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Last time

• Units

• More about size and scale

• Motion of objects

• Inertia

• Quantities of motion



Overview

• graphs of motion with time

• free fall

• Vectors

• relative motion



Speed, velocity, acceleration

Speed is the rate of distance covered with time.

Velocity, v , is speed with direction specified.

Acceleration, a, is the rate of change of velocity with time.



Graphs and Physics

Graphs represent the values of a function (eg. f (x)) as a variable
changes (eg. x).

In physics, the function and the variable are physical quantities:
things we can measure, eg. position and time.

The slope tells us about the rate that one quantity changes when
we change the other.



Position vs. Time Graphs

22 Chapter 2 Motion in One Dimension

obtain reasonably accurate data about its orbit. This approximation is justified because the 
radius of the Earth’s orbit is large compared with the dimensions of the Earth and the Sun. 
As an example on a much smaller scale, it is possible to explain the pressure exerted by a gas 
on the walls of a container by treating the gas molecules as particles, without regard for the 
internal structure of the molecules.

2.1 Position, Velocity, and Speed
A particle’s position x  is the location of the particle with respect to a chosen ref-
erence point that we can consider to be the origin of a coordinate system. The 
motion of a particle is completely known if the particle’s position in space is known 
at all times.
 Consider a car moving back and forth along the x axis as in Figure 2.1a. When 
we begin collecting position data, the car is 30 m to the right of the reference posi-
tion x 5 0. We will use the particle model by identifying some point on the car, 
perhaps the front door handle, as a particle representing the entire car.
 We start our clock, and once every 10 s we note the car’s position. As you can see 
from Table 2.1, the car moves to the right (which we have defined as the positive 
direction) during the first 10 s of motion, from position ! to position ". After ", 
the position values begin to decrease, suggesting the car is backing up from position 
" through position #. In fact, at $, 30 s after we start measuring, the car is at the 
origin of coordinates (see Fig. 2.1a). It continues moving to the left and is more than 
50 m to the left of x 5 0 when we stop recording information after our sixth data 
point. A graphical representation of this information is presented in Figure 2.1b. 
Such a plot is called a position–time graph.
 Notice the alternative representations of information that we have used for the 
motion of the car. Figure 2.1a is a pictorial representation, whereas Figure 2.1b is a 
graphical representation. Table 2.1 is a tabular representation of the same information. 
Using an alternative representation is often an excellent strategy for understanding 
the situation in a given problem. The ultimate goal in many problems is a math-
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Figure 2.1 A car moves back and forth along a straight line. Because we are interested only in the 
car’s translational motion, we can model it as a particle. Several representations of the information 
about the motion of the car can be used. Table 2.1 is a tabular representation of the information.  
(a) A pictorial representation of the motion of the car. (b) A graphical representation (position–time 
graph) of the motion of the car.

1Figures from Serway & Jewett



Average Velocity in Position vs. Time Graphs

Green line: slope is the instantaneous velocity at point A.
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Conceptual Example 2.2   The Velocity of Different Objects

Consider the following one-dimensional motions: (A) a ball thrown directly upward rises to a highest point and falls 
back into the thrower’s hand; (B) a race car starts from rest and speeds up to 100 m/s; and (C) a spacecraft drifts 
through space at constant velocity. Are there any points in the motion of these objects at which the instantaneous 
velocity has the same value as the average velocity over the entire motion? If so, identify the point(s).

represents the velocity of the car at point !. What we have done is determine the 
instantaneous velocity at that moment. In other words, the instantaneous velocity vx 
equals the limiting value of the ratio Dx/Dt as Dt approaches zero:1

 vx ; lim
Dt S 0

 Dx
Dt

 (2.4)

In calculus notation, this limit is called the derivative of x with respect to t, written 
dx/dt:

 vx ; lim
Dt S 0

 Dx
Dt

5
dx
dt

 (2.5)

