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Last time

• heat capacity

• thermal expansion

• heat transfer mechanisms

• Newton’s law of cooling

• the greenhouse effect



Fluorescent Lamps

1Figure, Wikipedia, uploaded by user Dkroll2.



Overview

• phases of matter and phase change

• the laws of thermodynamics

• entropy

• heat engines



Phase Changes

During a phase change, temperature doesn’t change, even when
heat is added!



Latent Heat

latent heat of fusion, Lf

The amount of energy (heat) per unit mass required to change a
solid to a liquid.

heat, Q = mLf

latent heat of vaporization, Lv

The amount of energy (heat) per unit mass required to change a
liquid to a gas.

Q = mLv



Practice

Problem 2, page 314.

The specific heat capacity of ice is about 0.5 cal/(g◦C). Supposing
that it remains at that value all the way to absolute zero, calculate
the number of calories it would take to change a 1 g ice cube at
absolute zero (−273◦C) to 1 g of boiling water. How does this
compare to the number of calories required to change the same
gram of 100◦C boiling water to 100◦C steam?

Reminder: 1 cal is the heat required to raise the temperature of
1 g of water by 1◦C.

From the textbook: the latent heat of fusion of water is 80 cal/g,
the latent heat of vaporization is 540 cal/g.

1Hewitt, Problem 2, page 314, and see page 309.



Practice

The specific heat capacity of ice is about 0.5 cal/(g◦C). Calculate
the number of calories it would take to change a 1 g ice cube at
absolute zero (−273◦C) to 1 g of boiling water.

warming ice:

Q1 = mcice∆T = (1 g)(0.5 cal/g◦C)(273◦C) = 136.5 cal

melting:
Q2 = mLf = (1 g) (80 cal/g) = 80 cal

warming water:

Q3 = mcwater∆T = (1 g)(1.0 cal/g◦C)(100◦C) = 100 cal

Total Q1 + Q2 + Q3 = 320 cal.

1Hewitt, Problem 2, page 314.
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Practice

The specific heat capacity of ice is about 0.5 cal/g◦C. Supposing
that it remains at that value all the way to absolute zero, calculate
the number of calories it would take to change a 1 g ice cube at
absolute zero (−273◦C) to 1 g of boiling water. How does this
compare to the number of calories required to change the same
gram of 100◦C boiling water to 100◦C steam?

boiling:
Q4 = mLv = (1 g) (540 cal/g) = 540 cal

The energy required to transform the water to steam is much
bigger than the energy required to heat the ice, convert it to
water, and continue heating up to 100◦C.

1Hewitt, Problem 2, page 314.
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Practice
Problem 8, page 314.

The heat of vaporization of ethyl alcohol is about 200 cal/g. If
2 kg of this fluid were allowed to vaporize in a refrigerator, show
that 5 kg of ice (at 0◦C) would be formed from 0◦C water.

Hint: in the last problem we melted 1 g of ice and found it
required 80 cal.

energy needed for vaporization:

Q = mLv ,ea = (2000 g)(200 cal/g) = 4.0 × 105 cal

assuming this same amount of energy was taken from the water:

m =
Q

Lf
=

4.0 × 105 cal

80 cal/g
= 5000 g = 5 kg X

1Hewitt, Problem 8, page 314.
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Phase Change paths



Melting

melting

the change of a solid to a liquid

As a substance reaches the temperature at which is melts,
additional heat energy goes into the internal energy of the atoms /
molecules making up the substance.

Bonded atoms / molecules are in a state that has low potential
energy.

In a liquid the rigid bonds between molecules are broken. Breaking
these bonds corresponds to increasing the potential (internal)
energy of the molecules.



Freezing

freezing

the change of a liquid to a solid

Here heat is lost from the substance, causing molecules to lose
potential (internal) energy.

The solid material bonds reform.



Regelation

This is a phenomenon seen in water because its density is lower in
its solid state.

High pressure applied to solid water causes it to melt, even at low
temperatures.

This makes ice skating work.



Condensation

condensation

the process by which a gas changes to a back into a liquid

A glass of ice water in will collect water on the outside of it in hot,
humid weather.

The drink is heated by the gas in the air, but as it takes heat from
the air, water vapor condenses out onto the glass.

This is also the process that causes dew to collect overnight.



Boiling

boiling

the change of a liquid to a gas that occurs not only at the surface
but throughout the liquid

In a rolling boil, bubbles can be seen to be forming within the
middle of water in a pot.

These bubbles are steam - gaseous water. It forms randomly in
pockets throughout the whole pot.



Evaporation

evaporation

the process by which a liquid changes to a gas at the liquid surface

Since changing from a liquid to a gas requires heat, when a liquid
evaporates it takes heat from its surroundings.

