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Last time

• angular momentum

• gravity

• gravitational field

• black holes



Overview

• projectile motion

• orbital motion

• escape speed

• Kepler’s Laws



Projectiles

projectile

Any object that is thrown. We will use this word specifically to
refer to thrown objects that experience a vertical acceleration g .

For projectile motion, we assume air resistance is negligible. This
gives symmetrical parabolic trajectories.

Main Idea
Motion in perpendicular directions can be analyzed separately.

A vertical force (gravity) does not affect horizontal motion.

The horizontal component of velocity is constant.



Projectile Velocity 4.3 Projectile Motion 85

Figure 4.7 The parabolic path 
of a projectile that leaves the ori-
gin with a velocity vSi . The velocity 
vector vS changes with time in 
both magnitude and direction. 
This change is the result of accel-
eration aS 5 gS in the negative  
y direction.
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Figure 4.8  The position vector 
rSf  of a projectile launched from 
the origin whose initial velocity 
at the origin is vSi . The vector vSit 
would be the displacement of the 
projectile if gravity were absent, 
and the vector 12 gSt 2 is its vertical 
displacement from a straight-line 
path due to its downward gravita-
tional acceleration.
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Figure 4.9 A projectile launched 
over a flat surface from the origin 
at ti 5 0 with an initial velocity 
vSi . The maximum height of the 
projectile is h, and the horizontal 
range is R. At !, the peak of the 
trajectory, the particle has coordi-
nates (R/2, h).

 In Section 4.2, we stated that two-dimensional motion with constant accelera-
tion can be analyzed as a combination of two independent motions in the x and y 
directions, with accelerations ax and ay. Projectile motion can also be handled in 
this way, with acceleration ax 5 0 in the x direction and a constant acceleration ay 5 
2g in the y direction. Therefore, when solving projectile motion problems, use two 
analysis models: (1) the particle under constant velocity in the horizontal direction 
(Eq. 2.7):

xf 5 xi 1 vxit

and (2) the particle under constant acceleration in the vertical direction (Eqs. 
2.13–2.17 with x changed to y and ay = –g):

vyf 5 vyi 2 gt

vy,avg 5
vyi 1 vyf

2

   yf 5 yi 1 1
2 1vyi 1 vyf 2 t 

 yf 5 yi 1 vyit 2 1
2gt 2

vyf
2 5 vyi

2
 2 2g 1 yf 2 yi 2

The horizontal and vertical components of a projectile’s motion are completely 
independent of each other and can be handled separately, with time t as the com-
mon variable for both components.

Q uick Quiz 4.2  (i) As a projectile thrown upward moves in its parabolic path 
(such as in Fig. 4.8), at what point along its path are the velocity and accelera-
tion vectors for the projectile perpendicular to each other? (a) nowhere (b) the 
highest point (c) the launch point (ii) From the same choices, at what point are 
the velocity and acceleration vectors for the projectile parallel to each other?

Horizontal Range and Maximum Height of a Projectile
Before embarking on some examples, let us consider a special case of projectile 
motion that occurs often. Assume a projectile is launched from the origin at ti 5 
0 with a positive vyi component as shown in Figure 4.9 and returns to the same hori-
zontal level. This situation is common in sports, where baseballs, footballs, and golf 
balls often land at the same level from which they were launched.
 Two points in this motion are especially interesting to analyze: the peak point !, 
which has Cartesian coordinates (R/2, h), and the point ", which has coordinates  
(R , 0). The distance R is called the horizontal range of the projectile, and the distance 
h is its maximum height. Let us find h and R mathematically in terms of vi, ui, and g.
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The y component of 
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constant because 
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1Figure from Serway & Jewett, 9th ed.
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The y component of 
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peak of the path.
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velocity remains 
constant because 
there is no 
acceleration in the x 
direction.
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with initial velocity vi.
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1Figure from Serway & Jewett, 9th ed.

← But the y
acceleration
is not zero!



Motion of projectiles

We already considered the motion of objects dropped from rest at
time t = 0, allowed to fall freely. (Calling up positive.)

Velocity of the object at time t:

v = vi − gt

(Magnitude of the) distance the object falls in time t:

d =
1

2
gt2



Acceleration due to gravity and kinematics

Let’s think about the components of the motion separately.

