

Thermodynamics The Ideal Gas Equation

Lana Sheridan

De Anza College

April 22, 2020

Last time

• thermal expansion

Overview

- the ideal gas equation
- moles and molecules

Ideal Gases

An ideal gas is a gas

- at low pressure
- at a temperature much higher than its condensation point
- at a low density

Also, for modeling the gas:

• there are no intermolecular forces aside from collisions

Ideal Gas Equation

The equation of state for an ideal gas:

PV = nRT

where

- P is pressure
- V is volume
- *n* is the number of moles (amount of gas)
- $R = 8.314 \text{ J mol}^{-1} \text{ K}^{-1}$ is the universal gas constant
- T is temperature measured in Kelvin

The LHS and RHS of this equation both have SI units of Joules (energy).

¹Photo from http://thelazybfarm.com.

1 mole or 1 mol. of a substance is $N_A = 6.022 \times 10^{23}$ molecules of that substance. (N_A is Avogadro's number.)

¹Photo from http://thelazybfarm.com.

Why is this even a unit?

Why is this even a unit?

Not such a long time ago scientists really did not have any idea of how much mass an individual molecule would have, or how many molecules would be present in a cubic meter of gas. Even the existence of atoms and molecules was controversial.

1 mole was a macroscopic unit they could work with.

1 mole of a substance is the amount that has the same number of molecules as there are atoms in 12 grams of a pure Carbon-12 sample. (That is $N_A = 6.022 \times 10^{23}$.)

Some History of Atoms and Molecules (Skipping)

Many ancient Indian, Greek, and Roman philosophers argued for a basic unit of matter: the atom.

In Europe, most philosophers thought matter was instead continuous (Aristotle).

Nevertheless, ideas about "corpuscles" (small particles) were important for Newton and his contemporaries.

A chemist, Robert Boyle (1627-1692) speculated that if atoms / corpuscles made up matter, that would resolve many problems arising in chemistry.

He proved correct.

Understanding from Chemical Reactions (Skipping)

John Dalton, a physicist and chemist in ${\sim}1803$ started trying to understand the patterns of chemical reactions.

Electrolysis can dissociate water

```
water \longrightarrow oxygen + hydrogen
```

and always the same proportions are produced: twice as much hydrogen as oxygen (by volume, at equal pressure, temperature).

This lead him to suppose that

- matter was composed of atoms
- chemical substances that could not be dissociated were elements
- chemical substances that could be dissociated were formed from combinations of atoms

Understanding from Chemical Reactions (Skipping)

Rules of Dalton's theory¹:

- Elements are made of extremely small particles called atoms.
- Atoms of a given element are identical in size, mass, and other properties; atoms of different elements differ in size, mass, and other properties.
- Atoms cannot be subdivided, created, or destroyed.
- Atoms of different elements combine in simple whole-number ratios to form chemical compounds.
- In chemical reactions, atoms are combined, separated, or rearranged.

Which of these turned out to be incorrect?

¹Wikipedia, Dalton, "A New System of Chemical Philosophy" (1808)

Understanding from Chemical Reactions (Skipping)

¹Images from Dalton, "A New System of Chemical Philosophy" (1808) and Wikimedia.

Additional Evidence for atoms: Brownian Motion (Skipping)

In 1827 Robert Brown, a botanist, observed pollen grains suspended in water through a microscope.

He expected to see them suspended at rest, but did not.

Instead the grains of pollen seemed to jump and wiggle about for no discernible reason.

He wondered if it was something peculiar that pollen did so he tried again with dust and soot – and saw the same thing!

This motion is called **Brownian Motion**.

Brownian Motion (Skipping)

Brownian motion remained a mystery until 1905.

Einstein, building on tools he had just developed in his doctoral thesis, developed a theory describing Brownian motion.

It is the result of fast-moving water molecules (too small to see) colliding with the pollen molecules, and jostling them.

