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Last time

• waves

• sound

• electric charge

• electric field



Overview

• electric potential

• circuits, current, resistance

• magnets and magnetic field



Warm Up Question

Object A has a charge of +2 µC, and object B has a charge of
+6 µC. Which statement is true about the electric forces on the
objects?

(A) FA→B = −3FB→A

(B) FA→B = −FB→A

(C) 3FA→B = −FB→A

(D) FA→B = 3FB→A

1Serway & Jewett, 9th Ed, page 696, Quick Quiz 23.3.



Warm Up Question

Object A has a charge of +2 µC, and object B has a charge of
+6 µC. Which statement is true about the electric forces on the
objects?

(A) FA→B = −3FB→A

(B) FA→B = −FB→A ←
(C) 3FA→B = −FB→A

(D) FA→B = 3FB→A

Newton’s 3rd Law!

1Serway & Jewett, 9th Ed, page 696, Quick Quiz 23.3.



Sparking: Electrical Breakdown

Electric fields can cause forces on charges.

If the field is very strong, it begins to accelerate free electrons
which strike atoms, knocking away more electrons forming ions.
This starts a cascade, forming a spark.

The strength of the field where this happens is called the critical
field, Ec , For air Ec ≈ 3 × 106 N/C.

The air along the spark becomes a plamsa of free charges and can
conduct electricity.

Sparks look like bright streaks because the air molecules becomes
so hot. Accelerating charges radiate, so lightning can also cause
radio interference.
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Faraday Cages
A conducting shell can shield the interior from even very strong
electric fields.

64524-12 POTE NTIAL OF A CHARG E D I SOLATE D CON DUCTOR
PART 3
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Fig. 24-18 (a) A plot of V(r) both
inside and outside a charged spheri-
cal shell of radius 1.0 m. (b) A plot of
E(r) for the same shell.Fig. 24-19 A large spark

jumps to a car’s body and then
exits by moving across the
insulating left front tire (note
the flash there), leaving the per-
son inside unharmed. (Courtesy
Westinghouse Electric
Corporation)

Figure 24-18a is a plot of potential against radial distance r from the center
for an isolated spherical conducting shell of 1.0 m radius, having a charge of
1.0 mC. For points outside the shell, we can calculate V(r) from Eq. 24-26 because
the charge q behaves for such external points as if it were concentrated at the
center of the shell. That equation holds right up to the surface of the shell. Now
let us push a small test charge through the shell—assuming a small hole exists—
to its center. No extra work is needed to do this because no net electric force acts
on the test charge once it is inside the shell. Thus, the potential at all points inside
the shell has the same value as that on the surface, as Fig. 24-18a shows.

Figure 24-18b shows the variation of electric field with radial distance for the
same shell. Note that E ! 0 everywhere inside the shell.The curves of Fig. 24-18b
can be derived from the curve of Fig. 24-18a by differentiating with respect to r,
using Eq. 24-40 (recall that the derivative of any constant is zero). The curve of
Fig. 24-18a can be derived from the curves of Fig. 24-18b by integrating with
respect to r, using Eq. 24-19.

Fig. 24-20 An uncharged conduc-
tor is suspended in an external elec-
tric field.The free electrons in the
conductor distribute themselves on
the surface as shown, so as to reduce
the net electric field inside the con-
ductor to zero and make the net field
at the surface perpendicular to the
surface.
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Spark Discharge from a Charged Conductor
On nonspherical conductors, a surface charge does not distribute itself uniformly
over the surface of the conductor.At sharp points or sharp edges, the surface charge
density—and thus the external electric field, which is proportional to it—may reach
very high values.The air around such sharp points or edges may become ionized, pro-
ducing the corona discharge that golfers and mountaineers see on the tips of bushes,
golf clubs, and rock hammers when thunderstorms threaten. Such corona discharges,
like hair that stands on end, are often the precursors of lightning strikes. In such cir-
cumstances, it is wise to enclose yourself in a cavity inside a conducting shell, where
the electric field is guaranteed to be zero. A car (unless it is a convertible or made
with a plastic body) is almost ideal (Fig.24-19).

Isolated Conductor in an External Electric Field
If an isolated conductor is placed in an external electric field, as in Fig. 24-20, all
points of the conductor still come to a single potential regardless of whether the
conductor has an excess charge. The free conduction electrons distribute them-
selves on the surface in such a way that the electric field they produce at interior
points cancels the external electric field that would otherwise be there.
Furthermore, the electron distribution causes the net electric field at all points on
the surface to be perpendicular to the surface. If the conductor in Fig. 24-20 could
be somehow removed, leaving the surface charges frozen in place, the internal
and external electric field would remain absolutely unchanged.
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1Photo from Halliday, Resnick, Walker



Faraday Cages

1Photo found on TheDailySheeple, credits unknown.



Electric Potential Energy

A ball on a high shelf has the potential to fall, gaining speed and
kinetic energy.

The energy the ball stores is gravitational potential energy.

Two unlike charges held apart also store electric potential energy
UE , since if they are released they will accelerate towards each
other.



Energy of a charge in a uniform E-field

 25.2 Potential Difference in a Uniform Electric Field 749

tance d, where the displacement sS points from ! toward " and is parallel to the 
field lines. Equation 25.3 gives

 V" 2 V! 5 DV 5 23
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E
S
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"

!

E ds 1cos 08 2 5 23
"
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E ds 

Because E is constant, it can be removed from the integral sign, which gives

 DV 5 2E 3"

!

ds 

 DV 5 2Ed (25.6)

The negative sign indicates that the electric potential at point " is lower than 
at point !; that is, V" , V!. Electric field lines always point in the direction of 
decreasing electric potential as shown in Figure 25.2a.
 Now suppose a charge q moves from ! to ". We can calculate the change in the 
potential energy of the charge–field system from Equations 25.3 and 25.6:

 DU 5 q DV 5 2qEd (25.7)

This result shows that if q is positive, then DU is negative. Therefore, in a system 
consisting of a positive charge and an electric field, the electric potential energy 
of the system decreases when the charge moves in the direction of the field. If a 
positive charge is released from rest in this electric field, it experiences an electric 
force q E

S
 in the direction of E

S
 (downward in Fig. 25.2a). Therefore, it accelerates 

downward, gaining kinetic energy. As the charged particle gains kinetic energy, the 
electric potential energy of the charge–field system decreases by an equal amount. 
This equivalence should not be surprising; it is simply conservation of mechanical 
energy in an isolated system as introduced in Chapter 8.
 Figure 25.2b shows an analogous situation with a gravitational field. When a 
particle with mass m is released in a gravitational field, it accelerates downward, 
gaining kinetic energy. At the same time, the gravitational potential energy of the 
object–field system decreases.
 The comparison between a system of a positive charge residing in an electrical 
field and an object with mass residing in a gravitational field in Figure 25.2 is use-
ful for conceptualizing electrical behavior. The electrical situation, however, has 
one feature that the gravitational situation does not: the charge can be negative. 
If q is negative, then DU in Equation 25.7 is positive and the situation is reversed.  

�W  Potential difference between 
two points in a uniform 
electric field

When a positive charge moves 
from point ! to point ", the 
electric potential energy of the 
charge–field system decreases.

When an object with mass moves 
from point ! to point ", the 
gravitational potential energy of 
the object–field system decreases.
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Figure 25.2 (a) When the elec-
tric field E

S
 is directed downward, 

point " is at a lower electric 
potential than point !. (b) A 
gravitational analog to the situa-
tion in (a).

Pitfall Prevention 25.4
The Sign of DV The negative sign 
in Equation 25.6 is due to the 
fact that we started at point ! 
and moved to a new point in the 
same direction as the electric field 
lines. If we started from " and 
moved to !, the potential differ-
ence would be 1Ed. In a uniform 
electric field, the magnitude of 
the potential difference is Ed and 
the sign can be determined by the 
direction of travel.

∆UE = qEd ∆Ug = mgd



Electric Potential

Electric potential is a new quantity that relates the effect of a
charge configuration to the potential energy that a test charge
would have in that environment.

It is denoted V .

electric potential, V

the potential energy per unit charge:

V =
UE

q

V has a unique value at any point in an electric field.

It is characteristic only of the electric field, meaning it can be
determined just from the electric field.



Potential in a uniform E-field
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Electric Potential

Potential is potential energy per unit charge:

V =
UE

q

The units are Volts, V .

1 V = 1 J/C = 1 kg m2

A s3

Volts are also the units of potential difference, the change in
potential: ∆V .



Electric Potential and Potential Energy

Electric potential gives the potential energy that would be
associated with test charge q0 if it were at a certain point P.