5 Projectile Motion

A ball’s velocity can be resolved into horizontal and 
vertical components.

5.3 Components of Vectors

Vertical (y -direction):

vy = vi ,y − gt

dy = vi ,y t −
1

2
gt2

Horizontal (x-direction):

ax = 0 , vx = vi ,x

dx = vi ,x t

1Drawing by Hewitt, via Pearson.



Projectile’s Trajectory
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Figure 4.9 A projectile launched 
over a flat surface from the origin 
at ti 5 0 with an initial velocity 
vSi . The maximum height of the 
projectile is h, and the horizontal 
range is R. At !, the peak of the 
trajectory, the particle has coordi-
nates (R/2, h).

 In Section 4.2, we stated that two-dimensional motion with constant accelera-
tion can be analyzed as a combination of two independent motions in the x and y 
directions, with accelerations ax and ay. Projectile motion can also be handled in 
this way, with acceleration ax 5 0 in the x direction and a constant acceleration ay 5 
2g in the y direction. Therefore, when solving projectile motion problems, use two 
analysis models: (1) the particle under constant velocity in the horizontal direction 
(Eq. 2.7):

xf 5 xi 1 vxit

and (2) the particle under constant acceleration in the vertical direction (Eqs. 
2.13–2.17 with x changed to y and ay = –g):

vyf 5 vyi 2 gt

vy,avg 5
vyi 1 vyf

2

   yf 5 yi 1 1
2 1vyi 1 vyf 2 t 

 yf 5 yi 1 vyit 2 1
2gt 2

vyf
2 5 vyi

2
 2 2g 1 yf 2 yi 2

The horizontal and vertical components of a projectile’s motion are completely 
independent of each other and can be handled separately, with time t as the com-
mon variable for both components.

Q uick Quiz 4.2  (i) As a projectile thrown upward moves in its parabolic path 
(such as in Fig. 4.8), at what point along its path are the velocity and accelera-
tion vectors for the projectile perpendicular to each other? (a) nowhere (b) the 
highest point (c) the launch point (ii) From the same choices, at what point are 
the velocity and acceleration vectors for the projectile parallel to each other?

Horizontal Range and Maximum Height of a Projectile
Before embarking on some examples, let us consider a special case of projectile 
motion that occurs often. Assume a projectile is launched from the origin at ti 5 
0 with a positive vyi component as shown in Figure 4.9 and returns to the same hori-
zontal level. This situation is common in sports, where baseballs, footballs, and golf 
balls often land at the same level from which they were launched.
 Two points in this motion are especially interesting to analyze: the peak point !, 
which has Cartesian coordinates (R/2, h), and the point ", which has coordinates  
(R , 0). The distance R is called the horizontal range of the projectile, and the distance 
h is its maximum height. Let us find h and R mathematically in terms of vi, ui, and g.

x
vxi

vxi

vy

vy ! 0

vxi

vy

i
vy

vy

i

vxi

y

i

i

u

u
u

u

The y component of 
velocity is zero at the 
peak of the path.

The x component of 
velocity remains 
constant because 
there is no 
acceleration in the x 
direction.

vS

The projectile is launched 
with initial velocity vi.

S

vS
vS

vS

vS

gS 

!

"

# $

%

"
#

$

%

The object would move in a straight line, but the force of gravity
causes it to fall as it moves to the right.

1Figure from Serway & Jewett, 9th ed.



Example Problem

Suppose the pellet-gun on the previous slide can fire the pellet
with an extremely high velocity.

(a) How many meters below the line of sight would the pellet be
after 5 seconds?

(b) If the horizontal component of the pellet’s velocity is 20 m/s,
how far downrange is the pellet after those 5 seconds?

(Hint: we can consider each component of the velocity separately.)
answers: (a) 125 m, (b) 100 m

0See Hewitt, page 175.
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Another example, problem 1, page 192

A ball is thrown horizontally from a cliff at a speed of 10 m/s.
What will its speed be (roughly) after 1s?

answer: 14 m/s

0See Hewitt, page 192.
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Last one, # 4, page 192

A steel ball is fired horizontally at 8.0 m/s from from a 1.0 m-high
table top.