Periodic Table

Group		Group														Gn	oup	Group		Group		roup	Group		Group		
H							1	trans	ation elem	ents									IV		v vi			H		He	
	1																								. ¹	ine .	2
1.007.9																								1.007 9	' I	4.002.6	
1s	-																-		-	1.		1-		151	_	1 <i>s</i> ²	_
Li	3 Be	4															в	5	C	6 1	N	70	8	F	9	Ne 1	0
6.941	9.0	122		1	syml		90.	Atom	ic number								10.81	1	12.011	1	4.007	15.9	999	18.998		20.180	
2 <i>s</i> ¹	282			Atomi	c ma		78										2p1		2p ²	2	p3	2 <i>p</i> ⁴		2 <i>p</i> ⁵		2p ⁶	
Na	11 Mg	g 12	2 402 Elementer													Al	13	Si	14 F	? 1	15 S	16	Cl	17	Ar 1	.8	
22.990	24.	305	recuron computation														26.98	32	28.086	3	0.974	32.0	066	35.453		39.948	
3s ¹	382																3p1		3p ²	3	10 ³	304		3p ⁵		3p ⁶	
K	19 Ca	. 20	Sc 21	Ti	22	V 23	Cr 1	24 N	In 25	Fe 20	6 Co	27	Ni	28	Cu 99	Zn 3	Ga	81	Ge	39 A	s 🤅	33 Se	84	Br	35	Kr 3	6
39.098	40	178	44 956	47.867		50 949	51 996	5	4 938	55 845	58 933		58 603	-	63 546	65.41	69.75	19	79.64	7	4 099	78.0	6	70.004		83.80	
401	407		3/1402	3/124.02		3/13402	3115401	3	15402	305402	30740	2	31040		3/10/01	3 0/10 4 02	4n1		402		n ³	Ant		405		405	
Ph	97 8-	90	V 20	7.	40	Nb 41	Mo	10 7	Co 49	D. 45	Ph	45	Pd	46	Acr 47	Cd 4	In	40	Sn :	50 5	ab :	Te	54	I	5.9	Vo 5	
07.400	5/ 51	-0	1 35	01.004	40	00.000	05.04	14		101.07		-10	100 10	10	ng 1/			- 15	110.71	5013	01.70	// IC	co	100.00	55	101.00	1
85.408	67.	92	88.900	91.224		92.900	95.94	- le	96)	101.07	102.91		106.42		107.87	112.41	114.0	52	118.71	1	21.70	127	.00	120.90		151.29	
55	58		40.55	40"55"	_	40.22	40.22	4	d-5s-	40.55	40.55		4010	_	40~55	40.055	5p.		5 <i>p*</i>	5	p ²	50"		5p ³	_	5p°	-
Cs :	55 Ba	56	57-71*	н	72	Ta 73	W 3	74	(e 75	Os 7	5 Ir	77	Pt	78	Au 79	Hg 8	0 11	81	Pb	82 b	Si 8	33 Po	84	At	85	Rn 8	6
132.91	137	.33		178.49		180.95	183.84	1	86.21	190.23	192.2		195.08		196.97	200.59	204.5	88	207.2	2	08.98	(20	9)	(210)		(222)	
6 <i>s</i> ¹	682			5d ² 6s ²		5d ³ 6s ²	5d ⁴ 6s ²	5	d*6s2	5d*6s²	5d76s	2	5d ⁹ 6s ¹		5d ¹⁰ 6s ¹	5d ¹⁰ 6s ²	6p1		6p ²	6	ip ³	6p4		6p ⁵		6p ⁶	
Fr :	87 R a	88	89-103**	Rf 1	04	Db 105	Sg 10	06 E	3h 107	Hs 10	8 Mt	109	Ds	110	Rg 111	Cn 11	2 :	113††	FI 1	14	115	†† Lv	116	1	7#	118	1
(223)	(22	6)		(261)		(262)	(266)	C	264)	(277)	(268)		(271)		(272)	(285)	(284)		(289)	0	288)	(29)	3)	(294)		(294)	
7 <i>s</i> ¹	782			6d ² 7s ²		6d ³ 7s ²																					
								-			-		·	_						_		-					-
*1	Lantha	ude seri	ies	La	57	Ce 58	Pr :	59 N	id 60	Pm 6	Sm	62	Eu	63	Gd 64	Tb 6	5 Dv	66	Ho	67 F	Êr (58 Tn	1 69	Yb	70	Lu 7	a
				138 91		140.12	140.91	1	44 94	(145)	150.36		151.96		157.25	158.93	162	50	164.93	1	67.26	168	93	173.04		174 97	
				5d1682		5d14f16s2	4/36s2	4	f4682	4/56s2	4/66s2		4f76s2		4175d 18s2	4185d 188	2 4/10E	s2	4/11682	4	f ¹² 6s ²	4112	682	4/1468	2	4f ¹⁴ 5d ¹ 6s	s2
**Actinide series			Ac	80	Th 90	Pa	01 T	T 09	Nn 0	Pu	0.4	Am	95	Cm 96	Rk o	CF	08	Fe	00 F	m 10	n Me	101	No	109	Ir 10	2	
														-											-		-
				(997)		939.04	981.04		38.03	(987)	(944)		(943)		(947)	(947)	(951)		(959)	0	957)	(95)	81	(950)		(969)	

