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Last time

• heat engines

• waves

• oscillations

• interference

• standing waves



Overview

• Doppler effect

• bow waves

• sound

• electric charge

• electric field



The Doppler Effect
Waves from approaching sources seem to have higher frequency
than waves from stationary sources.

Waves from receding sources seem to have lower frequency than
waves from stationary sources.



The Doppler Effect

How much does the frequency change?

fD =
v

v + vs
fs

where v is the speed of the wave, fs is the frequency emitted by the
source, and fD is the frequency detected by a stationary detector.

vs is the speed of the wave source: here we use the convention
that vs is negative if the source is approaching us and positive if it
is moving away from us.



The Doppler Effect Question

A police car has a siren tone with a frequency at 2.0 kHz.

It is approaching you at 28 m/s. What frequency do you hear the
siren tone as?

Now it has passed by and is moving away from you. What
frequency do you hear the siren tone as now?



The Doppler Effect and Astronomy

1Image from Wikipedia by Georg Wiora.



Bow Waves and Shock Waves

Bow waves and shock waves can be detected by nearby observers
when the speed of the wave source exceeds the speed of the waves.

This effect happens when an aircraft transitions from subsonic
flight to supersonic flight.

1Figure from Hewitt, 11ed.



Bow waves



Supersonic transition



Sound

Sound is a longitudinal wave, formed of pressure fluctuations in air.

At sea level at 20◦C, sound travels at 343 m/s.

All sound waves will travel at this speed relative to the rest frame
of the air.

v = f λ

A low frequency means a longer wavelength.

Sound can travel at different speeds in other materials. It travels
faster in water, and slower at higher altitudes in the atmosphere
(troposphere layer).1

1In higher layers, the speed of sound varies with the temperature.
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Standing Waves and Resonance

Standing wave motions are called normal modes.

normal mode

A pattern of motion in a physical system where all parts of the
system move sinusoidally with the same frequency and with a fixed
phase relation.



Standing Waves and Resonance on a String

542 Chapter 18 Superposition and Standing Waves

mode is the longest-wavelength mode that is consistent with our boundary condi-
tions. The first normal mode occurs when the wavelength l1 is equal to twice the 
length of the string, or l1 5 2L. The section of a standing wave from one node to 
the next node is called a loop. In the first normal mode, the string is vibrating in 
one loop. In the second normal mode (see Fig. 18.10b), the string vibrates in two 
loops. When the left half of the string is moving upward, the right half is moving 
downward. In this case, the wavelength l2 is equal to the length of the string, as 
expressed by l2 5 L. The third normal mode (see Fig. 18.10c) corresponds to the 
case in which l3 5 2L/3, and the string vibrates in three loops. In general, the wave-
lengths of the various normal modes for a string of length L fixed at both ends are

 ln 5
2L
n  n 5 1, 2, 3, c (18.4)

where the index n refers to the nth normal mode of oscillation. These modes are 
possible. The actual modes that are excited on a string are discussed shortly.
 The natural frequencies associated with the modes of oscillation are obtained 
from the relationship f 5 v/l, where the wave speed v is the same for all frequen-
cies. Using Equation 18.4, we find that the natural frequencies fn of the normal 
modes are

 fn 5
v
ln

5 n 
v

2L
 n 5 1, 2, 3, c (18.5)

These natural frequencies are also called the quantized frequencies associated with the  
vibrating string fixed at both ends.
 Because v 5 !T/m (see Eq. 16.18) for waves on a string, where T is the tension 
in the string and m is its linear mass density, we can also express the natural fre-
quencies of a taut string as

 fn 5
n

2L
 ÅT

m
 n 5 1, 2, 3, c (18.6)

The lowest frequency f1, which corresponds to n 5 1, is called either the fundamen-
tal or the fundamental frequency and is given by

 f1 5
1

2L
 ÅT

m
 (18.7)

 The frequencies of the remaining normal modes are integer multiples of the 
fundamental frequency (Eq. 18.5). Frequencies of normal modes that exhibit such 
an integer- multiple relationship form a harmonic series, and the normal modes 
are called harmonics. The fundamental frequency f1 is the frequency of the first 
harmonic, the frequency f2 5 2f1 is that of the second harmonic, and the frequency 
fn 5 nf1 is that of the nth harmonic. Other oscillating systems, such as a drumhead, 
exhibit normal modes, but the frequencies are not related as integer multiples of 
a fundamental (see Section 18.6). Therefore, we do not use the term harmonic in 
association with those types of systems.
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Figure 18.10 The normal modes of vibration of the string in Figure 18.9 form a harmonic series. 
The string vibrates between the extremes shown.The natural frequencies of a string are given by:

fn =
nv

2L

where n is a positive natural number, L is the length of the string,
and v is the speed of the wave on the string.

A long string has a low fundamental frequency.

A short string has a high fundamental frequency.



Standing Waves and Resonance on a String

When a string is plucked, resonant (natural) frequencies tend to
persist, while other waves at other frequencies are quickly
dissipated.

Stringed instruments like guitars can be tuned by adjusting the
tension in the strings.

Changing the tension changes the speed of the wave on the string.
That changes the natural frequencies.

While playing, pressing a string against a particular fret will change
the string length, which also changes the natural frequencies.



Standing Sound Waves in air columns
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of the pipe and the outside even though there is no change in the material of the 
medium. This change in character is sufficient to allow some reflection.
 With the boundary conditions of nodes or antinodes at the ends of the air col-
umn, we have a set of normal modes of oscillation as is the case for the string fixed 
at both ends. Therefore, the air column has quantized frequencies.
 The first three normal modes of oscillation of a pipe open at both ends are 
shown in Figure 18.13a. Notice that both ends are displacement antinodes (approx-
imately). In the first normal mode, the standing wave extends between two adjacent 
antinodes, which is a distance of half a wavelength. Therefore, the wavelength is 
twice the length of the pipe, and the fundamental frequency is f1 5 v/2L. As Figure 
18.13a shows, the frequencies of the higher harmonics are 2f1, 3f1, . . . .

In a pipe open at both ends, the natural frequencies of oscillation form a har-
monic series that includes all integral multiples of the fundamental frequency.

Because all harmonics are present and because the fundamental frequency is given 
by the same expression as that for a string (see Eq. 18.5), we can express the natural 
frequencies of oscillation as

 fn 5 n 
v

2L
    n 5 1, 2, 3, . . .  (18.8)

Despite the similarity between Equations 18.5 and 18.8, you must remember that v 
in Equation 18.5 is the speed of waves on the string, whereas v in Equation 18.8 is 
the speed of sound in air.
 If a pipe is closed at one end and open at the other, the closed end is a displace-
ment node (see Fig. 18.13b). In this case, the standing wave for the fundamental 
mode extends from an antinode to the adjacent node, which is one-fourth of a wave-
length. Hence, the wavelength for the first normal mode is 4L , and the fundamental  
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In a pipe open at both ends, the 
ends are displacement antinodes 
and the harmonic series contains 
all integer multiples of the 
fundamental.

In a pipe closed at one end, the 
open end is a displacement 
antinode and the closed end is 
a node. The harmonic series 
contains only odd integer 
multiples of the fundamental.
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Figure 18.13  Graphical  
representations of the motion of 
elements of air in standing lon-
gitudinal waves in (a) a column 
open at both ends and (b) a col-
umn closed at one end.

Pitfall Prevention 18.3
Sound Waves in Air Are Lon-
gitudinal, Not Transverse The 
standing longitudinal waves are 
drawn as transverse waves in Fig-
ure 18.13. Because they are in the 
same direction as the propaga-
tion, it is difficult to draw longitu-
dinal displacements. Therefore, it 
is best to interpret the red-brown 
curves in Figure 18.13 as a graphi-
cal representation of the waves 
(our diagrams of string waves are 
pictorial representations), with 
the vertical axis representing the 
horizontal displacement s(x, t) of 
the elements of the medium.

Standing sound waves can
be set up in hollow tubes.

This is the idea behind
how pipe organs, clarinets,
didgeridoos, etc. work.

1Figure from Serway & Jewett, page 547.



Musical Instruments

Didgeridoo:

Longer didgeridoos have lower pitch, but tubes that flare outward
have higher pitches this can also change the spacing of the
resonant frequencies.

1Matt Roberts via Getty Images.



Musical Instruments, Pipe Organ
The longest pipes made for organs are open-ended 64-foot stops
(tube is effectively 64 feet+ long). There are two of them in the
world. The fundamental frequency associated with such a pipe is
8 Hz.

32’ stops give 16 Hz sound, 16’ stops give 32 Hz, 8’ stops give 64
Hz, etc.

1Picture of Sydney Town Hall Grand Organ from Wikipedia, user Jason7825.



Musical Instruments458 CHAPTE R 17 WAVE S—I I

More generally, the resonant frequencies for a pipe of length L with two
open ends correspond to the wavelengths

for n ! 1, 2, 3, . . . , (17-38)

where n is called the harmonic number. Letting v be the speed of sound, we
write the resonant frequencies for a pipe with two open ends as

for n ! 1, 2, 3, . . . (pipe, two open ends). (17-39)

Figure 17-14b shows (using string wave representations) some of the
standing sound wave patterns that can be set up in a pipe with only one
open end. As required, across the open end there is an antinode and across
the closed end there is a node. The simplest pattern requires sound waves
having a wavelength given by L ! l /4, so that l ! 4L. The next simplest
pattern requires a wavelength given by L ! 3l /4, so that l ! 4L/3, and 
so on.

More generally, the resonant frequencies for a pipe of length L with
only one open end correspond to the wavelengths

for n ! 1, 3, 5, . . . , (17-40)

in which the harmonic number n must be an odd number. The resonant frequen-
cies are then given by

for n ! 1, 3, 5, . . . (pipe, one open end). (17-41)

Note again that only odd harmonics can exist in a pipe with one open end. For
example, the second harmonic, with n ! 2, cannot be set up in such a pipe.
Note also that for such a pipe the adjective in a phrase such as “the third har-
monic” still refers to the harmonic number n (and not to, say, the third possible
harmonic). Finally note that Eqs. 17-38 and 17-39 for two open ends contain
the number 2 and any integer value of n, but Eqs. 17-40 and 17-41 for one open
end contain the number 4 and only odd values of n.

The length of a musical instrument reflects the range of frequencies over which
the instrument is designed to function, and smaller length implies higher frequen-
cies. Figure 17-15, for example, shows the saxophone and violin families, with their
frequency ranges suggested by the piano keyboard. Note that, for every instru-
ment, there is overlap with its higher- and lower-frequency neighbors.

In any oscillating system that gives rise to a musical sound, whether it is a
violin string or the air in an organ pipe, the fundamental and one or more of
the higher harmonics are usually generated simultaneously. Thus, you hear
them together — that is, superimposed as a net wave. When different instru-
ments are played at the same note, they produce the same fundamental fre-
quency but different intensities for the higher harmonics. For example, the
fourth harmonic of middle C might be relatively loud on one instrument and
relatively quiet or even missing on another. Thus, because different instru-
ments produce different net waves, they sound different to you even when
they are played at the same note. That would be the case for the two net
waves shown in Fig. 17-16, which were produced at the same note by different
instruments.
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Pipe A, with length L, and pipe B, with length 2L, both have two open ends. Which 
harmonic of pipe B has the same frequency as the fundamental of pipe A?