Show that a 20 cm tall coffee can placed on the floor 3.2 m from
the base of the table will catch the ball.

for a falling object

d =
1

2
gt2



Last one, # 4, page 192

A steel ball is fired horizontally at 8.0 m/s from from a 1.0 m-high
table top.

Show that a 20 cm tall coffee can placed on the floor 3.2 m from
the base of the table will catch the ball.

for a falling object

d =
1

2
gt2



Effect of changing launch angle

86 Chapter 4 Motion in Two Dimensions

 We can determine h by noting that at the peak vy! 5 0. Therefore, from the 
particle under constant acceleration model, we can use the y direction version of 
Equation 2.13 to determine the time t! at which the projectile reaches the peak:

 vyf 5 vyi 2 gt    S   0 5 vi sin ui 2 gt !

t ! 5
vi sin ui

g

 Substituting this expression for t! into the y direction version of Equation 2.16 
and replacing yf 5 y! with h, we obtain an expression for h in terms of the magni-
tude and direction of the initial velocity vector:

yf 5 yi 1 vyit 2 12gt 2   S    h 5 1vi sin ui 2  vi sin ui

g 2 1
2g avi sin ui

g b2

  h 5
vi

2 sin2 ui

2g
 (4.12)

 The range R is the horizontal position of the projectile at a time that is twice the 
time at which it reaches its peak, that is, at time t" 5 2t!. Using the particle under 
constant velocity model, noting that vxi 5 vx" 5 vi cos ui, and setting x" 5 R at t 5 
2t!, we find that

xf 5 xi 1 vxit   S    R 5 vxit " 5 1vi cos ui 22t !

 5 1vi cos ui 2  2vi sin ui

g 5
2vi

2 sin ui cos ui

g

Using the identity sin 2u 5 2 sin u cos u (see Appendix B.4), we can write R in the 
more compact form

 R 5
vi

2 sin 2ui

g  (4.13)

 The maximum value of R from Equation 4.13 is Rmax 5 vi
2/g . This result makes 

sense because the maximum value of sin 2ui is 1, which occurs when 2ui 5 90°. 
Therefore, R is a maximum when ui 5 45°.
 Figure 4.10 illustrates various trajectories for a projectile having a given initial 
speed but launched at different angles. As you can see, the range is a maximum 
for ui 5 45°. In addition, for any ui other than 45°, a point having Cartesian coordi-
nates (R, 0) can be reached by using either one of two complementary values of ui, 
such as 75° and 15°. Of course, the maximum height and time of flight for one of 
these values of ui are different from the maximum height and time of flight for the 
complementary value.

Q uick Quiz 4.3 Rank the launch angles for the five paths in Figure 4.10 with 
respect to time of flight from the shortest time of flight to the longest.
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Complementary 
values of the initial 
angle ui result in the 
same value of R.

Figure 4.10 A projectile 
launched over a flat surface from 
the origin with an initial speed 
of 50 m/s at various angles of 
projection.

Pitfall Prevention 4.3
The Range Equation Equation 
4.13 is useful for calculating R only 
for a symmetric path as shown in 
Figure 4.10. If the path is not sym-
metric, do not use this equation. The 
particle under constant velocity 
and particle under constant accel-
eration models are the important 
starting points because they give 
the position and velocity compo-
nents of any projectile moving  
with constant acceleration in two 
dimensions at any time t.

1Figure from Serway & Jewett, 9th ed.



Satellites
Imagine now that you could throw an object straight out
horizontally so fast that as it falls it matches the Earth’s curvature.

The object falls 1 m in 0.45 s. If it goes forward 3,570 m in that
time, then the Earth’s surface has also curved one meter away over
that distance.

This corresponds to a speed of 7, 900 m/s.
1Figure from “College Physics”, OpenStax College, Ch 3, pg 110.



Satellites

This is the same principle by which the Moon stays in orbit around
the Earth. The Moon is the Earth’s natural satellite.

The same idea is applied to artificial satellites that are put into
orbit around the Earth.

The are moving at very high speeds and continuously falling
around the Earth.

Satellites can have many purposes, eg.

• telecommunications

• weather and Earth-monitoring

• GPS (global positioning system)

• human spaceflight and experiments



Weightlessness

Astronauts aboard the ISS experience weightlessness (or
“microgravity”).