This is why humans sweat in hot water, pigs wallow puddles, and
dogs pant. All are trying to use evaporation of water to reduce
body temperature.



Evaporation and Distribution of Molecular Speeds
Distribution of speeds of molecules at a given temperature:

 21.5 Distribution of Molecular Speeds 641

 The fundamental expression that describes the distribution of speeds of N gas 
molecules is

 Nv 5 4pN a m0 
2pkBT

b3/2

v2e2m 0v 2/2kBT  (21.41)

where m0 is the mass of a gas molecule, k B is Boltzmann’s constant, and T is the 
absolute temperature.3 Observe the appearance of the Boltzmann factor e2E/kBT  
with E 5 1

2m0v2.
 As indicated in Figure 21.10, the average speed is somewhat lower than the 
rms speed. The most probable speed vmp is the speed at which the distribution curve 
reaches a peak. Using Equation 21.41, we find that

 vrms 5 " v2 5 Å3kBT
m0

5 1.73Å kBT
m 0

 (21.42)

 vavg 5 Å8kBT
pm 0

5 1.60Å kBT
m0

 (21.43)

 vmp 5 Å2kBT
m0

5 1.41Å kBT
m0

 (21.44)

Equation 21.42 has previously appeared as Equation 21.22. The details of the deri-
vations of these equations from Equation 21.41 are left for the end-of-chapter prob-
lems (see Problems 42 and 69). From these equations, we see that

 vrms . vavg . vmp 

 Figure 21.11 represents speed distribution curves for nitrogen, N2. The curves 
were obtained by using Equation 21.41 to evaluate the distribution function at vari-
ous speeds and at two temperatures. Notice that the peak in each curve shifts to 
the right as T increases, indicating that the average speed increases with increasing 
temperature, as expected. Because the lowest speed possible is zero and the upper 
classical limit of the speed is infinity, the curves are asymmetrical. (In Chapter 39, 
we show that the actual upper limit is the speed of light.)
 Equation 21.41 shows that the distribution of molecular speeds in a gas depends 
both on mass and on temperature. At a given temperature, the fraction of mol-
ecules with speeds exceeding a fixed value increases as the mass decreases. Hence, 

3 For the derivation of this expression, see an advanced textbook on thermodynamics.
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The number of molecules 
having speeds ranging from v 
to v ! dv equals the area of 
the tan rectangle, Nv dv.

Figure 21.10 The speed distri-
bution of gas molecules at some 
temperature. The function Nv 
approaches zero as v approaches 
infinity.

Figure 21.11 The speed distri-
bution function for 105 nitrogen 
molecules at 300 K and 900 K.
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The total area under either curve is 
equal to N, the total number of 
molecules. In this case, N " 105.

Note that vrms # vavg # vmp.

There are always some molecules with more kinetic energy than
most molecules: those can vaporize at a lower temperature.



Evaporation

Ben Franklin noticed that a wet shirt kept him feeling cool on a
hot day.

He decided to experiment to see if the temperature of objects
could be lowered by this process.

In 1758 he and John Hadley took a mercury thermometer and
repeatedly wet the bulb with ether while using bellows to keep air
moving over it.

Despite it being a warm day, they recorded temperatures as low as
7◦ F (−14◦C) at the bulb of the thermometer.

This is the basic idea behind refrigeration!



Phase Diagrams



Thermodynamics

The name of the field literally means “movement of heat”.

Thermodynamics is the study of the relation between heat and
work, and volume, pressure, temperature, and entropy.

All of the observable variables are macroscopic: they only refer to
bulk properties of the fluids under study.

When thermodynamics was first developed, there was no
understanding at all of atoms or microscopic interactions.



Thermodynamics Motivation

Thermodynamics was developed in the 1800 because of a need to
understand the relation between work and heat.

Steam engines were first experimented with 2000 years ago, and
demonstrated practically in the 1600s.

By the mid 1800s, these engines were becoming economical. They
became the cornerstone of transport and production in the
industrial revolution.

Better understanding how to design them was crucial.



Some quantities

We already introduced internal energy. Reminder:

internal energy, Eint or Uint

The energy that an object has as a result of its temperature and all
other molecular motions, effects, and configurations.

Later we will need another quantity also: entropy.



First Law of Thermodynamics

1st Law

The change in the internal energy of a system is equal to the sum
of the heat added to the system and the work done on the system.

∆Uint = W + Q

This is just the conservation of energy written in a different way!

It takes into account that heat is energy.



Second Law

2nd Law

Unless work is done on a system, heat in the system will flow from
a hotter body in the system to a cooler one.

This is obvious from experience, but it’s not obvious why this
should happen.