Fig. 17-15 The saxophone and violin
families, showing the relations between in-
strument length and frequency range.The
frequency range of each instrument is indi-
cated by a horizontal bar along a frequency
scale suggested by the keyboard at the bot-
tom; the frequency increases toward the
right.

Fig. 17-16 The wave forms pro-
duced by (a) a flute and (b) an oboe
when played at the same note, with
the same first harmonic frequency.
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In general, larger instruments can create lower tones, whether
string instruments or tube instruments.

1Halliday, Resnick, Walker, 9th ed, page 458.



Decibels: Scale for Sound Level

The ear can detect very quiet sounds, but also can hear very loud
sounds without damage. (Very, very loud sounds do damage ears.)

As sound wave that has twice the energy does not “sound like” it
is twice as loud.

Many human senses register to us on a logarithmic scale.

Decibels (dB) is the scale unit we use to measure loudness / sound
level.

Roughly, a noise sounds twice as loud if its sound level is increased
by 10 dB, or it has 10 times the energy.



Perception of Loudness and Frequency

Human hearing also depends on frequency.

Humans can only hear sound in the range 20-20,000 Hz.
 17.4 The Doppler Effect 517

old of pain. Here the boundary of the white area appears straight because the psy-
chological response is relatively independent of frequency at this high sound level.
 The most dramatic change with frequency is in the lower left region of the white 
area, for low frequencies and low intensity levels. Our ears are particularly insen-
sitive in this region. If you are listening to your home entertainment system and 
the bass (low frequencies) and treble (high frequencies) sound balanced at a high 
volume, try turning the volume down and listening again. You will probably notice 
that the bass seems weak, which is due to the insensitivity of the ear to low frequen-
cies at low sound levels as shown in Figure 17.7.

17.4 The Doppler Effect
Perhaps you have noticed how the sound of a vehicle’s horn changes as the vehicle 
moves past you. The frequency of the sound you hear as the vehicle approaches you 
is higher than the frequency you hear as it moves away from you. This experience is 
one example of the Doppler effect.3

 To see what causes this apparent frequency change, imagine you are in a boat 
that is lying at anchor on a gentle sea where the waves have a period of T 5 3.0 s.  
Hence, every 3.0 s a crest hits your boat. Figure 17.8a shows this situation, with 
the water waves moving toward the left. If you set your watch to t 5 0 just as one 
crest hits, the watch reads 3.0 s when the next crest hits, 6.0 s when the third crest 
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Figure 17.7  Approximate 
ranges of frequency and sound 
level of various sources and that of 
normal human hearing, shown by 
the white area. (From R. L. Reese, 
University Physics, Pacific Grove, 
Brooks/Cole, 2000.)

3Named after Austrian physicist Christian Johann Doppler (1803–1853), who in 1842 predicted the effect for both 
sound waves and light waves.
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In all frames, the waves 
travel to the left, and their 
source is far to the right 
of the boat, out of the 
frame of the figure.
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Figure 17.8  (a) Waves moving 
toward a stationary boat. (b) The 
boat moving toward the wave 
source. (c) The boat moving away 
from the wave source.

Low frequency sounds need to be louder to be heard.
1Figure from R. L. Reese, University Physics, via Serway & Jewett.



Sound

Sound waves can cause resonant vibrations in objects that will
oscillate with the same frequency.

(Tuning forks!)

Sound waves can also interfere just like other waves.



Beats

Two sound waves with slightly different frequencies interfere to
form beats.

These are louder and quieter variations in sound level.

Amplitude vs t at a fixed position:

 18.7 Beats: Interference in Time 551

y
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tb

a

Figure 18.17 Beats are formed 
by the combination of two waves 
of slightly different frequencies. 
(a) The individual waves. (b) The 
combined wave. The envelope 
wave (dashed line) represents the 
beating of the combined sounds.

lation of elements of the medium varies with the position in space of the element 
in such a wave, we refer to the phenomenon as spatial interference. Standing waves in 
strings and pipes are common examples of spatial interference.
 Now let’s consider another type of interference, one that results from the super-
position of two waves having slightly different frequencies. In this case, when the two 
waves are observed at a point in space, they are periodically in and out of phase. 
That is, there is a temporal (time) alternation between constructive and destructive 
interference. As a consequence, we refer to this phenomenon as interference in time 
or temporal interference. For example, if two tuning forks of slightly different frequen-
cies are struck, one hears a sound of periodically varying amplitude. This phenom-
enon is called beating.

Beating is the periodic variation in amplitude at a given point due to the 
superposition of two waves having slightly different frequencies.

 The number of amplitude maxima one hears per second, or the beat frequency, 
equals the difference in frequency between the two sources as we shall show below. 
The maximum beat frequency that the human ear can detect is about 20 beats/s. 
When the beat frequency exceeds this value, the beats blend indistinguishably with 
the sounds producing them.
 Consider two sound waves of equal amplitude and slightly different frequencies 
f1 and f2 traveling through a medium. We use equations similar to Equation 16.13 to 
represent the wave functions for these two waves at a point that we identify as x 5 0.  
We also choose the phase angle in Equation 16.13 as f 5 p/2:

 y1 5 A sin ap

2
2 v1tb 5 A cos 12pf1t 2

 y2 5 A sin ap

2
2 v2tb 5 A cos 12pf 2t 2

Using the superposition principle, we find that the resultant wave function at this 
point is

y 5 y1 1 y2 5 A (cos 2pf1t 1 cos 2pf2t)

The trigonometric identity

cos a 1 cos b 5 2 cos aa 2 b
2

b cos aa 1 b
2

b
allows us to write the expression for y as

 y 5 c2A cos 2pa f1 2 f2

2
bt d  cos 2pa f1 1 f2

2
bt  (18.10)

Graphs of the individual waves and the resultant wave are shown in Figure 18.17. 
From the factors in Equation 18.10, we see that the resultant wave has an effective 

�W Definition of beating

�W  Resultant of two waves of 
different frequencies but 
equal amplitude



Beats

Thus the frequency of the beats is

fbeat = |f1 − f2|

If f1 and f2 are similar the beat frequency is much smaller than
either f1 or f2.

Humans cannot hear beats if fbeat & 30 Hz.

If the two frequencies are very different we hear a chord.

If the two frequencies are very close, we hear periodic variations in
the sound level.

This is used to tune musical instruments. When instruments are
coming into tune with each other the beats get less and less
frequent, and vanish entirely when they are perfectly in tune.
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More complex sounds

Different musical instruments make different waveform patterns.

 18.8 Nonsinusoidal Wave Patterns 553

18.8 Nonsinusoidal Wave Patterns
It is relatively easy to distinguish the sounds coming from a violin and a saxophone 
even when they are both playing the same note. On the other hand, a person 
untrained in music may have difficulty distinguishing a note played on a clarinet 
from the same note played on an oboe. We can use the pattern of the sound waves 
from various sources to explain these effects.
 When frequencies that are integer multiples of a fundamental frequency are 
combined to make a sound, the result is a musical sound. A listener can assign a 
pitch to the sound based on the fundamental frequency. Pitch is a psychological 
reaction to a sound that allows the listener to place the sound on a scale from low to 
high (bass to treble). Combinations of frequencies that are not integer multiples of 
a fundamental result in a noise rather than a musical sound. It is much harder for a 
listener to assign a pitch to a noise than to a musical sound.
 The wave patterns produced by a musical instrument are the result of the super-
position of frequencies that are integer multiples of a fundamental. This superposi-
tion results in the corresponding richness of musical tones. The human perceptive 
response associated with various mixtures of harmonics is the quality or timbre of 
the sound. For instance, the sound of the trumpet is perceived to have a “brassy” 
quality (that is, we have learned to associate the adjective brassy with that sound); 
this quality enables us to distinguish the sound of the trumpet from that of the sax-
ophone, whose quality is perceived as “reedy.” The clarinet and oboe, however, both 
contain air columns excited by reeds; because of this similarity, they have similar 
mixtures of frequencies and it is more difficult for the human ear to distinguish 
them on the basis of their sound quality.
 The sound wave patterns produced by the majority of musical instruments are 
nonsinusoidal. Characteristic patterns produced by a tuning fork, a flute, and a 
clarinet, each playing the same note, are shown in Figure 18.18. Each instrument 
has its own characteristic pattern. Notice, however, that despite the differences in 
the patterns, each pattern is periodic. This point is important for our analysis of 
these waves.
 The problem of analyzing nonsinusoidal wave patterns appears at first sight to 
be a formidable task. If the wave pattern is periodic, however, it can be represented 
as closely as desired by the combination of a sufficiently large number of sinusoidal 
waves that form a harmonic series. In fact, we can represent any periodic function 
as a series of sine and cosine terms by using a mathematical technique based on 
Fourier’s theorem.2 The corresponding sum of terms that represents the periodic 
wave pattern is called a Fourier series. Let y(t) be any function that is periodic in 
time with period T such that y(t 1 T) 5 y(t). Fourier’s theorem states that this func-
tion can be written as

 y(t) 5 o (An sin 2pfnt 1 Bn cos 2pfnt) (18.13)

where the lowest frequency is f1 5 1/T. The higher frequencies are integer multiples 
of the fundamental, fn 5 nf1, and the coefficients An and Bn represent the ampli-
tudes of the various waves. Figure 18.19 on page 554 represents a harmonic analysis 
of the wave patterns shown in Figure 18.18. Each bar in the graph represents one 
of the terms in the series in Equation 18.13 up to n 5 9. Notice that a struck tuning 
fork produces only one harmonic (the first), whereas the flute and clarinet produce 
the first harmonic and many higher ones.
 Notice the variation in relative intensity of the various harmonics for the flute 
and the clarinet. In general, any musical sound consists of a fundamental fre-
quency f plus other frequencies that are integer multiples of f, all having different 
intensities.

�W Fourier’s theorem

Pitfall Prevention 18.4
Pitch Versus Frequency Do not 
confuse the term pitch with fre-
quency. Frequency is the physical 
measurement of the number of 
oscillations per second. Pitch is a 
psychological reaction to sound 
that enables a person to place the 
sound on a scale from high to low 
or from treble to bass. Therefore, 
frequency is the stimulus and 
pitch is the response. Although 
pitch is related mostly (but not 
completely) to frequency, they are 
not the same. A phrase such as 
“the pitch of the sound” is incor-
rect because pitch is not a physical 
property of the sound.

Tuning fork

Flute

Clarinet

t

t

t

b

c

a

Figure 18.18  Sound wave pat-
terns produced by (a) a tuning 
fork, (b) a flute, and (c) a clarinet, 
each at approximately the same 
frequency.

2 Developed by Jean Baptiste Joseph Fourier (1786–1830).

For example this is why a flute
and a clarinet playing the same
note still sound a bit different.

More than one frequency is
sounded.