¹Serway & Jewett, Appendix C.

Periodic Table

The atomic number is the number of protons in the nucleus of an atom for that element.

Symbol
$$-$$
 Ca 20 Atomic number
Atomic mass[†] $-$ 40.078 $-$ Electron configuration

The atomic mass number is average mass of all isotopes of an element weighted by abundance in nature.

(Isotopes of an element have different numbers of neutrons.)

We can work out how many moles are in a certain mass of a substance, m.

We can work out how many moles are in a certain mass of a substance, m.

$$n = \frac{m}{M}$$

where M is the *molar mass*, or mass of 1 mole of the substance.

We can work out how many moles are in a certain mass of a substance, m.

$$n = \frac{m}{M}$$

where M is the *molar mass*, or mass of 1 mole of the substance.

For example, water is H_2O . Hydrogen has atomic mass 1, Oxygen has atomic mass 16.

$$1 + 1 + 16 = 18 \text{ amu}$$

The molar mass of water is 18 g/mol.

A balloon contains 6.00 g of helium.

How many moles is that?

A balloon contains 6.00 g of helium.

How many moles is that?

He: 4.00 amu

A balloon contains 6.00 g of helium.

How many moles is that?

He: 4.00 amu $\Rightarrow M = 4.00 \text{ g/mol}$

$$n = \frac{m}{M} = 1.50 \text{ mol}$$

Ideal Gas Equation

The equation of state for an ideal gas:

PV = nRT

Can also be written:

 $PV = Nk_BT$

where

- P is pressure
- V is volume
- N is the number of molecules
- $k_B = 1.380649 \times 10^{-23}$ J K⁻¹ is Boltzmann's constant
- T is temperature

Quick Quiz 19.6² On a winter day, you turn on your furnace and the temperature of the air inside your home increases. Assume your home has the normal amount of leakage between inside air and outside air. Is the number of moles of air in your room at the higher temperature

(A) larger than before,

- (B) smaller than before, or
- (C) the same as before?

²Serway & Jewett, pg 579.

Quick Quiz 19.6² On a winter day, you turn on your furnace and the temperature of the air inside your home increases. Assume your home has the normal amount of leakage between inside air and outside air. Is the number of moles of air in your room at the higher temperature

(A) larger than before,

(B) smaller than before, or \leftarrow

(C) the same as before?

²Serway & Jewett, pg 579.

Ideal Gas Equation and the Gas Thermometer

In a constant-volume gas thermometer, the pressure varies linearly with the temperature: a consequence of the ideal gas equation!

$$P = \left(\frac{nR}{V}\right) T$$

Summary

- thermal expansion
- atoms
- the ideal gas equation