UE ,q0 = q0VP
 25.3 Electric Potential and Potential Energy Due to Point Charges 753

 We obtain the electric potential resulting from two or more point charges by 
applying the superposition principle. That is, the total electric potential at some 
point P due to several point charges is the sum of the potentials due to the individual 
charges. For a group of point charges, we can write the total electric potential at P as

 V 5 ke a
i

 
qi

ri
 (25.12)

Figure 25.8a shows a charge q1, which sets up an electric field throughout space. 
The charge also establishes an electric potential at all points, including point P, 
where the electric potential is V1. Now imagine that an external agent brings a 
charge q2 from infinity to point P. The work that must be done to do this is given 
by Equation 25.4, W 5 q2DV. This work represents a transfer of energy across the 
boundary of the two-charge system, and the energy appears in the system as poten-
tial energy U when the particles are separated by a distance r12 as in Figure 25.8b. 
From Equation 8.2, we have W 5 DU. Therefore, the electric potential energy of a 
pair of point charges1 can be found as follows:

 DU 5 W 5 q2DV    S   U 2 0 5 q 2 ake

q 1

r12
2 0b 

 U 5 ke 
q1q2

r12
 (25.13)

If the charges are of the same sign, then U is positive. Positive work must be done by 
an external agent on the system to bring the two charges near each other (because 
charges of the same sign repel). If the charges are of opposite sign, as in Figure 25.8b, 
then U is negative. Negative work is done by an external agent against the attractive 
force between the charges of opposite sign as they are brought near each other; a force 
must be applied opposite the displacement to prevent q2 from accelerating toward q1.
 If the system consists of more than two charged particles, we can obtain the total 
potential energy of the system by calculating U for every pair of charges and sum-
ming the terms algebraically. For example, the total potential energy of the system 
of three charges shown in Figure 25.9 is

 U 5 ke aq1q2

r12
1

q1q3

r13
1

q2q3

r23
b  (25.14)

Physically, this result can be interpreted as follows. Imagine q1 is fixed at the posi-
tion shown in Figure 25.9 but q2 and q3 are at infinity. The work an external agent 
must do to bring q2 from infinity to its position near q1 is keq1q2/r12, which is the first 
term in Equation 25.14. The last two terms represent the work required to bring q3 
from infinity to its position near q1 and q2. (The result is independent of the order 
in which the charges are transported.)

�W  Electric potential due to  
several point charges

1The expression for the electric potential energy of a system made up of two point charges, Equation 25.13, is of the 
same form as the equation for the gravitational potential energy of a system made up of two point masses, 2Gm1m2/r 
(see Chapter 13). The similarity is not surprising considering that both expressions are derived from an inverse-
square force law.
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Figure 25.8 (a) Charge q1  
establishes an electric potential 
V1 at point P. (b) Charge q2 is 
brought from infinity to point P.
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The potential energy of this 
system of charges is given by 
Equation 25.14.

Figure 25.9  Three point 
charges are fixed at the positions 
shown.

1Figure from Serway and Jewett, 9th ed.



Electric Potential and Potential Energy
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Equation 25.14.
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The closer two positive or two negative charges are, the higher the
potential energy.

The closer a positive charge is to a negative charge, the lower the
potential energy.

By convention, we say that the electric potential V is positive
close to a positive charge and negative close to a negative charge.

A potential difference, ∆V , will cause free charges to move.



Electric Potential
A contour plot of electric potential (dashed lines) around a point
charge:
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on a charged particle as the particle moves from one end to the other of paths
I and II is zero because each of these paths begins and ends on the same
equipotential surface and thus there is no net change in potential. The work
done as the charged particle moves from one end to the other of paths III and
IV is not zero but has the same value for both these paths because the initial
and final potentials are identical for the two paths; that is, paths III and IV
connect the same pair of equipotential surfaces.

From symmetry, the equipotential surfaces produced by a point charge or
a spherically symmetrical charge distribution are a family of concentric
spheres. For a uniform electric field, the surfaces are a family of planes per-
pendicular to the field lines. In fact, equipotential surfaces are always perpen-
dicular to electric field lines and thus to , which is always tangent to these
lines. If were not perpendicular to an equipotential surface, it would have a
component lying along that surface. This component would then do work on a
charged particle as it moved along the surface. However, by Eq. 24-7 work
cannot be done if the surface is truly an equipotential surface; the only possi-
ble conclusion is that must be everywhere perpendicular to the surface.
Figure 24-3 shows electric field lines and cross sections of the equipotential
surfaces for a uniform electric field and for the field associated with a point
charge and with an electric dipole.

E
:

E
:

E
:

Equipotential surface 

Field line 

(b) 

(c)

(a) 

+ 

+

Fig. 24-3 Electric field lines (purple) and cross sections of equipotential surfaces (gold)
for (a) a uniform electric field, (b) the field due to a point charge, and (c) the field due to
an electric dipole.
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Electric Field and Electric Potential

Potential, V , is potential energy per unit charge:

UE = qV

Electric field, E, is force per unit charge:

F = q E

Notice the relation! Both quantities are defined so that we can
predict physical quantities associated with putting a charge at a
certain point.



Circuits

Circuits make use of potential differences to create currents.

Circuits consist of electrical components connected by wires.

Some types of components: batteries, resistors, capacitors,
lightbulbs, LEDs, diodes, inductors, transistors, chips, etc.



Circuit component symbols

battery ∆V

782 Chapter 26 Capacitance and Dielectrics

26.3 Combinations of Capacitors
Two or more capacitors often are combined in electric circuits. We can calculate 
the equivalent capacitance of certain combinations using methods described in 
this section. Throughout this section, we assume the capacitors to be combined are 
initially uncharged.
 In studying electric circuits, we use a simplified pictorial representation called a 
circuit diagram. Such a diagram uses circuit symbols to represent various circuit 
elements. The circuit symbols are connected by straight lines that represent the 
wires between the circuit elements. The circuit symbols for capacitors, batteries, 
and switches as well as the color codes used for them in this text are given in Fig-
ure 26.6. The symbol for the capacitor reflects the geometry of the most common 
model for a capacitor, a pair of parallel plates. The positive terminal of the battery 
is at the higher potential and is represented in the circuit symbol by the longer line.

Parallel Combination
Two capacitors connected as shown in Figure 26.7a are known as a parallel combi-
nation of capacitors. Figure 26.7b shows a circuit diagram for this combination of 
capacitors. The left plates of the capacitors are connected to the positive terminal of 
the battery by a conducting wire and are therefore both at the same electric potential 

Substitute the absolute value of DV into Equation 26.1: C 5
Q

DV
5

Q0 Vb 2 Va 0 5
ab

ke 1b 2 a 2  (26.6)

Apply the result of Example 24.3 for the electric field 
outside a spherically symmetric charge distribution  
and note that E

S
 is parallel to d sS along a radial line:

Vb 2 Va 5 2 3
b

a
 Er dr 5 2keQ 3

b

a
 
dr
r 2 5 keQ c1r d b

a

(1)   Vb 2 Va 5 keQ a1
b

2
1
ab 5 keQ 

a 2 b
ab

Write an expression for the potential difference between 
the two conductors from Equation 25.3:

Vb 2 Va 5 2 3
b

a
E
S

? d sS

Finalize  The capacitance depends on a and b as expected. The potential difference between the spheres in Equation 
(1) is negative because Q is positive and b . a. Therefore, in Equation 26.6, when we take the absolute value, we change 
a 2 b to b 2 a. The result is a positive number.

 If the radius b of the outer sphere approaches infinity, what does the capacitance become?

Answer  In Equation 26.6, we let b S `:

C 5 lim
b S `

  ab
ke 1b 2 a 2 5

ab
ke 1b 2 5

a
ke

5 4pP0a

Notice that this expression is the same as Equation 26.2, the capacitance of an isolated spherical conductor.

WHAT IF ?

Capacitor
symbol

Battery
symbol

symbol
Switch Open

Closed

!

"

Figure 26.6  Circuit symbols for 
capacitors, batteries, and switches. 
Notice that capacitors are in 
blue, batteries are in green, and 
switches are in red. The closed 
switch can carry current, whereas 
the open one cannot.

 

▸ 26.2 c o n t i n u e d

Categorize  Because of the spherical symmetry of the sys-
tem, we can use results from previous studies of spherical 
systems to find the capacitance.

Analyze  As shown in Chapter 24, the direction of the 
electric field outside a spherically symmetric charge 
distribution is radial and its magnitude is given by the 
expression E 5 keQ /r 2. In this case, this result applies to 
the field between the spheres (a , r , b).

a

b

!Q

"Q

Figure 26.5  (Example 26.2) 
A spherical capacitor consists of 
an inner sphere of radius a sur-
rounded by a concentric spherical 
shell of radius b. The electric field 
between the spheres is directed 
radially outward when the inner 
sphere is positively charged.

capacitor C
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Substitute the absolute value of DV into Equation 26.1: C 5
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Apply the result of Example 24.3 for the electric field 
outside a spherically symmetric charge distribution  
and note that E

S
 is parallel to d sS along a radial line:
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Write an expression for the potential difference between 
the two conductors from Equation 25.3:
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Finalize  The capacitance depends on a and b as expected. The potential difference between the spheres in Equation 
(1) is negative because Q is positive and b . a. Therefore, in Equation 26.6, when we take the absolute value, we change 
a 2 b to b 2 a. The result is a positive number.

 If the radius b of the outer sphere approaches infinity, what does the capacitance become?

Answer  In Equation 26.6, we let b S `:
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Notice that this expression is the same as Equation 26.2, the capacitance of an isolated spherical conductor.
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Figure 26.6  Circuit symbols for 
capacitors, batteries, and switches. 
Notice that capacitors are in 
blue, batteries are in green, and 
switches are in red. The closed 
switch can carry current, whereas 
the open one cannot.

 

▸ 26.2 c o n t i n u e d

Categorize  Because of the spherical symmetry of the sys-
tem, we can use results from previous studies of spherical 
systems to find the capacitance.