More complex sounds

 18.8 Nonsinusoidal Wave Patterns 553

18.8 Nonsinusoidal Wave Patterns
It is relatively easy to distinguish the sounds coming from a violin and a saxophone 
even when they are both playing the same note. On the other hand, a person 
untrained in music may have difficulty distinguishing a note played on a clarinet 
from the same note played on an oboe. We can use the pattern of the sound waves 
from various sources to explain these effects.
 When frequencies that are integer multiples of a fundamental frequency are 
combined to make a sound, the result is a musical sound. A listener can assign a 
pitch to the sound based on the fundamental frequency. Pitch is a psychological 
reaction to a sound that allows the listener to place the sound on a scale from low to 
high (bass to treble). Combinations of frequencies that are not integer multiples of 
a fundamental result in a noise rather than a musical sound. It is much harder for a 
listener to assign a pitch to a noise than to a musical sound.
 The wave patterns produced by a musical instrument are the result of the super-
position of frequencies that are integer multiples of a fundamental. This superposi-
tion results in the corresponding richness of musical tones. The human perceptive 
response associated with various mixtures of harmonics is the quality or timbre of 
the sound. For instance, the sound of the trumpet is perceived to have a “brassy” 
quality (that is, we have learned to associate the adjective brassy with that sound); 
this quality enables us to distinguish the sound of the trumpet from that of the sax-
ophone, whose quality is perceived as “reedy.” The clarinet and oboe, however, both 
contain air columns excited by reeds; because of this similarity, they have similar 
mixtures of frequencies and it is more difficult for the human ear to distinguish 
them on the basis of their sound quality.
 The sound wave patterns produced by the majority of musical instruments are 
nonsinusoidal. Characteristic patterns produced by a tuning fork, a flute, and a 
clarinet, each playing the same note, are shown in Figure 18.18. Each instrument 
has its own characteristic pattern. Notice, however, that despite the differences in 
the patterns, each pattern is periodic. This point is important for our analysis of 
these waves.
 The problem of analyzing nonsinusoidal wave patterns appears at first sight to 
be a formidable task. If the wave pattern is periodic, however, it can be represented 
as closely as desired by the combination of a sufficiently large number of sinusoidal 
waves that form a harmonic series. In fact, we can represent any periodic function 
as a series of sine and cosine terms by using a mathematical technique based on 
Fourier’s theorem.2 The corresponding sum of terms that represents the periodic 
wave pattern is called a Fourier series. Let y(t) be any function that is periodic in 
time with period T such that y(t 1 T) 5 y(t). Fourier’s theorem states that this func-
tion can be written as

 y(t) 5 o (An sin 2pfnt 1 Bn cos 2pfnt) (18.13)

where the lowest frequency is f1 5 1/T. The higher frequencies are integer multiples 
of the fundamental, fn 5 nf1, and the coefficients An and Bn represent the ampli-
tudes of the various waves. Figure 18.19 on page 554 represents a harmonic analysis 
of the wave patterns shown in Figure 18.18. Each bar in the graph represents one 
of the terms in the series in Equation 18.13 up to n 5 9. Notice that a struck tuning 
fork produces only one harmonic (the first), whereas the flute and clarinet produce 
the first harmonic and many higher ones.
 Notice the variation in relative intensity of the various harmonics for the flute 
and the clarinet. In general, any musical sound consists of a fundamental fre-
quency f plus other frequencies that are integer multiples of f, all having different 
intensities.

�W Fourier’s theorem

Pitfall Prevention 18.4
Pitch Versus Frequency Do not 
confuse the term pitch with fre-
quency. Frequency is the physical 
measurement of the number of 
oscillations per second. Pitch is a 
psychological reaction to sound 
that enables a person to place the 
sound on a scale from high to low 
or from treble to bass. Therefore, 
frequency is the stimulus and 
pitch is the response. Although 
pitch is related mostly (but not 
completely) to frequency, they are 
not the same. A phrase such as 
“the pitch of the sound” is incor-
rect because pitch is not a physical 
property of the sound.
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Figure 18.18  Sound wave pat-
terns produced by (a) a tuning 
fork, (b) a flute, and (c) a clarinet, 
each at approximately the same 
frequency.

2 Developed by Jean Baptiste Joseph Fourier (1786–1830).
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 We have discussed the analysis of a wave pattern using Fourier’s theorem. The 
analysis involves determining the coefficients of the harmonics in Equation 18.13 
from a knowledge of the wave pattern. The reverse process, called Fourier synthesis, 
can also be performed. In this process, the various harmonics are added together 
to form a resultant wave pattern. As an example of Fourier synthesis, consider the 
building of a square wave as shown in Figure 18.20. The symmetry of the square 
wave results in only odd multiples of the fundamental frequency combining in its 
synthesis. In Figure 18.20a, the blue curve shows the combination of f and 3f. In 
Figure 18.20b, we have added 5f to the combination and obtained the green curve. 
Notice how the general shape of the square wave is approximated, even though the 
upper and lower portions are not flat as they should be.
 Figure 18.20c shows the result of adding odd frequencies up to 9f. This approxi-
mation (red-brown curve) to the square wave is better than the approximations 
in Figures 18.20a and 18.20b. To approximate the square wave as closely as pos-
sible, we must add all odd multiples of the fundamental frequency, up to infinite 
frequency.
 Using modern technology, musical sounds can be generated electronically by 
mixing different amplitudes of any number of harmonics. These widely used elec-
tronic music synthesizers are capable of producing an infinite variety of musical 
tones.
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18.8 Nonsinusoidal Wave Patterns
It is relatively easy to distinguish the sounds coming from a violin and a saxophone 
even when they are both playing the same note. On the other hand, a person 
untrained in music may have difficulty distinguishing a note played on a clarinet 
from the same note played on an oboe. We can use the pattern of the sound waves 
from various sources to explain these effects.
 When frequencies that are integer multiples of a fundamental frequency are 
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pitch to the sound based on the fundamental frequency. Pitch is a psychological 
reaction to a sound that allows the listener to place the sound on a scale from low to 
high (bass to treble). Combinations of frequencies that are not integer multiples of 
a fundamental result in a noise rather than a musical sound. It is much harder for a 
listener to assign a pitch to a noise than to a musical sound.
 The wave patterns produced by a musical instrument are the result of the super-
position of frequencies that are integer multiples of a fundamental. This superposi-
tion results in the corresponding richness of musical tones. The human perceptive 
response associated with various mixtures of harmonics is the quality or timbre of 
the sound. For instance, the sound of the trumpet is perceived to have a “brassy” 
quality (that is, we have learned to associate the adjective brassy with that sound); 
this quality enables us to distinguish the sound of the trumpet from that of the sax-
ophone, whose quality is perceived as “reedy.” The clarinet and oboe, however, both 
contain air columns excited by reeds; because of this similarity, they have similar 
mixtures of frequencies and it is more difficult for the human ear to distinguish 
them on the basis of their sound quality.
 The sound wave patterns produced by the majority of musical instruments are 
nonsinusoidal. Characteristic patterns produced by a tuning fork, a flute, and a 
clarinet, each playing the same note, are shown in Figure 18.18. Each instrument 
has its own characteristic pattern. Notice, however, that despite the differences in 
the patterns, each pattern is periodic. This point is important for our analysis of 
these waves.
 The problem of analyzing nonsinusoidal wave patterns appears at first sight to 
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waves that form a harmonic series. In fact, we can represent any periodic function 
as a series of sine and cosine terms by using a mathematical technique based on 
Fourier’s theorem.2 The corresponding sum of terms that represents the periodic 
wave pattern is called a Fourier series. Let y(t) be any function that is periodic in 
time with period T such that y(t 1 T) 5 y(t). Fourier’s theorem states that this func-
tion can be written as

 y(t) 5 o (An sin 2pfnt 1 Bn cos 2pfnt) (18.13)

where the lowest frequency is f1 5 1/T. The higher frequencies are integer multiples 
of the fundamental, fn 5 nf1, and the coefficients An and Bn represent the ampli-
tudes of the various waves. Figure 18.19 on page 554 represents a harmonic analysis 
of the wave patterns shown in Figure 18.18. Each bar in the graph represents one 
of the terms in the series in Equation 18.13 up to n 5 9. Notice that a struck tuning 
fork produces only one harmonic (the first), whereas the flute and clarinet produce 
the first harmonic and many higher ones.
 Notice the variation in relative intensity of the various harmonics for the flute 
and the clarinet. In general, any musical sound consists of a fundamental fre-
quency f plus other frequencies that are integer multiples of f, all having different 
intensities.
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 We have discussed the analysis of a wave pattern using Fourier’s theorem. The 
analysis involves determining the coefficients of the harmonics in Equation 18.13 
from a knowledge of the wave pattern. The reverse process, called Fourier synthesis, 
can also be performed. In this process, the various harmonics are added together 
to form a resultant wave pattern. As an example of Fourier synthesis, consider the 
building of a square wave as shown in Figure 18.20. The symmetry of the square 
wave results in only odd multiples of the fundamental frequency combining in its 
synthesis. In Figure 18.20a, the blue curve shows the combination of f and 3f. In 
Figure 18.20b, we have added 5f to the combination and obtained the green curve. 
Notice how the general shape of the square wave is approximated, even though the 
upper and lower portions are not flat as they should be.
 Figure 18.20c shows the result of adding odd frequencies up to 9f. This approxi-
mation (red-brown curve) to the square wave is better than the approximations 
in Figures 18.20a and 18.20b. To approximate the square wave as closely as pos-
sible, we must add all odd multiples of the fundamental frequency, up to infinite 
frequency.
 Using modern technology, musical sounds can be generated electronically by 
mixing different amplitudes of any number of harmonics. These widely used elec-
tronic music synthesizers are capable of producing an infinite variety of musical 
tones.
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be a formidable task. If the wave pattern is periodic, however, it can be represented 
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waves that form a harmonic series. In fact, we can represent any periodic function 
as a series of sine and cosine terms by using a mathematical technique based on 
Fourier’s theorem.2 The corresponding sum of terms that represents the periodic 
wave pattern is called a Fourier series. Let y(t) be any function that is periodic in 
time with period T such that y(t 1 T) 5 y(t). Fourier’s theorem states that this func-
tion can be written as

 y(t) 5 o (An sin 2pfnt 1 Bn cos 2pfnt) (18.13)

where the lowest frequency is f1 5 1/T. The higher frequencies are integer multiples 
of the fundamental, fn 5 nf1, and the coefficients An and Bn represent the ampli-
tudes of the various waves. Figure 18.19 on page 554 represents a harmonic analysis 
of the wave patterns shown in Figure 18.18. Each bar in the graph represents one 
of the terms in the series in Equation 18.13 up to n 5 9. Notice that a struck tuning 
fork produces only one harmonic (the first), whereas the flute and clarinet produce 
the first harmonic and many higher ones.
 Notice the variation in relative intensity of the various harmonics for the flute 
and the clarinet. In general, any musical sound consists of a fundamental fre-
quency f plus other frequencies that are integer multiples of f, all having different 
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 We have discussed the analysis of a wave pattern using Fourier’s theorem. The 
analysis involves determining the coefficients of the harmonics in Equation 18.13 
from a knowledge of the wave pattern. The reverse process, called Fourier synthesis, 
can also be performed. In this process, the various harmonics are added together 
to form a resultant wave pattern. As an example of Fourier synthesis, consider the 
building of a square wave as shown in Figure 18.20. The symmetry of the square 
wave results in only odd multiples of the fundamental frequency combining in its 
synthesis. In Figure 18.20a, the blue curve shows the combination of f and 3f. In 
Figure 18.20b, we have added 5f to the combination and obtained the green curve. 
Notice how the general shape of the square wave is approximated, even though the 
upper and lower portions are not flat as they should be.
 Figure 18.20c shows the result of adding odd frequencies up to 9f. This approxi-
mation (red-brown curve) to the square wave is better than the approximations 
in Figures 18.20a and 18.20b. To approximate the square wave as closely as pos-
sible, we must add all odd multiples of the fundamental frequency, up to infinite 
frequency.
 Using modern technology, musical sounds can be generated electronically by 
mixing different amplitudes of any number of harmonics. These widely used elec-
tronic music synthesizers are capable of producing an infinite variety of musical 
tones.
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Example: Square Wave

Two frequencies f and 3f .