The instantaneous velocity can be positive, negative, or zero. When the slope of the 
position–time graph is positive, such as at any time during the first 10 s in Figure 2.3, 
vx is positive and the car is moving toward larger values of x. After point ", vx is nega-
tive because the slope is negative and the car is moving toward smaller values of x. 
At point ", the slope and the instantaneous velocity are zero and the car is momen-
tarily at rest.
 From here on, we use the word velocity to designate instantaneous velocity. When 
we are interested in average velocity, we shall always use the adjective average.
 The instantaneous speed of a particle is defined as the magnitude of its instan-
taneous velocity. As with average speed, instantaneous speed has no direction asso-
ciated with it. For example, if one particle has an instantaneous velocity of 125 m/s 
along a given line and another particle has an instantaneous velocity of 225 m/s 
along the same line, both have a speed2 of 25 m/s.

Q uick Quiz 2.2 Are members of the highway patrol more interested in (a) your 
average speed or (b) your instantaneous speed as you drive?
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Figure 2.3 (a) Graph representing the motion of the car in Figure 2.1. (b) An enlargement of the 
upper-left-hand corner of the graph.

1Notice that the displacement Dx also approaches zero as Dt approaches zero, so the ratio looks like 0/0. While this 
ratio may appear to be difficult to evaluate, the ratio does have a specific value. As Dx and Dt become smaller and 
smaller, the ratio Dx/Dt approaches a value equal to the slope of the line tangent to the x -versus-t curve.
2As with velocity, we drop the adjective for instantaneous speed. Speed means “instantaneous speed.”

Pitfall Prevention 2.3
Instantaneous Speed and Instan-
taneous Velocity In Pitfall Pre-
vention 2.1, we argued that the 
magnitude of the average velocity 
is not the average speed. The mag-
nitude of the instantaneous veloc-
ity, however, is the instantaneous 
speed. In an infinitesimal time 
interval, the magnitude of the dis-
placement is equal to the distance 
traveled by the particle.

Pitfall Prevention 2.2
Slopes of Graphs In any graph of 
physical data, the slope represents 
the ratio of the change in the 
quantity represented on the verti-
cal axis to the change in the quan-
tity represented on the horizontal 
axis. Remember that a slope has 
units (unless both axes have the 
same units). The units of slope in 
Figures 2.1b and 2.3 are meters 
per second, the units of velocity.

Blue lines: slopes are the average velocities from A→B and A→E.



Average Velocity in Position vs. Time Graphs

A→B: vavg =
∆x
∆t = 50m−30m

10s−0s = 2 m/s
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Figure 2.3 (a) Graph representing the motion of the car in Figure 2.1. (b) An enlargement of the 
upper-left-hand corner of the graph.

1Notice that the displacement Dx also approaches zero as Dt approaches zero, so the ratio looks like 0/0. While this 
ratio may appear to be difficult to evaluate, the ratio does have a specific value. As Dx and Dt become smaller and 
smaller, the ratio Dx/Dt approaches a value equal to the slope of the line tangent to the x -versus-t curve.
2As with velocity, we drop the adjective for instantaneous speed. Speed means “instantaneous speed.”

Pitfall Prevention 2.3
Instantaneous Speed and Instan-
taneous Velocity In Pitfall Pre-
vention 2.1, we argued that the 
magnitude of the average velocity 
is not the average speed. The mag-
nitude of the instantaneous veloc-
ity, however, is the instantaneous 
speed. In an infinitesimal time 
interval, the magnitude of the dis-
placement is equal to the distance 
traveled by the particle.

Pitfall Prevention 2.2
Slopes of Graphs In any graph of 
physical data, the slope represents 
the ratio of the change in the 
quantity represented on the verti-
cal axis to the change in the quan-
tity represented on the horizontal 
axis. Remember that a slope has 
units (unless both axes have the 
same units). The units of slope in 
Figures 2.1b and 2.3 are meters 
per second, the units of velocity.