Analyze  As shown in Chapter 24, the direction of the 
electric field outside a spherically symmetric charge 
distribution is radial and its magnitude is given by the 
expression E 5 keQ /r 2. In this case, this result applies to 
the field between the spheres (a , r , b).
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Figure 26.5  (Example 26.2) 
A spherical capacitor consists of 
an inner sphere of radius a sur-
rounded by a concentric spherical 
shell of radius b. The electric field 
between the spheres is directed 
radially outward when the inner 
sphere is positively charged.

switch S
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26.3 Combinations of Capacitors
Two or more capacitors often are combined in electric circuits. We can calculate 
the equivalent capacitance of certain combinations using methods described in 
this section. Throughout this section, we assume the capacitors to be combined are 
initially uncharged.
 In studying electric circuits, we use a simplified pictorial representation called a 
circuit diagram. Such a diagram uses circuit symbols to represent various circuit 
elements. The circuit symbols are connected by straight lines that represent the 
wires between the circuit elements. The circuit symbols for capacitors, batteries, 
and switches as well as the color codes used for them in this text are given in Fig-
ure 26.6. The symbol for the capacitor reflects the geometry of the most common 
model for a capacitor, a pair of parallel plates. The positive terminal of the battery 
is at the higher potential and is represented in the circuit symbol by the longer line.
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Two capacitors connected as shown in Figure 26.7a are known as a parallel combi-
nation of capacitors. Figure 26.7b shows a circuit diagram for this combination of 
capacitors. The left plates of the capacitors are connected to the positive terminal of 
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Finalize  The capacitance depends on a and b as expected. The potential difference between the spheres in Equation 
(1) is negative because Q is positive and b . a. Therefore, in Equation 26.6, when we take the absolute value, we change 
a 2 b to b 2 a. The result is a positive number.

 If the radius b of the outer sphere approaches infinity, what does the capacitance become?
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Notice that this expression is the same as Equation 26.2, the capacitance of an isolated spherical conductor.
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capacitors, batteries, and switches. 
Notice that capacitors are in 
blue, batteries are in green, and 
switches are in red. The closed 
switch can carry current, whereas 
the open one cannot.
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Categorize  Because of the spherical symmetry of the sys-
tem, we can use results from previous studies of spherical 
systems to find the capacitance.

Analyze  As shown in Chapter 24, the direction of the 
electric field outside a spherically symmetric charge 
distribution is radial and its magnitude is given by the 
expression E 5 keQ /r 2. In this case, this result applies to 
the field between the spheres (a , r , b).
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A spherical capacitor consists of 
an inner sphere of radius a sur-
rounded by a concentric spherical 
shell of radius b. The electric field 
between the spheres is directed 
radially outward when the inner 
sphere is positively charged.
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 Today, thousands of superconductors are known, and as Table 27.3 illustrates, 
the critical temperatures of recently discovered superconductors are substantially 
higher than initially thought possible. Two kinds of superconductors are recog-
nized. The more recently identified ones are essentially ceramics with high criti-
cal temperatures, whereas superconducting materials such as those observed by 
Kamerlingh-Onnes are metals. If a room-temperature superconductor is ever iden-
tified, its effect on technology could be tremendous.
 The value of Tc is sensitive to chemical composition, pressure, and molecular 
structure. Copper, silver, and gold, which are excellent conductors, do not exhibit 
superconductivity.
 One truly remarkable feature of superconductors is that once a current is set up 
in them, it persists without any applied potential difference (because R 5 0). Steady cur-
rents have been observed to persist in superconducting loops for several years with 
no apparent decay!
 An important and useful application of superconductivity is in the development 
of superconducting magnets, in which the magnitudes of the magnetic field are 
approximately ten times greater than those produced by the best normal elec-
tromagnets. Such superconducting magnets are being considered as a means of 
storing energy. Superconducting magnets are currently used in medical magnetic 
resonance imaging, or MRI, units, which produce high-quality images of internal 
organs without the need for excessive exposure of patients to x-rays or other harm-
ful radiation.

27.6 Electrical Power
In typical electric circuits, energy TET is transferred by electrical transmission from 
a source such as a battery to some device such as a lightbulb or a radio receiver. 
Let’s determine an expression that will allow us to calculate the rate of this energy 
transfer. First, consider the simple circuit in Figure 27.11, where energy is delivered 
to a resistor. (Resistors are designated by the circuit symbol .) Because the 
connecting wires also have resistance, some energy is delivered to the wires and 
some to the resistor. Unless noted otherwise, we shall assume the resistance of the 
wires is small compared with the resistance of the circuit element so that the energy 
delivered to the wires is negligible.
 Imagine following a positive quantity of charge Q moving clockwise around the 
circuit in Figure 27.11 from point a through the battery and resistor back to point a. 
We identify the entire circuit as our system. As the charge moves from a to b through 
the battery, the electric potential energy of the system increases by an amount Q DV 

Table 27.3 Critical Temperatures 
for Various Superconductors
Material Tc  (K)

HgBa2Ca2Cu3O8 134
Tl—Ba—Ca—Cu—O 125
Bi—Sr—Ca—Cu—O 105
YBa2Cu3O7 92
Nb3Ge 23.2
Nb3Sn 18.05
Nb 9.46
Pb 7.18
Hg 4.15
Sn 3.72
Al 1.19
Zn 0.88

A small permanent magnet levi-
tated above a disk of the super-
conductor YBa2Cu3O7, which is in 
liquid nitrogen at 77 K.
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The direction of the 
effective flow of positive 
charge is clockwise.

Figure 27.11 A circuit consist-
ing of a resistor of resistance R 
and a battery having a potential 
difference DV across its terminals.
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32.5 Oscillations in an LC Circuit
When a capacitor is connected to an inductor as illustrated in Figure 32.10, the 
combination is an LC circuit. If the capacitor is initially charged and the switch is 
then closed, both the current in the circuit and the charge on the capacitor oscil-
late between maximum positive and negative values. If the resistance of the cir-
cuit is zero, no energy is transformed to internal energy. In the following analysis, 
the resistance in the circuit is neglected. We also assume an idealized situation in 
which energy is not radiated away from the circuit. This radiation mechanism is 
discussed in Chapter 34.
 Assume the capacitor has an initial charge Q max (the maximum charge) and 
the switch is open for t , 0 and then closed at t 5 0. Let’s investigate what happens 
from an energy viewpoint.
 When the capacitor is fully charged, the energy U in the circuit is stored in 
the capacitor’s electric field and is equal to Q 2

max/2C (Eq. 26.11). At this time, the 
current in the circuit is zero; therefore, no energy is stored in the inductor. After 
the switch is closed, the rate at which charges leave or enter the capacitor plates 
(which is also the rate at which the charge on the capacitor changes) is equal to 
the current in the circuit. After the switch is closed and the capacitor begins to 
discharge, the energy stored in its electric field decreases. The capacitor’s dis-
charge represents a current in the circuit, and some energy is now stored in the 
magnetic field of the inductor. Therefore, energy is transferred from the electric 
field of the capacitor to the magnetic field of the inductor. When the capacitor 
is fully discharged, it stores no energy. At this time, the current reaches its maxi-
mum value and all the energy in the circuit is stored in the inductor. The cur-
rent continues in the same direction, decreasing in magnitude, with the capacitor 
eventually becoming fully charged again but with the polarity of its plates now 
opposite the initial polarity. This process is followed by another discharge until 
the circuit returns to its original state of maximum charge Q max and the plate 
polarity shown in Figure 32.10. The energy continues to oscillate between induc-
tor and capacitor.
 The oscillations of the LC circuit are an electromagnetic analog to the mechani-
cal oscillations of the particle in simple harmonic motion studied in Chapter 15. 
Much of what was discussed there is applicable to LC oscillations. For example, we 
investigated the effect of driving a mechanical oscillator with an external force, 

S

LC
Q max

!

"

Figure 32.10  A simple LC cir-
cuit. The capacitor has an initial 
charge Q max, and the switch is 
open for t , 0 and then closed at 
t 5 0.

Find the mutual inductance, noting that the magnetic 
flux FBH through the handle’s coil caused by the mag-
netic field of the base coil is BA:

M 5
NHFBH

i
5

NH BA
i

5 m0 
NBNH

,
 A

Use Equation 30.17 to express the magnetic field in the 
interior of the base solenoid:

B 5 m0 
NB

,
 i

Wireless charging is used in a number of other “cordless” devices. One significant example is the inductive charging 
used by some manufacturers of electric cars that avoids direct metal-to-metal contact between the car and the charg-
ing apparatus.

Conceptualize  Be sure you can identify the two coils in the situation and understand that a changing current in one 
coil induces a current in the second coil.

Categorize  We will determine the result using concepts discussed in this section, so we categorize this example as a 
substitution problem.

S O L U T I O N

 

▸ 32.5 c o n t i n u e d



Circuits

The different elements can be combined together in various ways
to make complete circuits: paths for current to flow from one
terminal of a battery or power supply to the other.658 CHAPTE R 25 CAPACITANCE
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that maintains a certain potential difference between its terminals (points at
which charge can enter or leave the battery) by means of internal electrochemi-
cal reactions in which electric forces can move internal charge.

In Fig. 25-4a, a battery B, a switch S, an uncharged capacitor C, and inter-
connecting wires form a circuit. The same circuit is shown in the schematic dia-
gram of Fig. 25-4b, in which the symbols for a battery, a switch, and a capacitor
represent those devices. The battery maintains potential difference V between its
terminals. The terminal of higher potential is labeled ! and is often called the
positive terminal; the terminal of lower potential is labeled " and is often called
the negative terminal.