Three frequencies, f , 3f ,
and 5f .

Frequencies up to 9f .
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Notice how the general shape of the square wave is approximated, even though the 
upper and lower portions are not flat as they should be.
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mation (red-brown curve) to the square wave is better than the approximations 
in Figures 18.20a and 18.20b. To approximate the square wave as closely as pos-
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 Using modern technology, musical sounds can be generated electronically by 
mixing different amplitudes of any number of harmonics. These widely used elec-
tronic music synthesizers are capable of producing an infinite variety of musical 
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Electric Charge

Charge is an intrinsic (essential) property of subatomic particles.

Examples of charged particles:

• protons (positively charged)

• electrons (negatively charged)

Static electric charge can be experienced on a large scale through
static electricity.



Electrostatic force

Charged objects exert a force (the electrostatic force) on one
another.

Charges with the same electrical sign repel each other.

Charges with opposite electrical signs attract each other.

The unit for charge is the Coulomb, written with the symbol C.



Induced Charge Polarization

 23.2 Charging Objects by Induction 693

the side of the sphere near the rod with an effective positive charge because of the 
diminished number of electrons as in Figure 23.3b. (The left side of the sphere in 
Figure 23.3b is positively charged as if positive charges moved into this region, but 
remember that only electrons are free to move.) This process occurs even if the 
rod never actually touches the sphere. If the same experiment is performed with a 
conducting wire connected from the sphere to the Earth (Fig. 23.3c), some of the 
electrons in the conductor are so strongly repelled by the presence of the negative 
charge in the rod that they move out of the sphere through the wire and into the 
Earth. The symbol  at the end of the wire in Figure 23.3c indicates that the wire 
is connected to ground, which means a reservoir, such as the Earth, that can accept 
or provide electrons freely with negligible effect on its electrical characteristics. If 
the wire to ground is then removed (Fig. 23.3d), the conducting sphere contains an 
excess of induced positive charge because it has fewer electrons than it needs to can-
cel out the positive charge of the protons. When the rubber rod is removed from 
the vicinity of the sphere (Fig. 23.3e), this induced positive charge remains on the 
ungrounded sphere. Notice that the rubber rod loses none of its negative charge 
during this process.
 Charging an object by induction requires no contact with the object inducing 
the charge. That is in contrast to charging an object by rubbing (that is, by conduc-
tion), which does require contact between the two objects.
 A process similar to induction in conductors takes place in insulators. In most 
neutral molecules, the center of positive charge coincides with the center of nega-
tive charge. In the presence of a charged object, however, these centers inside each 
molecule in an insulator may shift slightly, resulting in more positive charge on one 
side of the molecule than on the other. This realignment of charge within individ-
ual molecules produces a layer of charge on the surface of the insulator as shown in 
Figure 23.4a. The proximity of the positive charges on the surface of the object and 
the negative charges on the surface of the insulator results in an attractive force 
between the object and the insulator. Your knowledge of induction in insulators 
should help you explain why a charged rod attracts bits of electrically neutral paper 
as shown in Figure 23.4b.

Q uick Quiz 23.2  Three objects are brought close to one another, two at a time. 
When objects A and B are brought together, they attract. When objects B and 
C are brought together, they repel. Which of the following are necessarily true? 
(a) Objects A and C possess charges of the same sign. (b) Objects A and C pos-
sess charges of opposite sign. (c) All three objects possess charges of the same 
sign. (d) One object is neutral. (e) Additional experiments must be performed 
to determine information about the charges on the objects.

Figure 23.4   (a) A charged bal-
loon is brought near an insulating 
wall. (b) A charged rod is brought 
close to bits of paper.
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Conductors and Insulators

Some materials allow charges to flow through them easily, some do
not.

Conductors

materials through which charge can move readily

Insulators

(also called nonconductors) are materials that charge cannot move
through freely
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not.
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through freely



Induced Charge

If a conductor is brought close to a charged object, positive and
negative charges in the conductor start to separate and we say a
charge is induced on the conductor.

56321-3 CON DUCTORS AN D I N S U LATORS
PART 3

HALLIDAY REVISED

21-3 Conductors and Insulators
We can classify materials generally according to the ability of charge to move
through them. Conductors are materials through which charge can move rather
freely; examples include metals (such as copper in common lamp wire), the
human body, and tap water. Nonconductors — also called insulators — are ma-
terials through which charge cannot move freely; examples include rubber
(such as the insulation on common lamp wire), plastic, glass, and chemically
pure water. Semiconductors are materials that are intermediate between con-
ductors and insulators; examples include silicon and germanium in computer
chips. Superconductors are materials that are perfect conductors, allowing
charge to move without any hindrance. In these chapters we discuss only con-
ductors and insulators.

Here is an example of how conduction can eliminate excess charge on an
object. If you rub a copper rod with wool, charge is transferred from the wool to
the rod. However, if you are holding the rod while also touching a faucet, you
cannot charge the rod in spite of the transfer. The reason is that you, the rod, and
the faucet are all conductors connected, via the plumbing, to Earth’s surface,
which is a huge conductor. Because the excess charges put on the rod by the wool
repel one another, they move away from one another by moving first through the
rod, then through you, and then through the faucet and plumbing to reach
Earth’s surface, where they can spread out.The process leaves the rod electrically
neutral.

In thus setting up a pathway of conductors between an object and Earth’s
surface, we are said to ground the object, and in neutralizing the object (by elimi-
nating an unbalanced positive or negative charge), we are said to discharge the
object. If instead of holding the copper rod in your hand, you hold it by an
insulating handle, you eliminate the conducting path to Earth, and the rod can
then be charged by rubbing (the charge remains on the rod), as long as you do
not touch it directly with your hand.

The properties of conductors and insulators are due to the structure and
electrical nature of atoms.Atoms consist of positively charged protons, negatively
charged electrons, and electrically neutral neutrons. The protons and neutrons are
packed tightly together in a central nucleus.

The charge of a single electron and that of a single proton have the same
magnitude but are opposite in sign. Hence, an electrically neutral atom contains
equal numbers of electrons and protons. Electrons are held near the nucleus
because they have the electrical sign opposite that of the protons in the nucleus
and thus are attracted to the nucleus.

When atoms of a conductor like copper come together to form the solid,
some of their outermost (and so most loosely held) electrons become free to
wander about within the solid, leaving behind positively charged atoms ( positive
ions). We call the mobile electrons conduction electrons. There are few (if any)
free electrons in a nonconductor.

The experiment of Fig. 21-4 demonstrates the mobility of charge in a conduc-
tor. A negatively charged plastic rod will attract either end of an isolated neutral

Fig. 21-4 A neutral copper rod is electrically iso-
lated from its surroundings by being suspended on a
nonconducting thread. Either end of the copper rod
will be attracted by a charged rod. Here, conduction
electrons in the copper rod are repelled to the far end
of that rod by the negative charge on the plastic rod.
Then that negative charge attracts the remaining posi-
tive charge on the near end of the copper rod, rotating
the copper rod to bring that near end closer to the
plastic rod.
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Overall, the conductor is neutral, but it is still attracted to the
charged object.



Question

A,B, and D are charged pieces of plastic. C is an electrically
neutral copper plate.
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copper rod. What happens is that many of the conduction electrons in the closer
end of the copper rod are repelled by the negative charge on the plastic rod.
Some of the conduction electrons move to the far end of the copper rod, leaving
the near end depleted in electrons and thus with an unbalanced positive charge.
This positive charge is attracted to the negative charge in the plastic rod.
Although the copper rod is still neutral, it is said to have an induced charge, which
means that some of its positive and negative charges have been separated due to
the presence of a nearby charge.

Similarly, if a positively charged glass rod is brought near one end of a
neutral copper rod, conduction electrons in the copper rod are attracted to that
end. That end becomes negatively charged and the other end positively charged,
so again an induced charge is set up in the copper rod.Although the copper rod is
still neutral, it and the glass rod attract each other.

Note that only conduction electrons, with their negative charges, can move;
positive ions are fixed in place. Thus, an object becomes positively charged only
through the removal of negative charges.

Blue Flashes from a Wintergreen LifeSaver
Indirect evidence for the attraction of charges with opposite signs can be seen
with a wintergreen LifeSaver (the candy shaped in the form of a marine 
lifesaver). If you adapt your eyes to darkness for about 15 minutes and then have
a friend chomp on a piece of the candy in the darkness, you will see a faint blue
flash from your friend’s mouth with each chomp. Whenever a chomp breaks a
sugar crystal into pieces, each piece will probably end up with a different number
of electrons. Suppose a crystal breaks into pieces A and B, with A ending up with
more electrons on its surface than B (Fig. 21-5). This means that B has positive
ions (atoms that lost electrons to A) on its surface. Because the electrons on A
are strongly attracted to the positive ions on B, some of those electrons jump
across the gap between the pieces.

As A and B fall away from each other, air (primarily nitrogen, N2) flows into
the gap, and many of the jumping electrons collide with nitrogen molecules in the
air, causing the molecules to emit ultraviolet light. You cannot see this type of
light. However, the wintergreen molecules on the surfaces of the candy pieces
absorb the ultraviolet light and then emit blue light, which you can see—it is the
blue light coming from your friend’s mouth.

Fig. 21-5 Two pieces of a wintergreen LifeSaver candy as
they fall away from each other. Electrons jumping from the
negative surface of piece A to the positive surface of piece B
collide with nitrogen (N2) molecules in the air.
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CHECKPOINT 1

The figure shows five
pairs of plates: A, B, and
D are charged plastic
plates and C is an elec-
trically neutral copper
plate. The electrostatic
forces between the pairs
of plates are shown for
three of the pairs. For the remaining two pairs, do the plates repel or attract each other? 
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the near end depleted in electrons and thus with an unbalanced positive charge.
This positive charge is attracted to the negative charge in the plastic rod.
Although the copper rod is still neutral, it is said to have an induced charge, which
means that some of its positive and negative charges have been separated due to
the presence of a nearby charge.

Similarly, if a positively charged glass rod is brought near one end of a
neutral copper rod, conduction electrons in the copper rod are attracted to that
end. That end becomes negatively charged and the other end positively charged,
so again an induced charge is set up in the copper rod.Although the copper rod is
still neutral, it and the glass rod attract each other.

Note that only conduction electrons, with their negative charges, can move;
positive ions are fixed in place. Thus, an object becomes positively charged only
through the removal of negative charges.