A→E: vavg =
∆x
∆t = −35m−30m

40s−0s = −1.6 m/s



Relating Position, Velocity, Acceleration graphs

For a single moving object, the graphs of its position, velocity, and
acceleration are not independent!

The slope of the position-time graph is the velocity.

The slope of the velocity-time graph is the acceleration.



Constant Acceleration Graphs
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 In Figure 2.10c, we can tell that the car slows as it moves to the right because its 
displacement between adjacent images decreases with time. This case suggests the 
car moves to the right with a negative acceleration. The length of the velocity arrow 
decreases in time and eventually reaches zero. From this diagram, we see that the 
acceleration and velocity arrows are not in the same direction. The car is moving 
with a positive velocity, but with a negative acceleration. (This type of motion is exhib-
ited by a car that skids to a stop after its brakes are applied.) The velocity and accel-
eration are in opposite directions. In terms of our earlier force discussion, imagine 
a force pulling on the car opposite to the direction it is moving: it slows down.
 Each purple acceleration arrow in parts (b) and (c) of Figure 2.10 is the same 
length. Therefore, these diagrams represent motion of a particle under constant accel-
eration. This important analysis model will be discussed in the next section.

Q uick Quiz 2.5 Which one of the following statements is true? (a) If a car is trav-
eling eastward, its acceleration must be eastward. (b) If a car is slowing down, 
its acceleration must be negative. (c) A particle with constant acceleration can 
never stop and stay stopped.

2.6 Analysis Model: Particle  
Under Constant Acceleration

If the acceleration of a particle varies in time, its motion can be complex and difficult 
to analyze. A very common and simple type of one-dimensional motion, however, is 
that in which the acceleration is constant. In such a case, the average acceleration 
ax,avg over any time interval is numerically equal to the instantaneous acceleration ax 
at any instant within the interval, and the velocity changes at the same rate through-
out the motion. This situation occurs often enough that we identify it as an analysis 
model: the particle under constant acceleration. In the discussion that follows, we 
generate several equations that describe the motion of a particle for this model.
 If we replace ax,avg by ax in Equation 2.9 and take ti 5 0 and tf to be any later time 
t, we find that

ax 5
vxf 2 vxi

t 2 0

or

 vxf 5 vxi 1 axt (for constant ax) (2.13)

This powerful expression enables us to determine an object’s velocity at any time 
t if we know the object’s initial velocity vxi and its (constant) acceleration ax. A  
velocity–time graph for this constant-acceleration motion is shown in Figure 2.11b. 
The graph is a straight line, the slope of which is the acceleration ax; the (constant) 
slope is consistent with ax 5 dvx/dt being a constant. Notice that the slope is posi-
tive, which indicates a positive acceleration. If the acceleration were negative, the 
slope of the line in Figure 2.11b would be negative. When the acceleration is con-
stant, the graph of acceleration versus time (Fig. 2.11c) is a straight line having a 
slope of zero.
 Because velocity at constant acceleration varies linearly in time according to 
Equation 2.13, we can express the average velocity in any time interval as the arith-
metic mean of the initial velocity vxi and the final velocity vxf :

 vx,avg 5
vxi 1 vxf

2
  1 for constant ax 2  (2.14)
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Figure 2.11 A particle under 
constant acceleration ax moving 
along the x axis: (a) the position–
time graph, (b) the velocity–time 
graph, and (c) the acceleration–
time graph.
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Acceleration vs. Time Graphs
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Conceptual Example 2.5    Graphical Relationships Between x, vx, and ax

The position of an object moving along the x axis varies with time as in Figure 2.8a. Graph the velocity versus time and 
the acceleration versus time for the object.