The circuit shown in Figs. 25-4a and b is said to be incomplete because
switch S is open; that is, the switch does not electrically connect the wires 
attached to it. When the switch is closed, electrically connecting those wires, the
circuit is complete and charge can then flow through the switch and the wires.
As we discussed in Chapter 21, the charge that can flow through a conductor,
such as a wire, is that of electrons. When the circuit of Fig. 25-4 is completed,
electrons are driven through the wires by an electric field that the battery sets
up in the wires. The field drives electrons from capacitor plate h to the positive
terminal of the battery; thus, plate h, losing electrons, becomes positively
charged. The field drives just as many electrons from the negative terminal of
the battery to capacitor plate l; thus, plate l, gaining electrons, becomes nega-
tively charged just as much as plate h, losing electrons, becomes positively
charged.

Initially, when the plates are uncharged, the potential difference between
them is zero. As the plates become oppositely charged, that potential differ-
ence increases until it equals the potential difference V between the terminals
of the battery. Then plate h and the positive terminal of the battery are at the
same potential, and there is no longer an electric field in the wire between
them. Similarly, plate l and the negative terminal reach the same potential,
and there is then no electric field in the wire between them. Thus, with the
field zero, there is no further drive of electrons. The capacitor is then said to
be fully charged, with a potential difference V and charge q that are related
by Eq. 25-1.

In this book we assume that during the charging of a capacitor and after-
ward, charge cannot pass from one plate to the other across the gap separating
them. Also, we assume that a capacitor can retain (or store) charge indefinitely,
until it is put into a circuit where it can be discharged.

Fig. 25-4 (a) Battery B, switch S, and plates h and l of capacitor C, connected in a cir-
cuit. (b) A schematic diagram with the circuit elements represented by their symbols.

(a)

–+
B

S

h
l

C

CHECKPOINT 1

Does the capacitance C of a capacitor increase, decrease, or remain the same (a) when
the charge q on it is doubled and (b) when the potential difference V across it is
tripled?

l

V+
–

(b)

C

B

Terminal

S

h

Terminal
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This circuit is said to be incomplete while the switch is open.



Electric Current

Electric current, I, is the rate of flow of charge through some
defined plane (cross section):

I =
q

t

q is an amount of charge and t is a time interval.
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As Fig. 26-1a reminds us, any isolated conducting loop—regardless of
whether it has an excess charge—is all at the same potential. No electric field can
exist within it or along its surface. Although conduction electrons are available,
no net electric force acts on them and thus there is no current.

If, as in Fig. 26-1b, we insert a battery in the loop, the conducting loop is no
longer at a single potential. Electric fields act inside the material making up
the loop, exerting forces on the conduction electrons, causing them to move
and thus establishing a current. After a very short time, the electron flow
reaches a constant value and the current is in its steady state (it does not vary
with time).

Figure 26-2 shows a section of a conductor, part of a conducting loop in
which current has been established. If charge dq passes through a hypothetical
plane (such as aa!) in time dt, then the current i through that plane is defined as

(definition of current). (26-1)

We can find the charge that passes through the plane in a time interval
extending from 0 to t by integration:

(26-2)

in which the current i may vary with time.

q " ! dq " !t

0
 i dt,

i "
dq
dt

Fig. 26-1 (a) A loop of copper in
electrostatic equilibrium.The entire
loop is at a single potential, and the
electric field is zero at all points in-
side the copper. (b) Adding a battery
imposes an electric potential differ-
ence between the ends of the loop
that are connected to the terminals
of the battery.The battery thus pro-
duces an electric field within the
loop, from terminal to terminal, and
the field causes charges to move
around the loop.This movement of
charges is a current i.

(a)

(b)

Battery

+ – ii

i

i
i

Fig. 26-2 The current i
through the conductor has
the same value at planes
aa!, bb!, and cc!.

i i 

a 

a' 
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b' 
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c' 

The current is the same in 
any cross section.

Under steady-state conditions, the current is the same for planes aa!, bb!, and
cc! and indeed for all planes that pass completely through the conductor, no
matter what their location or orientation.This follows from the fact that charge is
conserved. Under the steady-state conditions assumed here, an electron must
pass through plane aa! for every electron that passes through plane cc!. In the
same way, if we have a steady flow of water through a garden hose, a drop of
water must leave the nozzle for every drop that enters the hose at the other end.
The amount of water in the hose is a conserved quantity.

The SI unit for current is the coulomb per second, or the ampere (A), which
is an SI base unit:

1 ampere " 1 A " 1 coulomb per second " 1 C/s.

The formal definition of the ampere is discussed in Chapter 29.
Current, as defined by Eq. 26-1, is a scalar because both charge and time in

that equation are scalars. Yet, as in Fig. 26-1b, we often represent a current with
an arrow to indicate that charge is moving. Such arrows are not vectors, however,
and they do not require vector addition. Figure 26-3a shows a conductor with
current i0 splitting at a junction into two branches. Because charge is conserved,
the magnitudes of the currents in the branches must add to yield the magnitude
of the current in the original conductor, so that

i0 " i1 # i2. (26-3)

As Fig. 26-3b suggests, bending or reorienting the wires in space does not change
the validity of Eq. 26-3. Current arrows show only a direction (or sense) of flow
along a conductor, not a direction in space.

Fig. 26-3 The relation i0 " i1 # i2

is true at junction a no matter what the
orientation in space of the three wires.
Currents are scalars, not vectors.

i 0  

a  

i 1  

i 2  

(a) 

(b) 

a  
i 2  

i1  

i 0  

The current into the
junction must equal
the current out
(charge is conserved).
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Coulombs and Ampères

The unit for current is the Ampère, or more commonly, “Amp”.

Using the definition for current, 1 A = 1 C / 1 s.

Therefore, we can formally define the unit of charge in terms of the
unit of current:

1 C = (1 A)(1 s)



Flow of charge in a circuit

Conventional current is said to flow from the positive terminal to
the negative terminal.

However, actually it is negatively charged electrons that flow
through metal wires:

−−−

810 Chapter 27 Current and Resistance

conductor of cross-sectional area A (Fig. 27.2). The volume of a segment of the con-
ductor of length Dx (between the two circular cross sections shown in Fig. 27.2) is  
A  Dx. If n represents the number of mobile charge carriers per unit volume (in 
other words, the charge carrier density), the number of carriers in the segment is 
nA Dx. Therefore, the total charge DQ in this segment is

 DQ 5 (nA Dx)q 

where q is the charge on each carrier. If the carriers move with a velocity vSd paral-
lel to the axis of the cylinder, the magnitude of the displacement they experience 
in the x direction in a time interval Dt is Dx 5 vd Dt. Let Dt be the time interval 
required for the charge carriers in the segment to move through a displacement 
whose magnitude is equal to the length of the segment. This time interval is also 
the same as that required for all the charge carriers in the segment to pass through 
the circular area at one end. With this choice, we can write DQ as

 DQ 5 (nAvd Dt)q 

Dividing both sides of this equation by Dt, we find that the average current in the 
conductor is

 I avg 5
DQ
Dt

5 nqvdA  (27.4)

 In reality, the speed of the charge carriers vd is an average speed called the 
drift speed. To understand the meaning of drift speed, consider a conductor in 
which the charge carriers are free electrons. If the conductor is isolated—that 
is, the potential difference across it is zero—these electrons undergo random 
motion that is analogous to the motion of gas molecules. The electrons collide 
repeatedly with the metal atoms, and their resultant motion is complicated and 
zigzagged as in Figure 27.3a. As discussed earlier, when a potential difference 
is applied across the conductor (for example, by means of a battery), an electric 
field is set up in the conductor; this field exerts an electric force on the electrons, 
producing a current. In addition to the zigzag motion due to the collisions with 
the metal atoms, the electrons move slowly along the conductor (in a direction 
opposite that of E

S
) at the drift velocity vSd as shown in Figure 27.3b.

 You can think of the atom–electron collisions in a conductor as an effective 
internal friction (or drag force) similar to that experienced by a liquid’s mol-
ecules flowing through a pipe stuffed with steel wool. The energy transferred 
from the electrons to the metal atoms during collisions causes an increase in 
the atom’s vibrational energy and a corresponding increase in the conductor’s 
temperature.

Q uick Quiz 27.1  Consider positive and negative charges moving horizontally 
through the four regions shown in Figure 27.4. Rank the current in these four 
regions from highest to lowest.
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Figure 27.2  A segment of a uni-
form conductor of cross-sectional 
area A.
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The random motion of the 
charge carriers is modified by 
the field, and they have a drift 
velocity opposite the direction 
of the electric field.

Figure 27.3 (a) A schematic 
diagram of the random motion of 
two charge carriers in a conductor 
in the absence of an electric field. 
The drift velocity is zero. (b) The 
motion of the charge carriers in 
a conductor in the presence of an 
electric field. Because of the accel-
eration of the charge carriers due 
to the electric force, the paths are 
actually parabolic. The drift speed, 
however, is much smaller than the 
average speed, so the parabolic 
shape is not visible on this scale.
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Figure 27.4  (Quick Quiz 27.1) Charges move through four regions.
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1Figure from Serway and Jewett, 9th ed.



Electric Current

There are two modes for electric current in use:

• Direct Current (DC)

• Alternating Current (AC)

Direct current flows only in one direction through a wire. A
typical source of DC is a battery.