It also indicates there are processes in the physical world that seem
not to be time-reversible.
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Entropy

Entropy is a measure of disorder in a system.

It can also be used as a measure of information content.

Intriguingly, entropy was introduced separately in physics and then
later in information theory. The fact that these two measures were
the same was observed by John von Neumann.



Entropy

According to Claude Shannon, who developed Shannon entropy, or
information entropy:

“I thought of calling it ‘information’, but the word was overly used,
so I decided to call it ‘uncertainty’. [...] Von Neumann told me,
‘You should call it entropy, for two reasons. In the first place your
uncertainty function has been used in statistical mechanics under
that name, so it already has a name. In the second place, and
more important, nobody knows what entropy really is, so in a
debate you will always have the advantage.’ ”



So what is entropy?

Consider the Yo. app (valued at $5-10 million in 2014).

You can only use it to send the message “yo.”

If you get a message on the app, you can guess what it will say:
there was only 1 possible state of the message.

The message has no information content, and it is perfectly
ordered, there is no uncertainty.

The entropy of the message is zero.
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So what is entropy?

But what if the message could be “yo” or “no”?

“If you get the yo, let’s meet for drinks, if no, I’m still in a meeting
and can’t join you.”

Now you learn something when you get the message: there were
two possible states of the message.

The entropy of the message is greater than zero.
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Entropy in Thermodynamics

Consider the atmosphere, it is mostly Oxygen and Nitrogen.

Have you ever walked into a room and been unable to breathe
because all of the oxygen in on the other side of the room?

b

c

a

As more oxygen molecules are added, the probability that there is
oxygen is on both sides increases.
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Macrostates and Microstates

A macrostate is something we can observe on a large scale.

The macrostates here could be:

• all oxygen on the left

• all oxygen on the right

• oxygen mixed throughout the room.

 22.6 Entropy 669

of missing information, meaning we have very little information about what micro-
state actually exists. For a macrostate of a 2 on a pair of dice, we have no missing 
information; we know the microstate is 1–1. For a macrostate of a worthless poker 
hand, however, we have lots of missing information, related to the large number of 
choices we could make as to the actual hand that is held.

Q uick Quiz 22.4  (a) Suppose you select four cards at random from a standard 
deck of playing cards and end up with a macrostate of four deuces. How many 
microstates are associated with this macrostate? (b) Suppose you pick up two 
cards and end up with a macrostate of two aces. How many microstates are asso-
ciated with this macrostate?

 For thermodynamic systems, the variable entropy S is used to represent the level 
of uncertainty, choice, probability, or missing information in the system. Consider 
a configuration (a macrostate) in which all the oxygen molecules in your room 
are located in the west half of the room and the nitrogen molecules in the east 
half. Compare that macrostate to the more common configuration of the air mole-
cules distributed uniformly throughout the room. The latter configuration has the 
higher uncertainty and more missing information as to where the molecules are 
located because they could be anywhere, not just in one half of the room according 
to the type of molecule. The configuration with a uniform distribution also repre-
sents more choices as to where to locate molecules. It also has a much higher prob-
ability of occurring; have you ever noticed your half of the room suddenly being 
empty of oxygen? Therefore, the latter configuration represents a higher entropy.
     For systems of dice and poker hands, the comparisons between probabilities 
for various macrostates involve relatively small numbers. For example, a macrostate 
of a 4 on a pair of dice is only three times as probable as a macrostate of 2. The 
ratio of probabilities of a worthless hand and a royal flush is significantly larger. 
When we are talking about a macroscopic thermodynamic system containing on 
the order of Avogadro’s number of molecules, however, the ratios of probabilities 
can be astronomical.
 Let’s explore this concept by considering 100 molecules in a container. Half of 
the molecules are oxygen and the other half are nitrogen. At any given moment, 
the probability of one molecule being in the left part of the container shown in Fig-
ure 22.15a as a result of random motion is 12. If there are two molecules as shown in 
Figure 22.15b, the probability of both being in the left part is 11

2 22, or 1 in 4. If there 
are three molecules (Fig. 22.15c), the probability of them all being in the left por-
tion at the same moment is 11

2 23, or 1 in 8. For 100 independently moving molecules, 
the probability that the 50 oxygen molecules will be found in the left part at any 
moment is 11

2 250. Likewise, the probability that the remaining 50 nitrogen molecules 
will be found in the right part at any moment is 11

2 250. Therefore, the probability of 

Pitfall Prevention 22.5 
Entropy Is for Thermodynamic 
Systems We are not applying the 
word entropy to describe systems 
of dice or cards. We are only 
discussing dice and cards to set 
up the notions of microstates, 
macrostates, uncertainty, choice, 
probability, and missing informa-
tion. Entropy can only be used to 
describe thermodynamic systems 
that contain many particles, allow-
ing the system to store energy as 
internal energy.