The value of g is a bit less (g ′ = 8.7 m s−2) at the height of the
ISS’s orbit, 410 km above the Earth’s surface.

The astronauts still have a force due to gravity on them of

W ′ = mg ′

(their weight).

Why do they feel weightless?
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The Sensation of Weight

The feeling of your weight comes from the normal force that
surfaces exert on you.

This is also the force that a scale measures by compressing an
internal spring.

In situations where the normal force on you changes you feel
“lighter” or “heavier”



Elevators

a = 0

Elevator is at rest or moving with
constant velocity. You feel the same
as you normally do. Your weight and
normal force are both of magnitude
mg .



Elevators

a = +a j (a is a positive number)

Elevator could be moving upward
increasing speed or downward
decreasing speed. You feel as if your
weight has increased.

Your weight is −mg j, but the
normal force is n = m(g + a) j.

The normal force is increased!



Elevators

a = −a j (a is a positive number)

Elevator could be moving upward
and slowing down or moving
downward increasing speed. You feel
as if your weight has decreased.

Your weight is −mg j, but the
normal force is n = m(g − a) j.

The normal force is decreased!



Elevator in Free Fall

a = −g j (g = 9.8 m s−2)

The elevator cable is cut and the
elevator falls freely.

You feel weightless! Your weight is
−mg j, but the normal force is
n = 0.



Weightlessness

Astronauts aboard the ISS still have a force due to gravity on them,
but they are freely falling together with the ISS around the Earth!

This is the same as being in the falling elevator. There is no
normal force on them (unless they push off a wall), so they can
drift about the inside of the ISS.



Some Types of Earth-Orbit

• Low Earth Orbit (LEO) - altitude from 160 km to 2,000 km
with a period of 90–130 minutes; all human spaceflight except
Apollo has been in this orbit (or suborbital), also Earth
observation satellites

• Medium Earth Orbit (MEO) - altitude from 2,000 km to
35,786 km; GPS satellites

• Polar Sun synchronous orbit - a particular set of
low-to-medium Earth orbits that move over the equator at the
same local time on each pass; orbital photography satellites

• Geosynchronous Orbit (GSO) - altitude of 35,786 km, the
satellite orbits the Earth in one day - if it is in an equatorial
orbit (GEO), it stays above a fixed point on the Earth’s
surface and appears fixed in the sky; telecommunications
satellites
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Escape Speed

escape speed

The speed an object would need to have at Earth’ surface to have
enough kinetic energy to leave Earth, overcoming the attraction of
Earth’s gravity.

The object will convert its kinetic energy to potential energy as it
moves higher and higher, away from the Earth.



Escape Speed

How fast does an object need to be projected with to escape
Earth’s gravity?

404 Chapter 13 Universal Gravitation

Escape Speed
Suppose an object of mass m is projected vertically upward from the Earth’s surface 
with an initial speed vi as illustrated in Figure 13.14. We can use energy considerations 
to find the value of the initial speed needed to allow the object to reach a certain dis-
tance away from the center of the Earth. Equation 13.16 gives the total energy of the 
system for any configuration. As the object is projected upward from the surface of 
the Earth, v 5 vi and r 5 ri 5 RE. When the object reaches its maximum altitude, v 5  
vf 5 0 and r 5 rf 5 rmax. Because the object–Earth system is isolated, we substitute 
these values into the isolated-system model expression given by Equation 13.17:

 1
2mvi

2 2
GME m

RE
5 2

GMEm
rmax

 

Solving for vi
2 gives

 vi
2 5 2GME a 1

RE
2

1
rmax

b (13.21)

For a given maximum altitude h 5 rmax 2 RE , we can use this equation to find the 
required initial speed.
 We are now in a position to calculate the escape speed, which is the minimum 
speed the object must have at the Earth’s surface to approach an infinite separa-
tion distance from the Earth. Traveling at this minimum speed, the object contin-
ues to move farther and farther away from the Earth as its speed asymptotically 
approaches zero. Letting rmax S ` in Equation 13.21 and identifying vi as vesc gives

 vesc 5 Å2GME

RE
  (13.22)