Alternating current flows back and forth. It alternates its
direction. Household electricity is AC.



Current
Charge will only move when there is a net force on it. A supplying
a potential difference across two points on a wire will do this.
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As Fig. 26-1a reminds us, any isolated conducting loop—regardless of
whether it has an excess charge—is all at the same potential. No electric field can
exist within it or along its surface. Although conduction electrons are available,
no net electric force acts on them and thus there is no current.

If, as in Fig. 26-1b, we insert a battery in the loop, the conducting loop is no
longer at a single potential. Electric fields act inside the material making up
the loop, exerting forces on the conduction electrons, causing them to move
and thus establishing a current. After a very short time, the electron flow
reaches a constant value and the current is in its steady state (it does not vary
with time).

Figure 26-2 shows a section of a conductor, part of a conducting loop in
which current has been established. If charge dq passes through a hypothetical
plane (such as aa!) in time dt, then the current i through that plane is defined as

(definition of current). (26-1)

We can find the charge that passes through the plane in a time interval
extending from 0 to t by integration:

(26-2)

in which the current i may vary with time.

q " ! dq " !t

0
 i dt,

i "
dq
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Fig. 26-1 (a) A loop of copper in
electrostatic equilibrium.The entire
loop is at a single potential, and the
electric field is zero at all points in-
side the copper. (b) Adding a battery
imposes an electric potential differ-
ence between the ends of the loop
that are connected to the terminals
of the battery.The battery thus pro-
duces an electric field within the
loop, from terminal to terminal, and
the field causes charges to move
around the loop.This movement of
charges is a current i.
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Fig. 26-2 The current i
through the conductor has
the same value at planes
aa!, bb!, and cc!.
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The current is the same in 
any cross section.

Under steady-state conditions, the current is the same for planes aa!, bb!, and
cc! and indeed for all planes that pass completely through the conductor, no
matter what their location or orientation.This follows from the fact that charge is
conserved. Under the steady-state conditions assumed here, an electron must
pass through plane aa! for every electron that passes through plane cc!. In the
same way, if we have a steady flow of water through a garden hose, a drop of
water must leave the nozzle for every drop that enters the hose at the other end.
The amount of water in the hose is a conserved quantity.

The SI unit for current is the coulomb per second, or the ampere (A), which
is an SI base unit:

1 ampere " 1 A " 1 coulomb per second " 1 C/s.

The formal definition of the ampere is discussed in Chapter 29.
Current, as defined by Eq. 26-1, is a scalar because both charge and time in

that equation are scalars. Yet, as in Fig. 26-1b, we often represent a current with
an arrow to indicate that charge is moving. Such arrows are not vectors, however,
and they do not require vector addition. Figure 26-3a shows a conductor with
current i0 splitting at a junction into two branches. Because charge is conserved,
the magnitudes of the currents in the branches must add to yield the magnitude
of the current in the original conductor, so that

i0 " i1 # i2. (26-3)

As Fig. 26-3b suggests, bending or reorienting the wires in space does not change
the validity of Eq. 26-3. Current arrows show only a direction (or sense) of flow
along a conductor, not a direction in space.

Fig. 26-3 The relation i0 " i1 # i2

is true at junction a no matter what the
orientation in space of the three wires.
Currents are scalars, not vectors.

i 0  

a  

i 1  

i 2  

(a) 

(b) 

a  
i 2  

i1  

i 0  

The current into the
junction must equal
the current out
(charge is conserved).
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Resistance

When a potential difference is applied across a conductor, current
begins to flow.
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As Fig. 26-1a reminds us, any isolated conducting loop—regardless of
whether it has an excess charge—is all at the same potential. No electric field can
exist within it or along its surface. Although conduction electrons are available,
no net electric force acts on them and thus there is no current.

If, as in Fig. 26-1b, we insert a battery in the loop, the conducting loop is no
longer at a single potential. Electric fields act inside the material making up
the loop, exerting forces on the conduction electrons, causing them to move
and thus establishing a current. After a very short time, the electron flow
reaches a constant value and the current is in its steady state (it does not vary
with time).

Figure 26-2 shows a section of a conductor, part of a conducting loop in
which current has been established. If charge dq passes through a hypothetical
plane (such as aa!) in time dt, then the current i through that plane is defined as

(definition of current). (26-1)

We can find the charge that passes through the plane in a time interval
extending from 0 to t by integration:

(26-2)

in which the current i may vary with time.

q " ! dq " !t

0
 i dt,

i "
dq
dt

Fig. 26-1 (a) A loop of copper in
electrostatic equilibrium.The entire
loop is at a single potential, and the
electric field is zero at all points in-
side the copper. (b) Adding a battery
imposes an electric potential differ-
ence between the ends of the loop
that are connected to the terminals
of the battery.The battery thus pro-
duces an electric field within the
loop, from terminal to terminal, and
the field causes charges to move
around the loop.This movement of
charges is a current i.

(a)

(b)

Battery

+ – ii

i

i
i

Fig. 26-2 The current i
through the conductor has
the same value at planes
aa!, bb!, and cc!.

i i 

a 

a' 

b 

b' 

c 

c' 

The current is the same in 
any cross section.

Under steady-state conditions, the current is the same for planes aa!, bb!, and
cc! and indeed for all planes that pass completely through the conductor, no
matter what their location or orientation.This follows from the fact that charge is
conserved. Under the steady-state conditions assumed here, an electron must
pass through plane aa! for every electron that passes through plane cc!. In the
same way, if we have a steady flow of water through a garden hose, a drop of
water must leave the nozzle for every drop that enters the hose at the other end.
The amount of water in the hose is a conserved quantity.

The SI unit for current is the coulomb per second, or the ampere (A), which
is an SI base unit:

1 ampere " 1 A " 1 coulomb per second " 1 C/s.

The formal definition of the ampere is discussed in Chapter 29.
Current, as defined by Eq. 26-1, is a scalar because both charge and time in

that equation are scalars. Yet, as in Fig. 26-1b, we often represent a current with
an arrow to indicate that charge is moving. Such arrows are not vectors, however,
and they do not require vector addition. Figure 26-3a shows a conductor with
current i0 splitting at a junction into two branches. Because charge is conserved,
the magnitudes of the currents in the branches must add to yield the magnitude
of the current in the original conductor, so that

i0 " i1 # i2. (26-3)

As Fig. 26-3b suggests, bending or reorienting the wires in space does not change
the validity of Eq. 26-3. Current arrows show only a direction (or sense) of flow
along a conductor, not a direction in space.

Fig. 26-3 The relation i0 " i1 # i2

is true at junction a no matter what the
orientation in space of the three wires.
Currents are scalars, not vectors.

i 0  

a  

i 1  

i 2  

(a) 

(b) 

a  
i 2  

i1  

i 0  

The current into the
junction must equal
the current out
(charge is conserved).
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However, different amounts of current will flow in different
conductors, even when the applied potential difference is the same.
What is the characteristic of the conductor which determines the
amount of current that will flow?

1Figure from Halliday, Resnick, Walker, 9th ed.



Resistance

Resistance

The resistance of a conductor is given by the ratio of the applied
potential to the current that flows through the conductor at that
potential:

R =
V

I

The units of resistance are Ohms, Ω, symbol is the capital Greek
letter “Omega”. 1 Ω = 1 V/A

We can think of a high resistance as resisting, or impeding, the
flow of current.



Ohm’s Law

Ohm’s Law

The current through a device is directly proportional to the
potential difference applied across the device.

Not all devices obey Ohm’s Law!

In fact, for all materials, if V is large enough, Ohm’s law fails.

They only obey Ohm’s law when the device’s resistance is
independent of the applied potential difference.



Ohm’s Law

Obeys Ohm’s law:

Ohm’s law is an assertion that the current through a device is always directly
proportional to the potential difference applied to the device.

A conducting device obeys Ohm’s law when the resistance of the device is indepen-
dent of the magnitude and polarity of the applied potential difference.

CHECKPOINT 4

The following table gives the current i (in
amperes) through two devices for sev-
eral values of potential difference V (in
volts). From these data, determine which
device does not obey Ohm’s law.

Device 1 Device 2

V i V i

2.00 4.50 2.00 1.50
3.00 6.75 3.00 2.20
4.00 9.00 4.00 2.80
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Fig. 26-11 (a) A potential difference V
is applied to the terminals of a device,
establishing a current i. (b) A plot of cur-
rent i versus applied potential difference V
when the device is a 1000 ! resistor. (c) A
plot when the device is a semiconducting
pn junction diode.
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26-5 Ohm’s Law
As we just discussed in Section 26-4, a resistor is a conductor with a specified
resistance. It has that same resistance no matter what the magnitude and direction
(polarity) of the applied potential difference are. Other conducting devices, how-
ever, might have resistances that change with the applied potential difference.

Figure 26-11a shows how to distinguish such devices. A potential difference
V is applied across the device being tested, and the resulting current i through the
device is measured as V is varied in both magnitude and polarity. The polarity of
V is arbitrarily taken to be positive when the left terminal of the device is at a
higher potential than the right terminal. The direction of the resulting current
(from left to right) is arbitrarily assigned a plus sign. The reverse polarity of V
(with the right terminal at a higher potential) is then negative; the current it
causes is assigned a minus sign.

Figure 26-11b is a plot of i versus V for one device. This plot is a straight line
passing through the origin, so the ratio i/V (which is the slope of the straight line)
is the same for all values of V. This means that the resistance R " V/i of the
device is independent of the magnitude and polarity of the applied potential
difference V.