Pitfall Prevention 22.6 
Entropy and Disorder Some 
textbook treatments of entropy 
relate entropy to the disorder of a 
system. While this approach has 
some merit, it is not entirely suc-
cessful. For example, consider 
two samples of the same solid 
material at the same temperature. 
One sample has volume V and 
the other volume 2V. The larger 
sample has higher entropy than 
the smaller one simply because 
there are more molecules in it. 
But there is no sense in which it is 
more disordered than the smaller 
sample. We will not use the dis-
order approach in this text, but 
watch for it in other sources.

b

c

a
Figure 22.15 Possible distribu-
tions of identical molecules in a 
container. The colors used here 
exist only to allow us to distin-
guish among the molecules.  
(a) One molecule in a container 
has a 1-in-2 chance of being on 
the left side. (b) Two molecules 
have a 1-in-4 chance of being on 
the left side at the same time.  
(c) Three molecules have a 1-in-8 
chance of being on the left side  
at the same time.



Macrostates and Microstates

A microstate is a state too small / complex to easily observe, but
represents one way a macrostate can be achieved.

We want to consider the number of microstates for each
macrostate.

The macrostates here could be:

• all oxygen on the left — 1 microstate

• all oxygen on the right — 1 microstate

• oxygen mixed throughout the room — 6 microstates
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Entropy and disorder

Entropy, S , depends on the number of microstates that an
observed macrostate has. The more microstates, the more entropy.

A macrostate that has very many microstates can be thought of as
a disordered state.

If all the oxygen is on the left of the room, all the nitrogen on the
right, the room is organized, or ordered.

But this is very unlikely!

Even if a room starts out ordered, you would expect it to become
disordered right away, because a disordered room is more probable.



Entropy example

Problem 8, page 331.

Construct a table of all the possible combinations of numbers that
can come up when you throw 2 dice.

The score of the dice will be the sum of the two numbers on the
dice. Why is 7 the most likely score?



Entropy example

The macroscopic world is like a game in which there are ∼ 1023

dice, but you only ever see the (approximate) score, not the result
on each dice.

1Figure Weisstein, Eric W. ”Dice.” From MathWorld–A Wolfram Web
Resource. http://mathworld.wolfram.com/Dice.html



Second Law of Thermodynamics

This gives us another way to state the second law:

2nd Law

In an isolated system, entropy does not decrease.

equivalently:
∆S

∆t
> 0

Heat must flow from hotter to colder because there are more ways
to distribute heat evenly than to keep it in one place only.

As time goes by, things tend to disorder.



Third Law of Thermodynamics

3rd Law

As the temperature of a material approaches zero, the entropy
approaches a constant value.

The constant value the entropy takes is very small. It is actually
zero if the lowest energy state of the material is unique.

Another way to express the third law:

3rd Law - alternate

It is impossible to reach absolute zero using any procedure and
only a finite number of steps.



Heat Engines

Steam engines and later incarnations of the engine run on a very
simple principle: heat is transferred from a hot object to a colder
object and mechanical work is done in the process.

Usually, some chemical energy (burning fuel) is used to raise the
temperature of one object, and the colder object remains at the
ambient temperature.



Heat Engines

1Diagram from http://www2.ignatius.edu/faculty/decarlo/



Efficiency of a Heat Engine

Efficiency:

e =
QH − QC

QH
=

W

QH

An ideal engine, one that has the highest possible efficiency (a
Carnot engine), has efficiency:

e =
TH − TC

TH

(T is measured in Kelvin!)

It is not possible for any engine to have efficiency higher than this
without violating the 2nd law.



“Perfect” but Impossible Engine

It would be nice if all heat energy QH could be converted to work.

But this is not possible.

That would require TC = 0, so that W = QH . Cannot happen.



“Perfect” but Impossible Engine

It would be nice if all heat energy QH could be converted to work.

But this is not possible.

That would require TC = 0, so that W = QH . Cannot happen.

X



Second Law and Heat Engines

We can state the second law also as a fundamental limitation on
heat engines.

Second Law of Thermodynamics (Heat Engine version)

It is impossible to construct a heat engine that, operating in a
cycle, produces no effect other than the input of energy by heat
from a reservoir and the performance of an equal amount of work.



Summary

• phases of matter and phase change

• Laws of thermodynamics

• entropy

• absolute zero

• heat engines

• practical engines

Talks, Essay

Homework Hewitt,

• Ch 17, onward from page 312. Exercises: 1, 11; Problems: 1

• Ch 18, onward from page 329. Exercises: 3, 7, 11, 17, 25, 29.
Problems 1, 5, 7.