This expression for vesc is independent of the mass of the object. In other words, 
a spacecraft has the same escape speed as a molecule. Furthermore, the result is 
independent of the direction of the velocity and ignores air resistance.
 If the object is given an initial speed equal to vesc, the total energy of the system 
is equal to zero. Notice that when r S ,̀ the object’s kinetic energy and the poten-
tial energy of the system are both zero. If vi is greater than vesc, however, the total 
energy of the system is greater than zero and the object has some residual kinetic 
energy as r S .̀

Escape speed from X
the Earth

Use Equation 13.19 to find the difference in ener-
gies for the satellite–Earth system with the satellite 
at the initial and final radii:

DE 5 Ef 2 Ei 5 2
GMEm

2rf
2 a2

GMEm
2ri

b 5 2
GMEm

2
 a1

rf
2

1
ri
b

Substitute numerical values, using rf 5 4.22 3 107 m 
from Example 13.5:

DE 5 2
16.674 3 10211 N # m2/kg2 2 15.97 3 1024 kg 2 1470 kg 2

2
3a 1

4.22 3 107 m
2

1
6.65 3 106 m

b 5   1.19 3 1010 J

which is the energy equivalent of 89 gal of gasoline. NASA engineers must account for the changing mass of the space-
craft as it ejects burned fuel, something we have not done here. Would you expect the calculation that includes the 
effect of this changing mass to yield a greater or a lesser amount of energy required from the engine?

 

▸ 13.7 c o n t i n u e d

M  E

R E

h

m

rmax

! 0vf
S

vi
S

Figure 13.14  An object of  
mass m projected upward from 
the Earth’s surface with an initial 
speed vi reaches a maximum  
altitude h.

Example 13.8   Escape Speed of a Rocket

Calculate the escape speed from the Earth for a 5 000-kg spacecraft and determine the kinetic energy it must have at 
the Earth’s surface to move infinitely far away from the Earth.

Pitfall Prevention 13.3
You Can’t Really Escape Although 
Equation 13.22 provides the 
“escape speed” from the Earth, 
complete escape from the Earth’s 
gravitational influence is impos-
sible because the gravitational 
force is of infinite range. 



Escape Speed

To escape the surface of the Earth, an object must have a starting
speed of

ve = 1.12× 104 m/s = 11.2 km/s

For other planets / celestial bodies the escape speeds can also be
defined.

The escape speed depends on the radius of the body and its mass.

For the Sun, the escape speed at its surface is much higher:

ve = 620 km/s



Motion of the Planets

The planets in our solar system orbit the Sun. (As planets in other
systems orbit their stars.)

This is called a heliocentric model.

Nicolaus Copernicus (early 1500s A.D.) is credited with the
paradigm since he developed a mathematical model and took
seriously the idea that the implication was that the Earth moved
around the Sun, but others had similar thoughts:

• Aristarchus of Samos (c. 270 BCE)

• Martianus Capella (400s A.D.)

• Aryabhata (500s A.D.), Nilakantha Somayaji (1500s A.D.)

• Maragha school of astronomy in Persia (1200s A.D.)
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Motion of the Planets

After Copernicus’s proposal, Tycho Brahe gathered a lot of data
about the positions of stars and planets.

Johannes Kepler inherited Brahe’s data and did the calculations to
deduce a complete model.

Galileo gathered additional data that supported the heliocentric
model and popularized it.



Kepler’s Laws

Kepler’s Three laws give simple rules for predicting stable planetary
orbits.

1. All planets move in elliptical orbits with the Sun at one focus.

2. The a line from the Sun to a planet sweeps out equal areas of
space in equal time intervals.

3. The square of the orbital period of any planet is proportional to
the cube of the distance from the planet to the Sun. (T 2 ∼ r3)



Kepler’s First Law: Elliptical Orbits

Defining an ellipse:

 13.4 Kepler’s Laws and the Motion of Planets 395

stars and planets. Those observations of the planets and 777 stars visible to the 
naked eye were carried out with only a large sextant and a compass. (The telescope 
had not yet been invented.)
 German astronomer Johannes Kepler was Brahe’s assistant for a short while 
before Brahe’s death, whereupon he acquired his mentor’s astronomical data and 
spent 16 years trying to deduce a mathematical model for the motion of the plan-
ets. Such data are difficult to sort out because the moving planets are observed 
from a moving Earth. After many laborious calculations, Kepler found that Brahe’s 
data on the revolution of Mars around the Sun led to a successful model.
 Kepler’s complete analysis of planetary motion is summarized in three state-
ments known as Kepler’s laws:

1.  All planets move in elliptical orbits with the Sun at one focus.
2.  The radius vector drawn from the Sun to a planet sweeps out equal areas 

in equal time intervals.
3.  The square of the orbital period of any planet is proportional to the cube 

of the semimajor axis of the elliptical orbit.