The velocity at any instant is the slope of the tangent 
to the x–t graph at that instant. Between t 5 0 and t 5 
t!, the slope of the x–t graph increases uniformly, so 
the velocity increases linearly as shown in Figure 2.8b. 
Between t! and t", the slope of the x–t graph is con-
stant, so the velocity remains constant. Between t" and 
t#, the slope of the x–t graph decreases, so the value of 
the velocity in the vx–t graph decreases. At t#, the slope 
of the x–t graph is zero, so the velocity is zero at that 
instant. Between t# and t$, the slope of the x–t graph 
and therefore the velocity are negative and decrease uni-
formly in this interval. In the interval t$ to t%, the slope 
of the x–t graph is still negative, and at t% it goes to zero. 
Finally, after t%, the slope of the x–t graph is zero, mean-
ing that the object is at rest for t . t%.
 The acceleration at any instant is the slope of the tan-
gent to the vx–t graph at that instant. The graph of accel-
eration versus time for this object is shown in Figure 2.8c. 
The acceleration is constant and positive between 0 and 
t!, where the slope of the vx–t graph is positive. It is zero 
between t! and t" and for t . t% because the slope of the 
vx–t graph is zero at these times. It is negative between 
t" and t$ because the slope of the vx–t graph is negative 
during this interval. Between t$ and t%, the acceleration 
is positive like it is between 0 and t!, but higher in value 
because the slope of the vx–t graph is steeper.
 Notice that the sudden changes in acceleration shown in Figure 2.8c are unphysical. Such instantaneous changes 
cannot occur in reality.

S O L U T I O N
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t%t$t#t&t"t!

t%t$t#t&t"
tt!
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vx

ax

a

b

c

Figure 2.8 (Conceptual Example 2.5) (a) Position–time graph 
for an object moving along the x axis. (b) The velocity–time graph 
for the object is obtained by measuring the slope of the position–
time graph at each instant. (c) The acceleration–time graph for 
the object is obtained by measuring the slope of the velocity–time 
graph at each instant.

Pitfall Prevention 2.4
Negative Acceleration Keep in 
mind that negative acceleration does 
not necessarily mean that an object is 
slowing down. If the acceleration is 
negative and the velocity is nega-
tive, the object is speeding up!

Pitfall Prevention 2.5
Deceleration The word deceleration 
has the common popular connota-
tion of slowing down. We will not 
use this word in this book because 
it confuses the definition we have 
given for negative acceleration.

down! It is very useful to equate the direction of the acceleration to the direction 
of a force because it is easier from our everyday experience to think about what 
effect a force will have on an object than to think only in terms of the direction of 
the acceleration.

Q uick Quiz 2.4 If a car is traveling eastward and slowing down, what is the direc-
tion of the force on the car that causes it to slow down? (a) eastward (b) west-
ward (c) neither eastward nor westward

 From now on, we shall use the term acceleration to mean instantaneous accelera-
tion. When we mean average acceleration, we shall always use the adjective average.
Because vx 5 dx/dt, the acceleration can also be written as

 ax 5
dvx

dt
5

d
dt
adx

dt
b 5

d2x
dt 2  (2.12)

That is, in one-dimensional motion, the acceleration equals the second derivative of 
x with respect to time.

 



Acceleration and Free Fall

Galileo also reasoned about the acceleration due to gravity by
thinking more about inclined surfaces.

θ

h

O
v

The steeper the incline the larger the acceleration.

Starting from rest:

final velocity = acceleration × time.



Free Fall

When the ball drops straight downward, it gains approximately 10
m/s of speed in each second.

Time of fall (s) Velocity acquired (m/s)

0 0
1 10
2 20
3 30
...

...

This is a constant acceleration! We call this acceleration g .

g = 9.8 m s−2 ≈ 10 m s−2

g is about 10 meters-per-second-per-second



Free Fall
Constant acceleration corresponds to a straight line on a graph of
velocity and time.

Figure 2.40 Vertical position, vertical velocity, and vertical acceleration vs. time for a rock thrown vertically up at the edge of a cliff. Notice that velocity changes linearly
with time and that acceleration is constant. Misconception Alert! Notice that the position vs. time graph shows vertical position only. It is easy to get the impression that
the graph shows some horizontal motion—the shape of the graph looks like the path of a projectile. But this is not the case; the horizontal axis is time, not space. The
actual path of the rock in space is straight up, and straight down.

