182. CQs: 5; Probs: 60