Kepler’s First Law
The geocentric and original heliocentric models of the solar system both suggested 
circular orbits for heavenly bodies. Kepler’s first law indicates that the circular orbit 
is a very special case and elliptical orbits are the general situation. This notion was 
difficult for scientists of the time to accept because they believed that perfect circu-
lar orbits of the planets reflected the perfection of heaven.
 Figure 13.5 shows the geometry of an ellipse, which serves as our model for the 
elliptical orbit of a planet. An ellipse is mathematically defined by choosing two 
points F1 and F2, each of which is a called a focus, and then drawing a curve through 
points for which the sum of the distances r1 and r2 from F1 and F2, respectively, is a 
constant. The longest distance through the center between points on the ellipse (and 
passing through each focus) is called the major axis, and this distance is 2a. In Fig-
ure 13.5, the major axis is drawn along the x direction. The distance a is called the 
semimajor axis. Similarly, the shortest distance through the center between points 
on the ellipse is called the minor axis of length 2b, where the distance b is the semi-
minor axis. Either focus of the ellipse is located at a distance c from the center of the 
ellipse, where a2 5 b2 1 c2. In the elliptical orbit of a planet around the Sun, the Sun 
is at one focus of the ellipse. There is nothing at the other focus.
 The eccentricity of an ellipse is defined as e 5 c/a, and it describes the general 
shape of the ellipse. For a circle, c 5 0, and the eccentricity is therefore zero. The 
smaller b is compared with a, the shorter the ellipse is along the y direction com-
pared with its extent in the x direction in Figure 13.5. As b decreases, c increases 
and the eccentricity e increases. Therefore, higher values of eccentricity correspond 
to longer and thinner ellipses. The range of values of the eccentricity for an ellipse 
is 0 , e , 1.
 Eccentricities for planetary orbits vary widely in the solar system. The eccentricity 
of the Earth’s orbit is 0.017, which makes it nearly circular. On the other hand, the 
eccentricity of Mercury’s orbit is 0.21, the highest of the eight planets. Figure 13.6a 
on page 396 shows an ellipse with an eccentricity equal to that of Mercury’s orbit. 
Notice that even this highest-eccentricity orbit is difficult to distinguish from a circle, 
which is one reason Kepler’s first law is an admirable accomplishment. The eccen-
tricity of the orbit of Comet Halley is 0.97, describing an orbit whose major axis is 
much longer than its minor axis, as shown in Figure 13.6b. As a result, Comet Halley 
spends much of its 76-year period far from the Sun and invisible from the Earth. It is 
only visible to the naked eye during a small part of its orbit when it is near the Sun.
 Now imagine a planet in an elliptical orbit such as that shown in Figure 13.5, with 
the Sun at focus F2. When the planet is at the far left in the diagram, the distance  

�W Kepler’s laws

Johannes Kepler
German astronomer (1571–1630)
Kepler is best known for developing the
laws of planetary motion based on the  
careful observations of Tycho Brahe.
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Figure 13.5 Plot of an ellipse.
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The semimajor axis has 
length a, and the semiminor 
axis has length b.

Each focus is located at a 
distance c from the center.