Figure 26-11c is a plot for another conducting device. Current can exist in this
device only when the polarity of V is positive and the applied potential difference
is more than about 1.5 V.When current does exist, the relation between i and V is
not linear; it depends on the value of the applied potential difference V.

We distinguish between the two types of device by saying that one obeys
Ohm’s law and the other does not.

(This assertion is correct only in certain situations; still, for historical reasons, the
term “law” is used.) The device of Fig. 26-11b—which turns out to be a 1000 !
resistor—obeys Ohm’s law. The device of Fig. 26-11c—which is called a pn junc-
tion diode—does not.

All homogeneous materials, whether they are conductors like copper or semicon-
ductors like pure silicon or silicon containing special impurities, obey Ohm’s law
within some range of values of the electric field. If the field is too strong, however,
there are departures from Ohm’s law in all cases.

A conducting material obeys Ohm’s law when the resistivity of the material is
independent of the magnitude and direction of the applied electric field.

It is often contended that V " iR is a statement of Ohm’s law. That is not
true! This equation is the defining equation for resistance, and it applies to all
conducting devices, whether they obey Ohm’s law or not. If we measure the
potential difference V across, and the current i through, any device, even a pn
junction diode, we can find its resistance at that value of V as R " V/i.The essence
of Ohm’s law, however, is that a plot of i versus V is linear; that is, R is inde-
pendent of V.

We can express Ohm’s law in a more general way if we focus on conducting
materials rather than on conducting devices. The relevant relation is then
Eq. 26-11 which corresponds to V " iR.(E

:
" # J

:
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halliday_c26_682-704hr.qxd  7-12-2009  14:30  Page 692

Does not obey Ohm’s law:

Ohm’s law is an assertion that the current through a device is always directly
proportional to the potential difference applied to the device.

A conducting device obeys Ohm’s law when the resistance of the device is indepen-
dent of the magnitude and polarity of the applied potential difference.

CHECKPOINT 4

The following table gives the current i (in
amperes) through two devices for sev-
eral values of potential difference V (in
volts). From these data, determine which
device does not obey Ohm’s law.

Device 1 Device 2

V i V i

2.00 4.50 2.00 1.50
3.00 6.75 3.00 2.20
4.00 9.00 4.00 2.80

+2

0

–2C
ur

re
nt

 (
m

A
)

Potential difference (V)
–2 0 +2 +4

+4

+2

0

–2

C
ur

re
nt

 (
m

A
)

–4 –2 0 +2 +4

(a)

(b)

(c)

V

?
i

+ –

i

Potential difference (V)

–4

Fig. 26-11 (a) A potential difference V
is applied to the terminals of a device,
establishing a current i. (b) A plot of cur-
rent i versus applied potential difference V
when the device is a 1000 ! resistor. (c) A
plot when the device is a semiconducting
pn junction diode.

692 CHAPTE R 26 CU R R E NT AN D R E S I STANCE

26-5 Ohm’s Law
As we just discussed in Section 26-4, a resistor is a conductor with a specified
resistance. It has that same resistance no matter what the magnitude and direction
(polarity) of the applied potential difference are. Other conducting devices, how-
ever, might have resistances that change with the applied potential difference.

Figure 26-11a shows how to distinguish such devices. A potential difference
V is applied across the device being tested, and the resulting current i through the
device is measured as V is varied in both magnitude and polarity. The polarity of
V is arbitrarily taken to be positive when the left terminal of the device is at a
higher potential than the right terminal. The direction of the resulting current
(from left to right) is arbitrarily assigned a plus sign. The reverse polarity of V
(with the right terminal at a higher potential) is then negative; the current it
causes is assigned a minus sign.

Figure 26-11b is a plot of i versus V for one device. This plot is a straight line
passing through the origin, so the ratio i/V (which is the slope of the straight line)
is the same for all values of V. This means that the resistance R " V/i of the
device is independent of the magnitude and polarity of the applied potential
difference V.

Figure 26-11c is a plot for another conducting device. Current can exist in this
device only when the polarity of V is positive and the applied potential difference
is more than about 1.5 V.When current does exist, the relation between i and V is
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(This assertion is correct only in certain situations; still, for historical reasons, the
term “law” is used.) The device of Fig. 26-11b—which turns out to be a 1000 !
resistor—obeys Ohm’s law. The device of Fig. 26-11c—which is called a pn junc-
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All homogeneous materials, whether they are conductors like copper or semicon-
ductors like pure silicon or silicon containing special impurities, obey Ohm’s law
within some range of values of the electric field. If the field is too strong, however,
there are departures from Ohm’s law in all cases.

A conducting material obeys Ohm’s law when the resistivity of the material is
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It is often contended that V " iR is a statement of Ohm’s law. That is not
true! This equation is the defining equation for resistance, and it applies to all
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potential difference V across, and the current i through, any device, even a pn
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We can write this linear relationship as V = IR if and only if R is
constant and independent of V .

However, notice that we can always define R(V ) = V
I even when

resistance does depend on V .



Exotic Conductors

Conductors

materials through which charge can move readily

Insulators

(also called nonconductors) are materials that charge cannot move
through freely

Semiconductors

are materials with behavior between that of conductors and
insulators, eg. silicon and germanium

Suprerconductors

materials that (in the right circumstances) allow charge to flow
without any resistance



Semiconductors

Semiconductors have resistivities between those of conductors and
insulators.

However, their resistivities can be controlled by several different
means (depending on the type of semiconductor):

• by adding impurities during manufacture

• by electric fields

• by light

This allows for many new kinds of components in circuits: ones
that amplify currents, emit light, are light sensitive, implement
switching, etc.
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Superconductors

Superconducting materials are elements, alloys, or compounds that
exhibit a remarkable property: below some characteristic
temperature the resistivity of the material is effectively zero.
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as can an electric field applied across the conductor.The field would not only free
these loosely held electrons but would also propel them along the wire; thus, the
field would drive a current through the conductor.

In an insulator, significantly greater energy is required to free electrons so
they can move through the material. Thermal energy cannot supply enough en-
ergy, and neither can any reasonable electric field applied to the insulator. Thus,
no electrons are available to move through the insulator, and hence no current
occurs even with an applied electric field.

A semiconductor is like an insulator except that the energy required to free
some electrons is not quite so great. More important, doping can supply electrons
or positive charge carriers that are very loosely held within the material and thus
are easy to get moving. Moreover, by controlling the doping of a semiconductor,
we can control the density of charge carriers that can participate in a current and
thereby can control some of its electrical properties. Most semiconducting
devices, such as transistors and junction diodes, are fabricated by the selective
doping of different regions of the silicon with impurity atoms of different kinds.

Let us now look again at Eq. 26-25 for the resistivity of a conductor:

(26-29)

where n is the number of charge carriers per unit volume and t is the mean time
between collisions of the charge carriers. (We derived this equation for conduc-
tors, but it also applies to semiconductors.) Let us consider how the variables n
and t change as the temperature is increased.

In a conductor, n is large but very nearly constant with any change in temper-
ature. The increase of resistivity with temperature for metals (Fig. 26-10) is due
to an increase in the collision rate of the charge carriers, which shows up in
Eq. 26-29 as a decrease in t, the mean time between collisions.

In a semiconductor, n is small but increases very rapidly with temperature as
the increased thermal agitation makes more charge carriers available.This causes
a decrease of resistivity with increasing temperature, as indicated by the negative
temperature coefficient of resistivity for silicon in Table 26-2. The same increase
in collision rate that we noted for metals also occurs for semiconductors, but its
effect is swamped by the rapid increase in the number of charge carriers.

26-9 Superconductors
In 1911, Dutch physicist Kamerlingh Onnes discovered that the resistivity of mercury
absolutely disappears at temperatures below about 4 K (Fig. 26-14). This phenome-
non of superconductivity is of vast potential importance in technology because it
means that charge can flow through a superconducting conductor without losing its
energy to thermal energy. Currents created in a superconducting ring, for example,
have persisted for several years without loss; the electrons making up the current re-
quire a force and a source of energy at start-up time but not thereafter.

Prior to 1986, the technological development of superconductivity was throttled
by the cost of producing the extremely low temperatures required to achieve the ef-
fect. In 1986, however, new ceramic materials were discovered that become super-
conducting at considerably higher (and thus cheaper to produce) temperatures.
Practical application of superconducting devices at room temperature may eventu-
ally become commonplace.

Superconductivity is a phenomenon much different from conductivity. In
fact, the best of the normal conductors, such as silver and copper, cannot become
superconducting at any temperature, and the new ceramic superconductors are
actually good insulators when they are not at low enough temperatures to be in
a superconducting state.
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Fig. 26-14 The resistance of mercury
drops to zero at a temperature of about 4 K.

A disk-shaped magnet is levitated above
a superconducting material that has been
cooled by liquid nitrogen.The goldfish is
along for the ride.(Courtesy Shoji
Tonaka/International Superconductivity
Technology Center,Tokyo, Japan)
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Examples of these materials are mercury and lead. Not all
materials do this! Copper does not.

Mercury is superconducting below 4 K. (−269◦ C)



Superconductors

Before 1986, it seemed we had a good idea about how this
happened and why.

Then “high temperature” superconductors were found.

These are ceramics. One is yttrium barium copper oxide (YBCO).

The highest critical temperature, Tc , at atmospheric pressure
found so far is ∼ 138 K.