Blue Flashes from a Wintergreen LifeSaver
Indirect evidence for the attraction of charges with opposite signs can be seen
with a wintergreen LifeSaver (the candy shaped in the form of a marine 
lifesaver). If you adapt your eyes to darkness for about 15 minutes and then have
a friend chomp on a piece of the candy in the darkness, you will see a faint blue
flash from your friend’s mouth with each chomp. Whenever a chomp breaks a
sugar crystal into pieces, each piece will probably end up with a different number
of electrons. Suppose a crystal breaks into pieces A and B, with A ending up with
more electrons on its surface than B (Fig. 21-5). This means that B has positive
ions (atoms that lost electrons to A) on its surface. Because the electrons on A
are strongly attracted to the positive ions on B, some of those electrons jump
across the gap between the pieces.

As A and B fall away from each other, air (primarily nitrogen, N2) flows into
the gap, and many of the jumping electrons collide with nitrogen molecules in the
air, causing the molecules to emit ultraviolet light. You cannot see this type of
light. However, the wintergreen molecules on the surfaces of the candy pieces
absorb the ultraviolet light and then emit blue light, which you can see—it is the
blue light coming from your friend’s mouth.

Fig. 21-5 Two pieces of a wintergreen LifeSaver candy as
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copper rod. What happens is that many of the conduction electrons in the closer
end of the copper rod are repelled by the negative charge on the plastic rod.
Some of the conduction electrons move to the far end of the copper rod, leaving
the near end depleted in electrons and thus with an unbalanced positive charge.
This positive charge is attracted to the negative charge in the plastic rod.
Although the copper rod is still neutral, it is said to have an induced charge, which
means that some of its positive and negative charges have been separated due to
the presence of a nearby charge.

Similarly, if a positively charged glass rod is brought near one end of a
neutral copper rod, conduction electrons in the copper rod are attracted to that
end. That end becomes negatively charged and the other end positively charged,
so again an induced charge is set up in the copper rod.Although the copper rod is
still neutral, it and the glass rod attract each other.

Note that only conduction electrons, with their negative charges, can move;
positive ions are fixed in place. Thus, an object becomes positively charged only
through the removal of negative charges.

Blue Flashes from a Wintergreen LifeSaver
Indirect evidence for the attraction of charges with opposite signs can be seen
with a wintergreen LifeSaver (the candy shaped in the form of a marine 
lifesaver). If you adapt your eyes to darkness for about 15 minutes and then have
a friend chomp on a piece of the candy in the darkness, you will see a faint blue
flash from your friend’s mouth with each chomp. Whenever a chomp breaks a
sugar crystal into pieces, each piece will probably end up with a different number
of electrons. Suppose a crystal breaks into pieces A and B, with A ending up with
more electrons on its surface than B (Fig. 21-5). This means that B has positive
ions (atoms that lost electrons to A) on its surface. Because the electrons on A
are strongly attracted to the positive ions on B, some of those electrons jump
across the gap between the pieces.

As A and B fall away from each other, air (primarily nitrogen, N2) flows into
the gap, and many of the jumping electrons collide with nitrogen molecules in the
air, causing the molecules to emit ultraviolet light. You cannot see this type of
light. However, the wintergreen molecules on the surfaces of the candy pieces
absorb the ultraviolet light and then emit blue light, which you can see—it is the
blue light coming from your friend’s mouth.
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copper rod. What happens is that many of the conduction electrons in the closer
end of the copper rod are repelled by the negative charge on the plastic rod.
Some of the conduction electrons move to the far end of the copper rod, leaving
the near end depleted in electrons and thus with an unbalanced positive charge.
This positive charge is attracted to the negative charge in the plastic rod.
Although the copper rod is still neutral, it is said to have an induced charge, which
means that some of its positive and negative charges have been separated due to
the presence of a nearby charge.

Similarly, if a positively charged glass rod is brought near one end of a
neutral copper rod, conduction electrons in the copper rod are attracted to that
end. That end becomes negatively charged and the other end positively charged,
so again an induced charge is set up in the copper rod.Although the copper rod is
still neutral, it and the glass rod attract each other.

Note that only conduction electrons, with their negative charges, can move;
positive ions are fixed in place. Thus, an object becomes positively charged only
through the removal of negative charges.

Blue Flashes from a Wintergreen LifeSaver
Indirect evidence for the attraction of charges with opposite signs can be seen
with a wintergreen LifeSaver (the candy shaped in the form of a marine 
lifesaver). If you adapt your eyes to darkness for about 15 minutes and then have
a friend chomp on a piece of the candy in the darkness, you will see a faint blue
flash from your friend’s mouth with each chomp. Whenever a chomp breaks a
sugar crystal into pieces, each piece will probably end up with a different number
of electrons. Suppose a crystal breaks into pieces A and B, with A ending up with
more electrons on its surface than B (Fig. 21-5). This means that B has positive
ions (atoms that lost electrons to A) on its surface. Because the electrons on A
are strongly attracted to the positive ions on B, some of those electrons jump
across the gap between the pieces.

As A and B fall away from each other, air (primarily nitrogen, N2) flows into
the gap, and many of the jumping electrons collide with nitrogen molecules in the
air, causing the molecules to emit ultraviolet light. You cannot see this type of
light. However, the wintergreen molecules on the surfaces of the candy pieces
absorb the ultraviolet light and then emit blue light, which you can see—it is the
blue light coming from your friend’s mouth.
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Electrostatic Forces

For a pair of point-particles with charges q1 and q2, the magnitude
of the force on each particle is given by Coulomb’s Law:

F1,2 =
k q1q2
r2

k is the electrostatic constant and r is the distance between the
two charged particles.

k = 1
4πε0

= 8.99× 109 N m2/C2



Coulomb’s Law

F1→2 =
k q1q2
r2

r̂1→2
696 Chapter 23 Electric Fields

same sign as in Figure 23.6a, the product q1q2 is positive and the electric force on one 
particle is directed away from the other particle. If q1 and q2 are of opposite sign as 
shown in Figure 23.6b, the product q1q2 is negative and the electric force on one par-
ticle is directed toward the other particle. These signs describe the relative direction 
of the force but not the absolute direction. A negative product indicates an attractive 
force, and a positive product indicates a repulsive force. The absolute direction of the 
force on a charge depends on the location of the other charge. For example, if an x 
axis lies along the two charges in Figure 23.6a, the product q1q2 is positive, but F

S
12  

points in the positive x direction and F
S

21  points in the negative x direction.
 When more than two charges are present, the force between any pair of them is 
given by Equation 23.6. Therefore, the resultant force on any one of them equals the 
vector sum of the forces exerted by the other individual charges. For example, if four 
charges are present, the resultant force exerted by particles 2, 3, and 4 on particle 1 is

F
S

1 5 F
S

21 1 F
S

31 1 F
S

41

Q uick Quiz 23.3  Object A has a charge of 12 mC, and object B has a charge  
of 16 mC. Which statement is true about the electric forces on the objects?  
(a) F

S
AB 5 23 F

S
BA  (b) F

S
AB 5 2 F

S
BA  (c) 3 F

S
AB 5 2 F

S
BA  (d) F

S
AB 5 3 F

S
BA  

(e)  F
S

AB 5 F
S

BA   (f) 3 F
S

AB 5 F
S

BA

Example 23.2   Find the Resultant Force

Consider three point charges located at the corners of a right triangle as shown in 
Figure 23.7, where q1 5 q3 5 5.00 mC, q2 5 22.00 mC, and a 5 0.100 m. Find the 
resultant force exerted on q3.

Conceptualize  Think about the net force on q3. Because charge q3 is near two 
other charges, it will experience two electric forces. These forces are exerted in dif-
ferent directions as shown in Figure 23.7. Based on the forces shown in the figure, 
estimate the direction of the net force vector.

Categorize  Because two forces are exerted on charge q3, we categorize this exam-
ple as a vector addition problem.

Analyze  The directions of the individual forces exerted by q1 and q2 on q3 are 
shown in Figure 23.7. The force F

S
23  exerted by q2 on q3 is attractive because q2  

and q3 have opposite signs. In the coordinate system shown in Figure 23.7, the 
attractive force F

S
23  is to the left (in the negative x direction).

 The force F
S

13  exerted by q1 on q3 is repulsive because both charges are positive. The repulsive force F
S

13  makes an 
angle of 45.08 with the x axis.

S O L U T I O N

Figure 23.6 Two point charges 
separated by a distance r exert a 
force on each other that is given 
by Coulomb’s law. The force F

S
21 

exerted by q2 on q1 is equal in mag-
nitude and opposite in direction to 
the force F

S
12 exerted by q1 on q2.

r

q1

q2

r12ˆ

When the charges are of the 
same sign, the force is repulsive.

a b

F12
S

F21
S

!

!

q1

q2

When the charges are of opposite 
signs, the force is attractive.

F12
S

F21
S

!

"

!

!

"

F13
S

F23
S

q3

q1

q2

a

a

y

x

2a!

Figure 23.7  (Example 23.2) The 
force exerted by q1 on q3 is F

S
13. The 

force exerted by q2 on q3 is F
S

23.  
The resultant force F

S
3 exerted on q3 

is the vector sum F
S

13 1 F
S

23.

1Figure from Serway & Jewett, Physics for Scientists and Engineers, 9th ed.



Electrostatic Constant

The electrostatic constant is: k = 1
4πε0

= 8.99× 109 N m2 C−2

ε0 is called the permittivity constant or the electrical
permittivity of free space.

ε0 = 8.85× 10−12 C2 N−1 m−2



Conservation of Charge

Charge can move from one body to another but the net charge of
an isolated system never changes.

This is called charge conservation.

What other quantities are conserved?
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This is called charge conservation.
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Fields

Just as with gravity in Chapter 9:

field

A field is any kind of physical quantity that has values specified at
every point in space and time.

In EM we have vector fields. The electrostatic force is mediated by
a vector field.

vector field

A field is any kind of physical quantity that has values specified as
vectors at every point in space and time.



Fields

A force-field can be used to figure out the interaction that
particular particle will have with other objects in its environment.

Imagine a charge q0. We want to know the force it would feel if
we put it at a specific location.

The electric field E at that point will tell us that!

F = q0E



Fields

A force-field can be used to figure out the interaction that
particular particle will have with other objects in its environment.

Imagine a charge q0. We want to know the force it would feel if
we put it at a specific location.

The electric field E at that point will tell us that!

F = q0E



Fields

The source of the field could be another charge.

We do not need a description of the sources of the field to describe
what their effect is on our particle. All we need to know if the
field!

This is also true for gravity. We do not need the mass of the Earth
to know something’s weight:

FG = m0g FE = q0E
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Fig. 22-1 (a) A positive test charge
q0 placed at point P near a charged ob-
ject.An electrostatic force acts on the
test charge. (b) The electric field at
point P produced by the charged object.
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Some Electric Fields

Field Location 
or Situation Value (N/C)

At the surface of a 
uranium nucleus 3 ! 1021

Within a hydrogen 
atom, at a radius 
of 5.29 ! 10"11 m 5 ! 1011

Electric breakdown 
occurs in air 3 ! 106

Near the charged 
drum of a photocopier 105

Near a charged comb 103

In the lower atmosphere 102

Inside the copper wire 
of household circuits 10"2

Table 22-1

22-1 The physics of the preceding chapter tells us how to find the electric
force on a particle 1 of charge #q1 when the particle is placed near a particle 2 of
charge #q2.A nagging question remains: How does particle 1 “know” of the pres-
ence of particle 2? That is, since the particles do not touch, how can particle
2 push on particle 1—how can there be such an action at a distance?