Pitfall Prevention 13.2
Where Is the Sun? The Sun is 
located at one focus of the ellip-
tical orbit of a planet. It is not 
located at the center of the ellipse.

a is the semimajor axis a2 = b2 + c2

b is the semiminor axis
c is the distance from the center of the ellipse to the focus
e is the eccentricity of the ellipse e = c/a



Kepler’s First Law: Elliptical Orbits

“All planets move in elliptical orbits with the Sun at one focus.”396 Chapter 13 Universal Gravitation

between the planet and the Sun is a 1 c. At this point, called the aphelion, the 
planet is at its maximum distance from the Sun. (For an object in orbit around the 
Earth, this point is called the apogee.) Conversely, when the planet is at the right end 
of the ellipse, the distance between the planet and the Sun is a 2 c. At this point, 
called the perihelion (for an Earth orbit, the perigee), the planet is at its minimum 
distance from the Sun.
 Kepler’s first law is a direct result of the inverse-square nature of the gravita-
tional force. Circular and elliptical orbits correspond to objects that are bound to 
the gravitational force center. These objects include planets, asteroids, and comets 
that move repeatedly around the Sun as well as moons orbiting a planet. There 
are also unbound objects, such as a meteoroid from deep space that might pass by 
the Sun once and then never return. The gravitational force between the Sun and 
these objects also varies as the inverse square of the separation distance, and the 
allowed paths for these objects include parabolas (e 5 1) and hyperbolas (e . 1).

Kepler’s Second Law
Kepler’s second law can be shown to be a result of the isolated system model for 
angular momentum. Consider a planet of mass Mp moving about the Sun in an 
elliptical orbit (Fig. 13.7a). Let’s consider the planet as a system. We model the Sun 
to be so much more massive than the planet that the Sun does not move. The gravi-
tational force exerted by the Sun on the planet is a central force, always along the 
radius vector, directed toward the Sun (Fig. 13.7a). The torque on the planet due to 
this central force about an axis through the Sun is zero because F

S
g is parallel to rS.

 Therefore, because the external torque on the planet is zero, it is modeled as 
an isolated system for angular momentum, and the angular momentum L

S
 of the 

planet is a constant of the motion:

 D L
S

 5 0   S   L
S

 5 constant 

Evaluating L
S

 for the planet,

 L
S

 5 rS 3 pS 5 Mp rS 3 vS   S   L 5 Mp 0 rS 3  vS 0  (13.9)

 We can relate this result to the following geometric consideration. In a time inter-
val dt, the radius vector rS in Figure 13.7b sweeps out the area dA, which equals half 
the area 0 rS 3  d rS 0  of the parallelogram formed by the vectors rS and d rS. Because 
the displacement of the planet in the time interval dt is given by d rS 5 vS dt,

 dA 5 1
2 0 rS 3  d rS 0 5 1

2 0 rS 3  vSdt 0 5 1
2 0 rS 3  vS 0 dt 

Substitute for the absolute value of the cross product from Equation 13.9:

 dA 5 1
2a L

Mp
bdt 

The Sun is located at a focus of the ellipse. There is 
nothing physical located at the center (the black dot) or 
the other focus (the blue dot).

Sun

Center

Sun

CenterOrbit of
Mercury

Orbit of
Comet Halley

Comet Halley

a b

Figure 13.6  (a) The shape of 
the orbit of Mercury, which has 
the highest eccentricity (e 5 0.21) 
among the eight planets in the 
solar system. (b) The shape of the 
orbit of Comet Halley. The shape 
of the orbit is correct; the comet 
and the Sun are shown larger 
than in reality for clarity.

Figure 13.7 (a) The gravita-
tional force acting on a planet  
is directed toward the Sun.  
(b) During a time interval dt,  
a parallelogram is formed by the 
vectors rS and d rS 5 vS dt.
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• The planets’ orbits are close to circular. (Mercury’s is the
least circular.)

• Halley’s Comet has an orbit with a high eccentricity.



Kepler’s Second Law: Equal Areas in Equal Time

“The radius vector drawn from the Sun to a planet sweeps out
equal areas in equal time intervals.”

What does it mean?
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When the planet is closer to the Sun, it must be moving faster.



Kepler’s Third Law: T 2 ∼ r 3

“The square of the orbital period of any planet is proportional to
the cube of the distance from the planet to the Sun.”

T 2 = Ks r
3

where Ks is a constant,

Ks =
4π2

GMs
= 2.97× 10−19 s2 m−3.