We do not really understand why these ceramics are
superconductors.

Hydrogen sulfide becomes a solid metal at extremely high
pressures. It has Tc = 203 K at around 150 gigapascals pressure.1

1Drozdov, et al. (2015). Nature 525 (7567): 73-6. arXiv:1506.08190
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Superconductors

Superconductors must be cooled to their critical temperature,
however, they make excellent powerful electromagnets.

They are used as electromagents in MRI scanners, mass
spectrometers, and particle accelerators.

1Magnet photo by Mai-Linh Doan, Wikipedia; Frog photo by Lijnis
Nelemans/High Field Magnet Laboratory/Radboud University Nijmeg.



Magnets

Like charges, magnets also interact at a distance.

They can either attract or repel.

Similarly to charges, they can also effect certain kinds of nearby
material by magnetizing it. (cf. polarization)



Magnets and electrostatics
Magnets have similarities to electric charges but also have an
important difference from electric charges.

It is possible for a positive or negative electric charge to be found
on its own: eg. electrons, protons.

Magnetic charges are never found on their own.

Magnets have a North pole and a South pole. If you break a
magnet in two, new North and South poles form:

1Figure from Wikipedia.



Lack of Magnetic Monopoles

Breaking a magnet in two:

It is impossible to separate a North pole from a South pole.

It is unclear at this time why magnetic monopoles do not exist, but
they have never been conclusively observed.

Some (unconfirmed) theories predict them, and they may have
existed in the early universe. Other theories attempt to explain
why they do not exist. None are yet confirmed.

As we understand it, magnets always behave similarly to electric
dipoles.
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The Magnetic Field

The magnetic field is written B.

The units are:

1 Tesla = 1 Newton
(1 Coulomb) (1 m/s)

= 1 N A−1 m−1

The Tesla is abbreviated to T. It is a really big unit: 1 T is already
a stronger field than you encounter except in extreme
circumstances.

A more convenient unit (but not an SI unit) is the Gauss:

1 Gauss = 10−4 Tesla
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Magnetic Field Lines
Draw magnetic field lines similarly to E -field line: lines emerge
from North pole, enter South pole, denser lines means a stronger
field.

A bar magnet is a like a magnetic dipole:
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An earlier (non-SI) unit for , still in common use, is the gauss (G), and

1 tesla ! 104 gauss. (28-5)

Table 28-1 lists the magnetic fields that occur in a few situations. Note that Earth’s
magnetic field near the planet’s surface is about 10"4 T (! 100 mT or 1 G).

B
:

Table 28-1

Some Approximate Magnetic Fields

At surface of neutron star 108 T
Near big electromagnet 1.5 T
Near small bar magnet 10"2 T
At Earth’s surface 10"4 T
In interstellar space 10"10 T
Smallest value in 

magnetically 
shielded room 10"14 T

Fig. 28-4 (a) The magnetic field
lines for a bar magnet. (b) A “cow
magnet”—a bar magnet that is in-
tended to be slipped down into the ru-
men of a cow to prevent accidentally
ingested bits of scrap iron from reach-
ing the cow’s intestines.The iron filings
at its ends reveal the magnetic field
lines. (Courtesy Dr. Richard Cannon,
Southeast Missouri State University,
Cape Girardeau)
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Opposite magnetic poles attract each other, and like magnetic poles repel each other.

Magnetic Field Lines
We can represent magnetic fields with field lines, as we did for electric fields.
Similar rules apply: (1) the direction of the tangent to a magnetic field line at
any point gives the direction of at that point, and (2) the spacing of the lines
represents the magnitude of —the magnetic field is stronger where the lines
are closer together, and conversely.

Figure 28-4a shows how the magnetic field near a bar magnet (a permanent
magnet in the shape of a bar) can be represented by magnetic field lines.The lines
all pass through the magnet, and they all form closed loops (even those that
are not shown closed in the figure).The external magnetic effects of a bar magnet
are strongest near its ends, where the field lines are most closely spaced.Thus, the
magnetic field of the bar magnet in Fig. 28-4b collects the iron filings mainly near
the two ends of the magnet.

The (closed) field lines enter one end of a magnet and exit the other end. The
end of a magnet from which the field lines emerge is called the north pole of the
magnet; the other end, where field lines enter the magnet, is called the south pole.
Because a magnet has two poles, it is said to be a magnetic dipole. The magnets we
use to fix notes on refrigerators are short bar magnets. Figure 28-5 shows two other
common shapes for magnets: a horseshoe magnet and a magnet that has been bent
around into the shape of a C so that the pole faces are facing each other. (The mag-
netic field between the pole faces can then be approximately uniform.) Regardless
of the shape of the magnets, if we place two of them near each other we find:

B
:

B
:

CHECKPOINT 1

The figure shows three
situations in which a
charged particle with ve-
locity travels through
a uniform magnetic field

. In each situation,
what is the direction of
the magnetic force 
on the particle?
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Earth has a magnetic field that is produced in its core by still unknown
mechanisms. On Earth’s surface, we can detect this magnetic field with a compass,
which is essentially a slender bar magnet on a low-friction pivot.This bar magnet,
or this needle, turns because its north-pole end is attracted toward the Arctic
region of Earth. Thus, the south pole of Earth’s magnetic field must be located
toward the Arctic. Logically, we then should call the pole there a south pole.
However, because we call that direction north, we are trapped into the statement
that Earth has a geomagnetic north pole in that direction.

With more careful measurement we would find that in the Northern Hemi-
sphere, the magnetic field lines of Earth generally point down into Earth and toward
the Arctic. In the Southern Hemisphere, they generally point up out of Earth and
away from the Antarctic—that is, away from Earth’s geomagnetic south pole.
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1Figure from Halliday, Resnick, Walker, 9th ed.



Magnetic Field Lines

Magnetic fields for a horseshoe magnet and a C-shape magnet: 73928-3 TH E DE FI N ITION OF B
PART 3

HALLIDAY REVISED

Fig. 28-5 (a) A horseshoe magnet and (b) a C-shaped magnet. (Only some of the
external field lines are shown.)
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(a) (b)

The field lines run from
the north pole to the
south pole.

Sample Problem

Direction: To find the direction of , we use the fact that 
has the direction of the cross product Because the
charge q is positive, must have the same direction as 
which can be determined with the right-hand rule for cross
products (as in Fig. 28-2d).We know that is directed horizon-
tally from south to north and is directed vertically up. The
right-hand rule shows us that the deflecting force must be 
directed horizontally from west to east, as Fig. 28-6 shows. (The
array of dots in the figure represents a magnetic field directed
out of the plane of the figure.An array of Xs would have repre-
sented a magnetic field directed into that plane.)

If the charge of the particle were negative, the magnetic
deflecting force would be directed in the opposite direction—
that is, horizontally from east to west. This is predicted auto-
matically by Eq. 28-2 if we substitute a negative value for q.
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a !
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m
!

6.1 " 10#15 N
1.67 " 10#27 kg

! 3.7 " 1012 m/s2.

Magnetic force on a moving charged particle

A uniform magnetic field , with magnitude 1.2 mT, is
directed vertically upward throughout the volume of a labo-
ratory chamber. A proton with kinetic energy 5.3 MeV en-
ters the chamber, moving horizontally from south to north.
What magnetic deflecting force acts on the proton as it en-
ters the chamber? The proton mass is 1.67 " 10#27 kg.
(Neglect Earth’s magnetic field.)

Because the proton is charged and moving through a mag-
netic field, a magnetic force can act on it. Because the ini-
tial direction of the proton’s velocity is not along a magnetic
field line, is not simply zero.

Magnitude: To find the magnitude of , we can use Eq. 28-3
provided we first find the proton’s speed v.

We can find v from the given kinetic energy because
. Solving for v, we obtain

Equation 28-3 then yields

(Answer)

This may seem like a small force, but it acts on a particle of
small mass, producing a large acceleration; namely,

! 6.1 " 10#15 N.
" (1.2 " 10#3 T)(sin 90$)

! (1.60 " 10#19 C)(3.2 " 107 m/s)
FB ! |q|vB sin %

 ! 3.2 " 107 m/s.

 v ! A 2K
m

! A (2)(5.3 MeV)(1.60 " 10#13 J/MeV)
1.67 " 10#27 kg

K ! 1
2 mv2

(FB ! |q|vB sin %)
F
:

B

F
:

B

F
:

B
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Additional examples, video, and practice available at WileyPLUS
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Fig. 28-6 An overhead view of a proton moving from south to
north with velocity in a chamber. A magnetic field is directed
vertically upward in the chamber, as represented by the array of
dots (which resemble the tips of arrows).The proton is deflected
toward the east.
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Compasses and the Earth’s Magnetic field
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The Magnetism of Earth
Earth is a huge magnet; for points near Earth’s surface, its magnetic field can be 
approximated as the field of a huge bar magnet—a magnetic dipole—that strad-
dles the center of the planet. Figure 32-8 is an idealized symmetric depiction of the
dipole field, without the distortion caused by passing charged particles from the Sun.