One purpose of physics is to record observations about our world, such as the
magnitude and direction of the push on particle 1. Another purpose is to provide a
deeper explanation of what is recorded. One purpose of this chapter is to provide
such a deeper explanation to our nagging questions about electric force at a dis-
tance. We can answer those questions by saying that particle 2 sets up an electric
field in the space surrounding itself. If we place particle 1 at any given point in that
space, the particle “knows” of the presence of particle 2 because it is affected by the
electric field that particle 2 has already set up at that point.Thus, particle 2 pushes on
particle 1 not by touching it but by means of the electric field produced by particle 2.

Our goal in this chapter is to define electric field and discuss how to calculate
it for various arrangements of charged particles.

22-2 The Electric Field
The temperature at every point in a room has a definite value. You can measure
the temperature at any given point or combination of points by putting a ther-
mometer there. We call the resulting distribution of temperatures a temperature
field. In much the same way, you can imagine a pressure field in the atmosphere;
it consists of the distribution of air pressure values, one for each point in the
atmosphere. These two examples are of scalar fields because temperature and air
pressure are scalar quantities.

The electric field is a vector field; it consists of a distribution of vectors, one for
each point in the region around a charged object, such as a charged rod. In princi-
ple, we can define the electric field at some point near the charged object, such as
point P in Fig. 22-1a, as follows: We first place a positive charge q0, called a test
charge, at the point. We then measure the electrostatic force that acts on the test
charge. Finally, we define the electric field at point P due to the charged object as

(electric field). (22-1)

Thus, the magnitude of the electric field at point P is E $ F/q0, and the direction of
is that of the force that acts on the positive test charge. As shown in Fig. 22-1b,

we represent the electric field at P with a vector whose tail is at P.To define the elec-
tric field within some region, we must similarly define it at all points in the region.

The SI unit for the electric field is the newton per coulomb (N/C). Table 22-1
shows the electric fields that occur in a few physical situations.
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Fig. 22-1 (a) A positive test charge
q0 placed at point P near a charged ob-
ject.An electrostatic force acts on the
test charge. (b) The electric field at
point P produced by the charged object.
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Field Location 
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Electric breakdown 
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drum of a photocopier 105
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of household circuits 10"2
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22-1 The physics of the preceding chapter tells us how to find the electric
force on a particle 1 of charge #q1 when the particle is placed near a particle 2 of
charge #q2.A nagging question remains: How does particle 1 “know” of the pres-
ence of particle 2? That is, since the particles do not touch, how can particle
2 push on particle 1—how can there be such an action at a distance?

One purpose of physics is to record observations about our world, such as the
magnitude and direction of the push on particle 1. Another purpose is to provide a
deeper explanation of what is recorded. One purpose of this chapter is to provide
such a deeper explanation to our nagging questions about electric force at a dis-
tance. We can answer those questions by saying that particle 2 sets up an electric
field in the space surrounding itself. If we place particle 1 at any given point in that
space, the particle “knows” of the presence of particle 2 because it is affected by the
electric field that particle 2 has already set up at that point.Thus, particle 2 pushes on
particle 1 not by touching it but by means of the electric field produced by particle 2.

Our goal in this chapter is to define electric field and discuss how to calculate
it for various arrangements of charged particles.

22-2 The Electric Field
The temperature at every point in a room has a definite value. You can measure
the temperature at any given point or combination of points by putting a ther-
mometer there. We call the resulting distribution of temperatures a temperature
field. In much the same way, you can imagine a pressure field in the atmosphere;
it consists of the distribution of air pressure values, one for each point in the
atmosphere. These two examples are of scalar fields because temperature and air
pressure are scalar quantities.

The electric field is a vector field; it consists of a distribution of vectors, one for
each point in the region around a charged object, such as a charged rod. In princi-
ple, we can define the electric field at some point near the charged object, such as
point P in Fig. 22-1a, as follows: We first place a positive charge q0, called a test
charge, at the point. We then measure the electrostatic force that acts on the test
charge. Finally, we define the electric field at point P due to the charged object as

(electric field). (22-1)

Thus, the magnitude of the electric field at point P is E $ F/q0, and the direction of
is that of the force that acts on the positive test charge. As shown in Fig. 22-1b,

we represent the electric field at P with a vector whose tail is at P.To define the elec-
tric field within some region, we must similarly define it at all points in the region.

The SI unit for the electric field is the newton per coulomb (N/C). Table 22-1
shows the electric fields that occur in a few physical situations.

F
:

E
:

E
:

E
:

$
F
:

q0

E
:

F
:

W H AT  I S  P H YS I C S ?

halliday_c22_580-604hr.qxd  7-12-2009  14:16  Page 580

F = q0E

but also:

E =
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1Figure from Halliday, Resnick, Walker.



Field Lines
Fields are drawn with lines showing the direction of force that a
test particle will feel at that point. The density of the lines at that
point in the diagram indicates the approximate magnitude of the
force at that point.
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PART 3

Although we use a positive test charge to define the electric field of a charged
object, that field exists independently of the test charge. The field at point P in
Figure 22-1b existed both before and after the test charge of Fig. 22-1a was put
there. (We assume that in our defining procedure, the presence of the test charge
does not affect the charge distribution on the charged object, and thus does not
alter the electric field we are defining.)

To examine the role of an electric field in the interaction between charged
objects, we have two tasks: (1) calculating the electric field produced by a given
distribution of charge and (2) calculating the force that a given field exerts on a
charge placed in it. We perform the first task in Sections 22-4 through 22-7 for
several charge distributions. We perform the second task in Sections 22-8 and
22-9 by considering a point charge and a pair of point charges in an electric field.
First, however, we discuss a way to visualize electric fields.

22-3 Electric Field Lines
Michael Faraday, who introduced the idea of electric fields in the 19th century,
thought of the space around a charged body as filled with lines of force. Although
we no longer attach much reality to these lines, now usually called electric field
lines, they still provide a nice way to visualize patterns in electric fields.

The relation between the field lines and electric field vectors is this: (1) At
any point, the direction of a straight field line or the direction of the tangent to a
curved field line gives the direction of at that point, and (2) the field lines are
drawn so that the number of lines per unit area, measured in a plane that is
perpendicular to the lines, is proportional to the magnitude of . Thus, E is large
where field lines are close together and small where they are far apart.

Figure 22-2a shows a sphere of uniform negative charge. If we place a positive
test charge anywhere near the sphere, an electrostatic force pointing toward the
center of the sphere will act on the test charge as shown. In other words, the elec-
tric field vectors at all points near the sphere are directed radially toward the
sphere. This pattern of vectors is neatly displayed by the field lines in Fig. 22-2b,
which point in the same directions as the force and field vectors. Moreover, the
spreading of the field lines with distance from the sphere tells us that the magni-
tude of the electric field decreases with distance from the sphere.

If the sphere of Fig. 22-2 were of uniform positive charge, the electric field
vectors at all points near the sphere would be directed radially away from
the sphere. Thus, the electric field lines would also extend radially away from the
sphere.We then have the following rule:

E
:

E
:

Fig. 22-2 (a) The electrostatic force
acting on a positive test charge near a

sphere of uniform negative charge. (b)
The electric field vector at the loca-
tion of the test charge, and the electric
field lines in the space near the sphere.
The field lines extend toward the nega-
tively charged sphere. (They originate
on distant positive charges.)

E
:

F
:

Electric field lines extend away from positive charge (where they originate) and
toward negative charge (where they terminate).

–
–

–
–
–

––

–

(a)

(b)

Positive
test charge

–
–
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–
–
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–

Electric
field lines

+

E

F

Figure 22-3a shows part of an infinitely large, nonconducting sheet (or plane)
with a uniform distribution of positive charge on one side. If we were to place a

Fig. 22-3 (a) The electrostatic force
on a positive test charge near a very

large, nonconducting sheet with uni-
formly distributed positive charge on
one side. (b) The electric field vector 
at the location of the test charge, and
the electric field lines in the space
near the sheet.The field lines extend
away from the positively charged
sheet. (c) Side view of (b).
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Field Lines

The electrostatic field caused by an electric dipole system looks
something like:

 25.4 Obtaining the Value of the Electric Field from the Electric Potential 755

25.4  Obtaining the Value of the Electric Field  
from the Electric Potential

The electric field E
S

 and the electric potential V are related as shown in Equation 
25.3, which tells us how to find DV if the electric field E

S
 is known. What if the situ-

ation is reversed? How do we calculate the value of the electric field if the electric 
potential is known in a certain region?
 From Equation 25.3, the potential difference dV between two points a distance 
ds apart can be expressed as

 dV 5 2 E
S

? d sS  (25.15)

If the electric field has only one component Ex, then E
S

? d sS 5 Ex dx . Therefore, 
Equation 25.15 becomes dV 5 2Ex dx, or

 Ex 5 2
dV
dx

 (25.16)

That is, the x component of the electric field is equal to the negative of the deriv-
ative of the electric potential with respect to x. Similar statements can be made 
about the y and z components. Equation 25.16 is the mathematical statement of 
the electric field being a measure of the rate of change with position of the electric 
potential as mentioned in Section 25.1.
 Experimentally, electric potential and position can be measured easily with a 
voltmeter (a device for measuring potential difference) and a meterstick. Conse-
quently, an electric field can be determined by measuring the electric potential at 
several positions in the field and making a graph of the results. According to Equa-
tion 25.16, the slope of a graph of V versus x at a given point provides the magnitude 
of the electric field at that point.
 Imagine starting at a point and then moving through a displacement d sS along 
an equipotential surface. For this motion, dV 5 0 because the potential is constant 
along an equipotential surface. From Equation 25.15, we see that dV 5 2 E

S
? d sS 5 0; 

therefore, because the dot product is zero, E
S

 must be perpendicular to the displace-
ment along the equipotential surface. This result shows that the equipotential sur-
faces must always be perpendicular to the electric field lines passing through them.
 As mentioned at the end of Section 25.2, the equipotential surfaces associated 
with a uniform electric field consist of a family of planes perpendicular to the 
field lines. Figure 25.11a shows some representative equipotential surfaces for this 
situation.

Figure 25.11 Equipotential surfaces (the dashed blue lines are intersections of these surfaces with the page) and elec-
tric field lines. In all cases, the equipotential surfaces are perpendicular to the electric field lines at every point.

q

!

A uniform electric field produced 
by an infinite sheet of charge

A spherically symmetric electric 
field produced by a point charge

An electric field produced by an 
electric dipole

a b c

E
S

 

Notice that the lines point outward from a positive charge and
inward toward a negative charge.

1Figure from Serway & Jewett
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Field Lines

Imagine an infinite sheet of charge. The lines point outward from
the positively charged sheet.
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Although we use a positive test charge to define the electric field of a charged
object, that field exists independently of the test charge. The field at point P in
Figure 22-1b existed both before and after the test charge of Fig. 22-1a was put
there. (We assume that in our defining procedure, the presence of the test charge
does not affect the charge distribution on the charged object, and thus does not
alter the electric field we are defining.)

To examine the role of an electric field in the interaction between charged
objects, we have two tasks: (1) calculating the electric field produced by a given
distribution of charge and (2) calculating the force that a given field exerts on a
charge placed in it. We perform the first task in Sections 22-4 through 22-7 for
several charge distributions. We perform the second task in Sections 22-8 and
22-9 by considering a point charge and a pair of point charges in an electric field.
First, however, we discuss a way to visualize electric fields.

