Name: Key

Physics 4C Spring 2020 Test 3 (Thermo)

1. Six (6) moles of a monatomic ideal gas are contained in an expandable balloon. The initial volume of the balloon is V_i and initial temperature is T_i . The balloon is placed in thermal contact with a thermal reservoir at temperature T_h (where $T_h > T_i$) and heat flows irreversibly from the reservoir to the gas until the gas is also at temperature T_h , and the gas now occupies a volume of $3V_i$. During this process the pressure of the gas remains constant. (Assume the thermal reservoir is very large and therefore stays at a constant temperature T_h .)

The process is irreversible, but

the reversible counterpart,

I the same initial &

final points is

You may leave any answers in terms of R, the ideal gas constant.

- (a) In terms of T_i only, what is the temperature T_h ?
- (b) What is the change in entropy of the gas during this process?
- (c) What is the change in entropy of the thermal reservoir?
- (d) What is the net change in entropy of the reservoir and the gas? Is it positive or negative? And which law of thermodynamics predicts that?

a)
$$PV_{i} = nRT_{i} - (i)$$

 $P(3V_{i}) = nRT_{h} - (2)$
 $(2) \div (1) :$
 $3 = \frac{T_{h}}{T_{i}}$
 $T_{h} = 3T_{i}$

b) (at least) 2 ways:

$$\Delta S_{gas} = \int \frac{dQ_r}{T} (\frac{R}{T})$$

$$= \int \frac{\ln C_p clT}{T}$$

$$= n \left(\int_{T} R \right) \ln \left(\frac{Th}{T_i} \right)$$

$$= n \left(\int_{T} R \right) \ln \left(\frac{3Tr}{T_i} \right)$$

$$= n \left(\int_{T} R \right) \ln \left(\frac{3Tr}{T_i} \right)$$

$$= n \left(\int_{T} R \right) \ln \left(\frac{3Tr}{T_i} \right)$$

$$= n \left(\int_{T} R \right) \ln \left(\frac{3Tr}{T_i} \right)$$

$$= n \left(\int_{T} R \right) \ln \left(\frac{3Tr}{T_i} \right)$$

$$= n \left(\int_{T} R \right) \ln \left(\frac{3Tr}{T_i} \right)$$

$$= n \left(\int_{T} R \right) \ln \left(\frac{3Tr}{T_i} \right)$$

$$= n \left(\int_{T} R \right) \ln \left(\frac{3Tr}{T_i} \right)$$

or
$$\Delta S_{gas} = nC_V \ln \left(\frac{T_f}{T_i}\right) + nR \ln \left(\frac{V_i}{V_i}\right)$$

$$= n \left(\frac{3}{2}R\right) \ln \left(\frac{3T_i}{T_i}\right) + nR \ln \left(\frac{3V_i}{V_i}\right)$$

$$= n \left(\frac{3}{2}R + R\right) \ln 3$$

$$\Delta S_{gas} = 15R \ln 3$$

c)
$$\Delta S_{res} = \int \frac{dQ_r}{T}$$

$$= \frac{Q_{tores}}{T_h}$$

$$= \frac{Q_{tores}}{T_h}$$

$$= \frac{-n C_P \Delta T}{2R} (3T_i - T_i)$$

$$= \frac{3DRT_i}{3T_i} = \frac{-10R}{2R} = -3DRT_i$$