Because Earth’s magnetic field is that of a magnetic dipole, a magnetic dipole
moment is associated with the field. For the idealized field of Fig. 32-8, the !:

Fig. 32-9 A magnetic profile of the seafloor on either side of the Mid-
Atlantic Ridge.The seafloor, extruded through the ridge and spreading out
as part of the tectonic drift system, displays a record of the past magnetic his-
tory of Earth’s core.The direction of the magnetic field produced by the core
reverses about every million years.
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Fig. 32-8 Earth’s magnetic field
represented as a dipole field.The di-
pole axis MM makes an angle of
11.5° with Earth’s rotational axis RR.
The south pole of the dipole is
in Earth’s Northern Hemisphere.
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For Earth, the south pole
of the dipole is actually
in the north.

magnitude of is 8.0 " 1022 J/T and the direction of makes an angle of 11.5°
with the rotation axis (RR) of Earth. The dipole axis (MM in Fig. 32-8) lies along

and intersects Earth’s surface at the geomagnetic north pole off the northwest
coast of Greenland and the geomagnetic south pole in Antarctica.The lines of the
magnetic field generally emerge in the Southern Hemisphere and reenter
Earth in the Northern Hemisphere. Thus, the magnetic pole that is in Earth’s
Northern Hemisphere and known as a “north magnetic pole” is really the south
pole of Earth’s magnetic dipole.

The direction of the magnetic field at any location on Earth’s surface is com-
monly specified in terms of two angles. The field declination is the angle (left or
right) between geographic north (which is toward 90° latitude) and the horizon-
tal component of the field.The field inclination is the angle (up or down) between
a horizontal plane and the field’s direction.

Magnetometers measure these angles and determine the field with much pre-
cision. However, you can do reasonably well with just a compass and a dip meter.
A compass is simply a needle-shaped magnet that is mounted so it can rotate
freely about a vertical axis. When it is held in a horizontal plane, the north-pole
end of the needle points, generally, toward the geomagnetic north pole (really a
south magnetic pole, remember). The angle between the needle and geographic
north is the field declination. A dip meter is a similar magnet that can rotate
freely about a horizontal axis. When its vertical plane of rotation is aligned with
the direction of the compass, the angle between the meter’s needle and the hori-
zontal is the field inclination.

At any point on Earth’s surface, the measured magnetic field may differ
appreciably, in both magnitude and direction, from the idealized dipole field of
Fig. 32-8. In fact, the point where the field is actually perpendicular to Earth’s
surface and inward is not located at the geomagnetic north pole off Greenland as
we would expect; instead, this so-called dip north pole is located in the Queen
Elizabeth Islands in northern Canada, far from Greenland.

In addition, the field observed at any location on the surface of Earth varies
with time, by measurable amounts over a period of a few years and by substantial
amounts over, say, 100 years. For example, between 1580 and 1820 the direction
indicated by compass needles in London changed by 35°.

In spite of these local variations, the average dipole field changes only slowly
over such relatively short time periods. Variations over longer periods can be
studied by measuring the weak magnetism of the ocean floor on either side of the
Mid-Atlantic Ridge (Fig. 32-9). This floor has been formed by molten magma
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Compasses and the Earth’s Magnetic field

North poles of magnets point northward, so the magnetic pole that
points (roughly) North is a south pole

The poles of magnets are perhaps more accurately called:

• north-seeking pole

• south-seeking pole

but almost always they are just called “north” and “south” poles.



Why are some objects magnetizable?

Microscopic view of ferrous metal:

The different red and green regions are magnetic domains.

Within each domain are atoms with their outermost electrons
aligned (green) or oppositely aligned (red).

Electron magnetic effects come from two properties.

1Figure from Wikipedia, by Ra’ike.



Electron Spin Angular Momentum

Electrons have intrinsic angular momentum. This is also called
“spin” and is the main source of magnetism.

Spin is an inherent property of all electrons. It cannot be
understood with classical mechanics.

872 CHAPTE R 32 MAXWE LL’S EQUATION S; MAG N ETI S M OF MATTE R

Substituting for Sz from Eq. 32-23 then gives us

(32-24)

where the plus and minus signs correspond to ms,z being parallel and antiparallel
to the z axis, respectively.

The quantity on the right side of Eq. 32-24 is called the Bohr magneton mB:

(Bohr magneton). (32-25)

Spin magnetic dipole moments of electrons and other elementary particles can
be expressed in terms of mB. For an electron, the magnitude of the measured z
component of is

|ms,z| ! 1mB. (32-26)

(The quantum physics of the electron, called quantum electrodynamics, or QED, re-
veals that ms,z is actually slightly greater than 1mB, but we shall neglect that fact.)

When an electron is placed in an external magnetic field , an energy U can
be associated with the orientation of the electron’s spin magnetic dipole moment

just as an energy can be associated with the orientation of the magnetic dipole
moment of a current loop placed in . From Eq. 28-38, the orentation energy
for the electron is

(32-27)

where the z axis is taken to be in the direction of .
If we imagine an electron to be a microscopic sphere (which it is not), we can

represent the spin , the spin magnetic dipole moment , and the associated mag-
netic dipole field as in Fig. 32-10.Although we use the word “spin” here, electrons do
not spin like tops. How, then, can something have angular momentum without actu-
ally rotating? Again, we would need quantum physics to provide the answer.

Protons and neutrons also have an intrinsic angular momentum called spin and
an associated intrinsic spin magnetic dipole moment. For a proton those two vectors
have the same direction, and for a neutron they have opposite directions. We shall
not examine the contributions of these dipole moments to the magnetic fields of
atoms because they are about a thousand times smaller than that due to an electron.
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CHECKPOINT 4

The figure here shows the spin orientations of two particles
in an external magnetic field . (a) If the particles are
electrons, which spin orientation is at lower energy? (b) If,
instead, the particles are protons, which spin orientation is
at lower energy?
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Fig. 32-10 The spin , spin magnetic
dipole moment , and magnetic dipole
field of an electron represented as a mi-
croscopic sphere.

B
:

": s

S
:

µ s s 

B 

S 

For an electron, the spin
is opposite the magnetic
dipole moment.

Orbital Magnetic Dipole Moment
When it is in an atom, an electron has an additional angular momentum called
its orbital angular momentum . Associated with is an orbital magnetic
dipole moment ; the two are related by

(32-28)

The minus sign means that and have opposite directions.L
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Electron Orbital Angular Momentum
Electrons can be thought of as orbiting the nucleus. (In actual
fact, this is not such an accurate picture.)

If you have a current around a loop you get a magnetic field.

The electron in its orbit is like current in a loop: it creates a
magnetic field (as we shall see later).

87332-7 MAG N ETI S M AN D E LECTRON S
PART 3

Orbital angular momentum cannot be measured; only its component
along any axis can be measured, and that component is quantized. The compo-
nent along, say, a z axis can have only the values given by

(32-29)

in which is called the orbital magnetic quantum number and “limit” refers to
some largest allowed integer value for . The signs in Eq. 32-29 have to do with
the direction of Lorb,z along the z axis.

The orbital magnetic dipole moment of an electron also cannot itself be
measured; only its component along an axis can be measured, and that compo-
nent is quantized. By writing Eq. 32-28 for a component along the same z axis
as above and then substituting for Lorb,z from Eq. 32-29, we can write the z
component morb,z of the orbital magnetic dipole moment as

(32-30)

and, in terms of the Bohr magneton, as

(32-31)

When an atom is placed in an external magnetic field , an energy U can be
associated with the orientation of the orbital magnetic dipole moment of each
electron in the atom. Its value is

(32-32)

where the z axis is taken in the direction of .
Although we have used the words “orbit” and “orbital” here, electrons do not

orbit the nucleus of an atom like planets orbiting the Sun. How can an electron
have an orbital angular momentum without orbiting in the common meaning of
the term? Once again, this can be explained only with quantum physics.

Loop Model for Electron Orbits
We can obtain Eq. 32-28 with the nonquantum derivation that follows, in which
we assume that an electron moves along a circular path with a radius that is much
larger than an atomic radius (hence the name “loop model”). However, the
derivation does not apply to an electron within an atom (for which we need
quantum physics).

We imagine an electron moving at constant speed v in a circular path of
radius r, counterclockwise as shown in Fig. 32-11. The motion of the negative
charge of the electron is equivalent to a conventional current i (of positive
charge) that is clockwise, as also shown in Fig. 32-11. The magnitude of the or-
bital magnetic dipole moment of such a current loop is obtained from Eq. 28-35
with N ! 1:

morb ! iA, (32-33)

where A is the area enclosed by the loop. The direction of this magnetic dipole
moment is, from the right-hand rule of Fig. 29-21, downward in Fig. 32-11.

To evaluate Eq. 32-33, we need the current i. Current is, generally, the rate
at which charge passes some point in a circuit. Here, the charge of magnitude
e takes a time T ! 2pr/v to circle from any point back through that point, so

(32-34)i !
charge
time
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Fig. 32-11 An electron moving at con-
stant speed v in a circular path of radius r
that encloses an area A.The electron has an
orbital angular momentum and an as-
sociated orbital magnetic dipole moment

.A clockwise current i (of positive
charge) is equivalent to the counterclock-
wise circulation of the negatively charged
electron.
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Summary

• electric field and potential

• circuits, current, resistance

• magnetism

Homework
• Prepare a 5-8 minute talk for next week. Tuesday, Aug 8.

• 3 worksheets (due Monday)

Hewitt,

• Ch 22, onward from page 403. Exercises: 50 & 51; Probs: 7

• Ch 23, onward from page 421. Exercises: 5; Problems: 1, 3

Will be set on Monday:

• Ch 24, onward from page 437. Exercises: 21, 37

• Ch 25, onward from page 452. Exercises: 25, 39