22-3 Electric Field Lines
Michael Faraday, who introduced the idea of electric fields in the 19th century,
thought of the space around a charged body as filled with lines of force. Although
we no longer attach much reality to these lines, now usually called electric field
lines, they still provide a nice way to visualize patterns in electric fields.

The relation between the field lines and electric field vectors is this: (1) At
any point, the direction of a straight field line or the direction of the tangent to a
curved field line gives the direction of at that point, and (2) the field lines are
drawn so that the number of lines per unit area, measured in a plane that is
perpendicular to the lines, is proportional to the magnitude of . Thus, E is large
where field lines are close together and small where they are far apart.

Figure 22-2a shows a sphere of uniform negative charge. If we place a positive
test charge anywhere near the sphere, an electrostatic force pointing toward the
center of the sphere will act on the test charge as shown. In other words, the elec-
tric field vectors at all points near the sphere are directed radially toward the
sphere. This pattern of vectors is neatly displayed by the field lines in Fig. 22-2b,
which point in the same directions as the force and field vectors. Moreover, the
spreading of the field lines with distance from the sphere tells us that the magni-
tude of the electric field decreases with distance from the sphere.

If the sphere of Fig. 22-2 were of uniform positive charge, the electric field
vectors at all points near the sphere would be directed radially away from
the sphere. Thus, the electric field lines would also extend radially away from the
sphere.We then have the following rule:

E
:

E
:

Fig. 22-2 (a) The electrostatic force
acting on a positive test charge near a

sphere of uniform negative charge. (b)
The electric field vector at the loca-
tion of the test charge, and the electric
field lines in the space near the sphere.
The field lines extend toward the nega-
tively charged sphere. (They originate
on distant positive charges.)

E
:

F
:

Electric field lines extend away from positive charge (where they originate) and
toward negative charge (where they terminate).

–
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–
–
–
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–

(a)

(b)

Positive
test charge

–
–

–
–
–
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–

Electric
field lines

+

E

F

Figure 22-3a shows part of an infinitely large, nonconducting sheet (or plane)
with a uniform distribution of positive charge on one side. If we were to place a

Fig. 22-3 (a) The electrostatic force
on a positive test charge near a very

large, nonconducting sheet with uni-
formly distributed positive charge on
one side. (b) The electric field vector 
at the location of the test charge, and
the electric field lines in the space
near the sheet.The field lines extend
away from the positively charged
sheet. (c) Side view of (b).
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:
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:

halliday_c22_580-604hr.qxd  7-12-2009  14:16  Page 581

1Figure from Halliday, Resnick, Walker.



Field Lines

Compare the electrostatic fields for two like charges and two
opposite charges:

+

Fig. 22-6 The electric field vectors at
various points around a positive point
charge.

582 CHAPTE R 22 E LECTR IC F I E LDS

Fig. 22-4 Field lines for two equal positive
point charges.The charges repel each other.
(The lines terminate on distant negative
charges.) To “see”the actual three-dimen-
sional pattern of field lines,mentally rotate
the pattern shown here about an axis passing
through both charges in the plane of the page.
The three-dimensional pattern and the elec-
tric field it represents are said to have rota-
tional symmetry about that axis.The electric
field vector at one point is shown;note that it
is tangent to the field line through that point.

Fig. 22-5 Field lines for a positive point
charge and a nearby negative point charge
that are equal in magnitude.The charges at-
tract each other.The pattern of field lines and
the electric field it represents have rotational
symmetry about an axis passing through both
charges in the plane of the page.The electric
field vector at one point is shown; the vector
is tangent to the field line through the point.

positive test charge at any point near the sheet
of Fig. 22-3a, the net electrostatic force acting on
the test charge would be perpendicular to the
sheet, because forces acting in all other direc-
tions would cancel one another as a result of
the symmetry. Moreover, the net force on the
test charge would point away from the sheet as
shown.Thus, the electric field vector at any point
in the space on either side of the sheet is also
perpendicular to the sheet and directed away
from it (Figs. 22-3b and c). Because the charge is
uniformly distributed along the sheet, all the

field vectors have the same magnitude. Such an electric field, with the same mag-
nitude and direction at every point, is a uniform electric field.

Of course, no real nonconducting sheet (such as a flat expanse of plastic) is infi-
nitely large, but if we consider a region that is near the middle of a real sheet and not
near its edges, the field lines through that region are arranged as in Figs. 22-3b and c.

Figure 22-4 shows the field lines for two equal positive charges. Figure 22-5
shows the pattern for two charges that are equal in magnitude but of opposite
sign, a configuration that we call an electric dipole. Although we do not often use
field lines quantitatively, they are very useful to visualize what is going on.

22-4 The Electric Field Due to a Point Charge
To find the electric field due to a point charge q (or charged particle) at any point
a distance r from the point charge, we put a positive test charge q0 at that point.
From Coulomb’s law (Eq. 21-1), the electrostatic force acting on q0 is

(22-2)

The direction of is directly away from the point charge if q is positive, and directly
toward the point charge if q is negative.The electric field vector is, from Eq.22-1,

(point charge). (22-3)

The direction of is the same as that of the force on the positive test charge:
directly away from the point charge if q is positive, and toward it if q is negative.

Because there is nothing special about the point we chose for q0, Eq. 22-3
gives the field at every point around the point charge q. The field for a positive
point charge is shown in Fig. 22-6 in vector form (not as field lines).

We can quickly find the net,or resultant,electric field due to more than one point
charge. If we place a positive test charge q0 near n point charges q1, q2, . . . , qn, then,
from Eq.21-7, the net force from the n point charges acting on the test charge is

Therefore, from Eq. 22-1, the net electric field at the position of the test charge is

(22-4)

Here is the electric field that would be set up by point charge i acting alone.
Equation 22-4 shows us that the principle of superposition applies to electric
fields as well as to electrostatic forces.
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Fig. 22-6 The electric field vectors at
various points around a positive point
charge.
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Fig. 22-4 Field lines for two equal positive
point charges.The charges repel each other.
(The lines terminate on distant negative
charges.) To “see”the actual three-dimen-
sional pattern of field lines,mentally rotate
the pattern shown here about an axis passing
through both charges in the plane of the page.
The three-dimensional pattern and the elec-
tric field it represents are said to have rota-
tional symmetry about that axis.The electric
field vector at one point is shown;note that it
is tangent to the field line through that point.

Fig. 22-5 Field lines for a positive point
charge and a nearby negative point charge
that are equal in magnitude.The charges at-
tract each other.The pattern of field lines and
the electric field it represents have rotational
symmetry about an axis passing through both
charges in the plane of the page.The electric
field vector at one point is shown; the vector
is tangent to the field line through the point.

positive test charge at any point near the sheet
of Fig. 22-3a, the net electrostatic force acting on
the test charge would be perpendicular to the
sheet, because forces acting in all other direc-
tions would cancel one another as a result of
the symmetry. Moreover, the net force on the
test charge would point away from the sheet as
shown.Thus, the electric field vector at any point
in the space on either side of the sheet is also
perpendicular to the sheet and directed away
from it (Figs. 22-3b and c). Because the charge is
uniformly distributed along the sheet, all the

field vectors have the same magnitude. Such an electric field, with the same mag-
nitude and direction at every point, is a uniform electric field.

Of course, no real nonconducting sheet (such as a flat expanse of plastic) is infi-
nitely large, but if we consider a region that is near the middle of a real sheet and not
near its edges, the field lines through that region are arranged as in Figs. 22-3b and c.

Figure 22-4 shows the field lines for two equal positive charges. Figure 22-5
shows the pattern for two charges that are equal in magnitude but of opposite
sign, a configuration that we call an electric dipole. Although we do not often use
field lines quantitatively, they are very useful to visualize what is going on.

22-4 The Electric Field Due to a Point Charge
To find the electric field due to a point charge q (or charged particle) at any point
a distance r from the point charge, we put a positive test charge q0 at that point.
From Coulomb’s law (Eq. 21-1), the electrostatic force acting on q0 is

(22-2)

The direction of is directly away from the point charge if q is positive, and directly
toward the point charge if q is negative.The electric field vector is, from Eq.22-1,

(point charge). (22-3)

The direction of is the same as that of the force on the positive test charge:
directly away from the point charge if q is positive, and toward it if q is negative.

Because there is nothing special about the point we chose for q0, Eq. 22-3
gives the field at every point around the point charge q. The field for a positive
point charge is shown in Fig. 22-6 in vector form (not as field lines).

We can quickly find the net,or resultant,electric field due to more than one point
charge. If we place a positive test charge q0 near n point charges q1, q2, . . . , qn, then,
from Eq.21-7, the net force from the n point charges acting on the test charge is

Therefore, from Eq. 22-1, the net electric field at the position of the test charge is

(22-4)

Here is the electric field that would be set up by point charge i acting alone.
Equation 22-4 shows us that the principle of superposition applies to electric
fields as well as to electrostatic forces.
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Field Lines

Compare the fields for gravity in an Earth-Sun system and
electrostatic repulsion of two charges:

+
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E-Field Question
Which of the following could be the charge on the particle hidden
by the question mark?

HALLIDAY REVISED

23-1 One of the primary goals of physics is to find simple ways of solving
seemingly complex problems. One of the main tools of physics in attaining this
goal is the use of symmetry. For example, in finding the electric field of the
charged ring of Fig. 22-10 and the charged rod of Fig. 22-11, we considered the
fields of charge elements in the ring and rod. Then we simplified
the calculation of by using symmetry to discard the perpendicular components
of the vectors.That saved us some work.

For certain charge distributions involving symmetry, we can save far more work
by using a law called Gauss’ law, developed by German mathematician and physi-
cist Carl Friedrich Gauss (1777–1855). Instead of considering the fields of
charge elements in a given charge distribution, Gauss’ law considers a hypothetical
(imaginary) closed surface enclosing the charge distribution.This Gaussian surface,
as it is called, can have any shape, but the shape that minimizes our calculations of
the electric field is one that mimics the symmetry of the charge distribution. For ex-
ample, if the charge is spread uniformly over a sphere, we enclose the sphere with a
spherical Gaussian surface, such as the one in Fig. 23-1, and then, as we discuss in
this chapter, find the electric field on the surface by using the fact that

dE
:

dE
:

E
:

(!k dq/r 2)dE
:

E
:
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Gauss’ law relates the electric fields at points on a (closed) Gaussian surface to the
net charge enclosed by that surface.

We can also use Gauss’ law in reverse: If we know the electric field on a Gaussian
surface, we can find the net charge enclosed by the surface. As a limited example,
suppose that the electric field vectors in Fig. 23-1 all point radially outward from the
center of the sphere and have equal magnitude. Gauss’ law immediately tells us that
the spherical surface must enclose a net positive charge that is either a particle or
distributed spherically. However, to calculate how much charge is enclosed, we need
a way of calculating how much electric field is intercepted by the Gaussian surface in
Fig. 23-1.This measure of intercepted field is called flux, which we discuss next.