Kepler’s Third Law: T 2 ∼ r 3

Planets orbiting further from the Sun take longer to
complete an orbit.
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estimates identify at least 70 000 objects in this region with diameters larger than 
100 km. The first Kuiper belt object (KBO) is Pluto, discovered in 1930 and for-
merly classified as a planet. Starting in 1992, many more have been detected. Sev-
eral have diameters in the 1 000-km range, such as Varuna (discovered in 2000), 
Ixion (2001), Quaoar (2002), Sedna (2003), Haumea (2004), Orcus (2004), and 
Makemake (2005). One KBO, Eris, discovered in 2005, is believed to be signifi-
cantly larger than Pluto. Other KBOs do not yet have names, but are currently indi-
cated by their year of discovery and a code, such as 2009 YE7 and 2010 EK139.
 A subset of about 1 400 KBOs are called “Plutinos” because, like Pluto, they 
exhibit a resonance phenomenon, orbiting the Sun two times in the same time 
interval as Neptune revolves three times. The contemporary application of Kepler’s 
laws and such exotic proposals as planetary angular momentum exchange and 
migrating planets suggest the excitement of this active area of current research.

Q uick Quiz 13.3  An asteroid is in a highly eccentric elliptical orbit around the 
Sun. The period of the asteroid’s orbit is 90 days. Which of the following state-
ments is true about the possibility of a collision between this asteroid and the 
Earth? (a) There is no possible danger of a collision. (b) There is a possibility of 
a collision. (c) There is not enough information to determine whether there is 
danger of a collision.

Table 13.2 Useful Planetary Data
  Mean Period of Mean Distance
Body Mass (kg) Radius (m) Revolution (s) from the Sun (m)

 
T 2

r 3
1s2/m3 2

Mercury 3.30 3 1023 2.44 3 106 7.60 3 106 5.79 3 1010 2.98 3 10219

Venus 4.87 3 1024 6.05 3 106 1.94 3 107 1.08 3 1011 2.99 3 10219

Earth 5.97 3 1024 6.37 3 106 3.156 3 107 1.496 3 1011 2.97 3 10219

Mars 6.42 3 1023 3.39 3 106 5.94 3 107 2.28 3 1011 2.98 3 10219

Jupiter 1.90 3 1027 6.99 3 107 3.74 3 108 7.78 3 1011 2.97 3 10219

Saturn 5.68 3 1026 5.82 3 107 9.29 3 108 1.43 3 1012 2.95 3 10219

Uranus 8.68 3 1025 2.54 3 107 2.65 3 109 2.87 3 1012 2.97 3 10219

Neptune 1.02 3 1026 2.46 3 107 5.18 3 109 4.50 3 1012 2.94 3 10219

Plutoa 1.25 3 1022 1.20 3 106 7.82 3 109 5.91 3 1012 2.96 3 10219

Moon 7.35 3 1022 1.74 3 106 — — —
Sun 1.989 3 1030 6.96 3 108 — — —
aIn August 2006, the International Astronomical Union adopted a definition of a planet that separates Pluto from the other eight planets. Pluto is now defined as 
a “dwarf planet” like the asteroid Ceres.

Example 13.4   The Mass of the Sun

Calculate the mass of the Sun, noting that the period of the Earth’s orbit around the Sun is 3.156 3 107 s and its dis-
tance from the Sun is 1.496 3 1011 m.

Conceptualize  Based on the mathematical representation of Kepler’s third law expressed in Equation 13.11, we realize 
that the mass of the central object in a gravitational system is related to the orbital size and period of objects in orbit 
around the central object.

Categorize  This example is a relatively simple substitution problem.

S O L U T I O N

Solve Equation 13.11 for the mass of the Sun: MS 5
4p2r 3

GT 2

Substitute the known values: MS 5
4p2 11.496 3 1011 m 2316.674 3 10211 N # m2/kg2 2 13.156 3 107 s 22 5  1.99 3 1030 kg
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Kepler’s Laws

By 1621 Kepler had published all three of his laws.

By 1687, Newton was able to show that all three of Kepler’s laws
were a consequence of his laws of motion and his law of
gravitation.



Summary

• projectile motion

• orbits

• motion of planets and satellites

• Kepler’s laws

• escape speed

Midterm tomorrow, July 20th.

Homework Hewitt,

• Ch 10, onward from page 190. Exercises: 15, 19, 23, 45, 59;
Problems: 3

• Study!

• read through the textbook

• Bring a calculator and a scantron!