23-2 Flux
Suppose that, as in Fig. 23-2a, you aim a wide airstream of uniform velocity at
a small square loop of area A. Let " represent the volume flow rate (volume per unit
time) at which air flows through the loop.This rate depends on the angle between 
and the plane of the loop. If is perpendicular to the plane, the rate " is equal to vA.

If is parallel to the plane of the loop, no air moves through the loop, so
" is zero. For an intermediate angle u, the rate " depends on the component of 

normal to the plane (Fig.23-2b).Since that component is v cos u, the rate of volume
flow through the loop is

" ! (v cos u)A. (23-1)

This rate of flow through an area is an example of a flux—a volume flux in this
situation.

v:

v:
v:

v:

v:

Fig. 23-1 A spherical Gaussian 
surface. If the electric field vectors
are of uniform magnitude and point
radially outward at all surface points,
you can conclude that a net positive
distribution of charge must lie within
the surface and have spherical 
symmetry.

Spherical
Gaussian
surface

?
E
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(A) 0 C

(B) −1 C

(C) −1.6× 10−19 C

(D) +1 µC
1Figure from Halliday, Resnick, Walker
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fields of charge elements in the ring and rod. Then we simplified
the calculation of by using symmetry to discard the perpendicular components
of the vectors.That saved us some work.

For certain charge distributions involving symmetry, we can save far more work
by using a law called Gauss’ law, developed by German mathematician and physi-
cist Carl Friedrich Gauss (1777–1855). Instead of considering the fields of
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We can also use Gauss’ law in reverse: If we know the electric field on a Gaussian
surface, we can find the net charge enclosed by the surface. As a limited example,
suppose that the electric field vectors in Fig. 23-1 all point radially outward from the
center of the sphere and have equal magnitude. Gauss’ law immediately tells us that
the spherical surface must enclose a net positive charge that is either a particle or
distributed spherically. However, to calculate how much charge is enclosed, we need
a way of calculating how much electric field is intercepted by the Gaussian surface in
Fig. 23-1.This measure of intercepted field is called flux, which we discuss next.
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Suppose that, as in Fig. 23-2a, you aim a wide airstream of uniform velocity at
a small square loop of area A. Let " represent the volume flow rate (volume per unit
time) at which air flows through the loop.This rate depends on the angle between 
and the plane of the loop. If is perpendicular to the plane, the rate " is equal to vA.

If is parallel to the plane of the loop, no air moves through the loop, so
" is zero. For an intermediate angle u, the rate " depends on the component of 

normal to the plane (Fig.23-2b).Since that component is v cos u, the rate of volume
flow through the loop is

" ! (v cos u)A. (23-1)

This rate of flow through an area is an example of a flux—a volume flux in this
situation.
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Field from a Point Charge

Remember, if q0 is a test charge, E = F
q0

.

We want an expression for the electric field from a point charge, q.

Using Coulomb’s Law the force on the test particle is F→0 =
k qq0
r2

r̂.

E =

(
1

q0

)
k q q0
r2

r̂

The field at a displacement r from a charge q is:

E =
k q

r2
r̂



Field from a Point Charge Example

What is the magnitude of the electric field 1 cm from a 2µC
charge?

Does the field point towards or away from the charge?



Electric field due to an Infinite Sheet of Charge

Consider an infinite sheet of charge.

The field from this sheet is uniform! It does not matter how far a
point P is from the sheet, the field is the same.

F 

E 
+ + + + 

+ + + + 

+ + + + 

+ + + + 

Positive test 
charge 

(a) (b) 

+ + + 
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+ 
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+ + 
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58122-3 E LECTR IC F I E LD LI N E S
PART 3

Although we use a positive test charge to define the electric field of a charged
object, that field exists independently of the test charge. The field at point P in
Figure 22-1b existed both before and after the test charge of Fig. 22-1a was put
there. (We assume that in our defining procedure, the presence of the test charge
does not affect the charge distribution on the charged object, and thus does not
alter the electric field we are defining.)

To examine the role of an electric field in the interaction between charged
objects, we have two tasks: (1) calculating the electric field produced by a given
distribution of charge and (2) calculating the force that a given field exerts on a
charge placed in it. We perform the first task in Sections 22-4 through 22-7 for
several charge distributions. We perform the second task in Sections 22-8 and
22-9 by considering a point charge and a pair of point charges in an electric field.
First, however, we discuss a way to visualize electric fields.

22-3 Electric Field Lines
Michael Faraday, who introduced the idea of electric fields in the 19th century,
thought of the space around a charged body as filled with lines of force. Although
we no longer attach much reality to these lines, now usually called electric field
lines, they still provide a nice way to visualize patterns in electric fields.

The relation between the field lines and electric field vectors is this: (1) At
any point, the direction of a straight field line or the direction of the tangent to a
curved field line gives the direction of at that point, and (2) the field lines are
drawn so that the number of lines per unit area, measured in a plane that is
perpendicular to the lines, is proportional to the magnitude of . Thus, E is large
where field lines are close together and small where they are far apart.

Figure 22-2a shows a sphere of uniform negative charge. If we place a positive
test charge anywhere near the sphere, an electrostatic force pointing toward the
center of the sphere will act on the test charge as shown. In other words, the elec-
tric field vectors at all points near the sphere are directed radially toward the
sphere. This pattern of vectors is neatly displayed by the field lines in Fig. 22-2b,
which point in the same directions as the force and field vectors. Moreover, the
spreading of the field lines with distance from the sphere tells us that the magni-
tude of the electric field decreases with distance from the sphere.

If the sphere of Fig. 22-2 were of uniform positive charge, the electric field
vectors at all points near the sphere would be directed radially away from
the sphere. Thus, the electric field lines would also extend radially away from the
sphere.We then have the following rule:

E
:

E
:

Fig. 22-2 (a) The electrostatic force
acting on a positive test charge near a

sphere of uniform negative charge. (b)
The electric field vector at the loca-
tion of the test charge, and the electric
field lines in the space near the sphere.
The field lines extend toward the nega-
tively charged sphere. (They originate
on distant positive charges.)

E
:

F
:

Electric field lines extend away from positive charge (where they originate) and
toward negative charge (where they terminate).

–
–

–
–
–

––

–

(a)

(b)

Positive
test charge

–
–

–
–
–

––

–

Electric
field lines

+

E

F

Figure 22-3a shows part of an infinitely large, nonconducting sheet (or plane)
with a uniform distribution of positive charge on one side. If we were to place a

Fig. 22-3 (a) The electrostatic force
on a positive test charge near a very

large, nonconducting sheet with uni-
formly distributed positive charge on
one side. (b) The electric field vector 
at the location of the test charge, and
the electric field lines in the space
near the sheet.The field lines extend
away from the positively charged
sheet. (c) Side view of (b).
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F
:
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Millikan’s Oil Drop Experiment: Measuring e

Units of field: N/C

Problem 10, page 403.

(a) If a drop of mass 1.1× 10−14 kg remains stationary in an
electric field of 1.68× 105 N/C, what is the charge on this drop?

(b) How many extra electrons are on this particular oil drop?



Millikan’s Oil Drop Experiment: Measuring e

Input
signals

Deflecting plate

G C
Deflecting

plate

E

592 CHAPTE R 22 E LECTR IC F I E LDS

The electrostatic force acting on a charged particle located in an external electric
field has the direction of if the charge q of the particle is positive and has the
opposite direction if q is negative.

E
:

E
:

F
:

CHECKPOINT 3

(a) In the figure, what is the direction of
the electrostatic force on the electron
due to the external electric field shown?
(b) In which direction will the electron
accelerate if it is moving parallel to the y
axis before it encounters the external
field? (c) If, instead, the electron is ini-
tially moving rightward, will its speed
increase, decrease, or remain constant?

x
e

y

E

Fig. 22-14 The Millikan oil-drop appa-
ratus for measuring the elementary charge
e.When a charged oil drop drifted into
chamber C through the hole in plate P1, its
motion could be controlled by closing and
opening switch S and thereby setting up or
eliminating an electric field in chamber C.
The microscope was used to view the drop,
to permit timing of its motion.

Fig. 22-15 Ink-jet printer. Drops shot
from generator G receive a charge in
charging unit C.An input signal from a
computer controls the charge and thus the
effect of field on where the drop lands on
the paper.

E
:

22-8 A Point Charge in an Electric Field
In the preceding four sections we worked at the first of our two tasks: given a
charge distribution, to find the electric field it produces in the surrounding space.
Here we begin the second task: to determine what happens to a charged particle
when it is in an electric field set up by other stationary or slowly moving charges.

What happens is that an electrostatic force acts on the particle, as given by

(22-28)

in which q is the charge of the particle (including its sign) and is the electric
field that other charges have produced at the location of the particle. (The field is
not the field set up by the particle itself; to distinguish the two fields, the field
acting on the particle in Eq. 22-28 is often called the external field. A charged
particle or object is not affected by its own electric field.) Equation 22-28 tells us

E
:

F
:

! qE
:

,

Measuring the Elementary Charge
Equation 22-28 played a role in the measurement of the elementary charge e by
American physicist Robert A. Millikan in 1910–1913. Figure 22-14 is a represen-
tation of his apparatus. When tiny oil drops are sprayed into chamber A, some of
them become charged, either positively or negatively, in the process. Consider a
drop that drifts downward through the small hole in plate P1 and into chamber C.
Let us assume that this drop has a negative charge q.

If switch S in Fig. 22-14 is open as shown, battery B has no electrical effect on
chamber C. If the switch is closed (the connection between chamber C and the
positive terminal of the battery is then complete), the battery causes an excess
positive charge on conducting plate P1 and an excess negative charge on conduct-
ing plate P2. The charged plates set up a downward-directed electric field in
chamber C. According to Eq. 22-28, this field exerts an electrostatic force on any
charged drop that happens to be in the chamber and affects its motion. In partic-
ular, our negatively charged drop will tend to drift upward.

By timing the motion of oil drops with the switch opened and with it closed
and thus determining the effect of the charge q, Millikan discovered that the
values of q were always given by

q ! ne, for n ! 0, "1, "2, "3, . . . , (22-29)

in which e turned out to be the fundamental constant we call the elementary
charge, 1.60 # 10$19 C. Millikan’s experiment is convincing proof that charge is
quantized, and he earned the 1923 Nobel Prize in physics in part for this work.
Modern measurements of the elementary charge rely on a variety of interlocking
experiments, all more precise than the pioneering experiment of Millikan.

Ink-Jet Printing
The need for high-quality, high-speed printing has caused a search for an
alternative to impact printing, such as occurs in a standard typewriter. Building
up letters by squirting tiny drops of ink at the paper is one such alternative.

Figure 22-15 shows a negatively charged drop moving between two conduct-
ing deflecting plates, between which a uniform, downward-directed electric field

has been set up. The drop is deflected upward according to Eq. 22-28 and thenE
:

E
:
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Summary
• Doppler effect

• bow waves

• sound

• electric charge

• electric field

Homework
• Prepare a 5-8 minute talk for next week. Tuesday, Aug 8.

• Essay question (Due tomorrow)

• Waves worksheet (Due Monday)

• 2 new worksheets: Coulomb’s law & E-field (due Monday)

Hewitt,

• Ch 19, onward from page 347. Exercises: 35

• Ch 20, onward from page 365. Exercises: 1, 3; Problems: 1,
3, 7

• Ch 22, onward from page 403. Exercises: 3, 41; Problems: 1,
3