Discussion

The interpretation of these results is important. At 1.00 s the rock is above its starting point and heading upward, since and are both

positive. At 2.00 s, the rock is still above its starting point, but the negative velocity means it is moving downward. At 3.00 s, both and

are negative, meaning the rock is below its starting point and continuing to move downward. Notice that when the rock is at its highest point (at

1.5 s), its velocity is zero, but its acceleration is still . Its acceleration is for the whole trip—while it is moving up and
while it is moving down. Note that the values for are the positions (or displacements) of the rock, not the total distances traveled. Finally, note

that free-fall applies to upward motion as well as downward. Both have the same acceleration—the acceleration due to gravity, which remains
constant the entire time. Astronauts training in the famous Vomit Comet, for example, experience free-fall while arcing up as well as down, as we
will discuss in more detail later.

Making Connections: Take-Home Experiment—Reaction Time

A simple experiment can be done to determine your reaction time. Have a friend hold a ruler between your thumb and index finger, separated by
about 1 cm. Note the mark on the ruler that is right between your fingers. Have your friend drop the ruler unexpectedly, and try to catch it
between your two fingers. Note the new reading on the ruler. Assuming acceleration is that due to gravity, calculate your reaction time. How far
would you travel in a car (moving at 30 m/s) if the time it took your foot to go from the gas pedal to the brake was twice this reaction time?

CHAPTER 2 | KINEMATICS 65

Calling up positive and down negative:

v = vi − gt

Object’s velocity changes by 10 m/s each second.

When dropped from rest, after 6.5 s, (roughly) what is the ball’s
speed?

65 m/s
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Figure 2.40 Vertical position, vertical velocity, and vertical acceleration vs. time for a rock thrown vertically up at the edge of a cliff. Notice that velocity changes linearly
with time and that acceleration is constant. Misconception Alert! Notice that the position vs. time graph shows vertical position only. It is easy to get the impression that
the graph shows some horizontal motion—the shape of the graph looks like the path of a projectile. But this is not the case; the horizontal axis is time, not space. The
actual path of the rock in space is straight up, and straight down.

Discussion

The interpretation of these results is important. At 1.00 s the rock is above its starting point and heading upward, since and are both

positive. At 2.00 s, the rock is still above its starting point, but the negative velocity means it is moving downward. At 3.00 s, both and

are negative, meaning the rock is below its starting point and continuing to move downward. Notice that when the rock is at its highest point (at

1.5 s), its velocity is zero, but its acceleration is still . Its acceleration is for the whole trip—while it is moving up and
while it is moving down. Note that the values for are the positions (or displacements) of the rock, not the total distances traveled. Finally, note

that free-fall applies to upward motion as well as downward. Both have the same acceleration—the acceleration due to gravity, which remains
constant the entire time. Astronauts training in the famous Vomit Comet, for example, experience free-fall while arcing up as well as down, as we
will discuss in more detail later.

Making Connections: Take-Home Experiment—Reaction Time

A simple experiment can be done to determine your reaction time. Have a friend hold a ruler between your thumb and index finger, separated by
about 1 cm. Note the mark on the ruler that is right between your fingers. Have your friend drop the ruler unexpectedly, and try to catch it
between your two fingers. Note the new reading on the ruler. Assuming acceleration is that due to gravity, calculate your reaction time. How far
would you travel in a car (moving at 30 m/s) if the time it took your foot to go from the gas pedal to the brake was twice this reaction time?
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Acceleration due to gravity

65 m/s is very fast. (≈ 145 mi/hr)

We rarely see falling objects going this fast. (Why?)

How far does the ball travel in those 6.5 s (ignoring air resistance)?

distance an object falls (starting from rest) in time t:

d =
1

2
gt2

This corresponds to the area under the velocity-time graph.
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Falling Objects
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Free Fall Questions

A free-falling object has a speed of 30 m/s (downward) at one
instant. Exactly 1 s later its speed will be

A the same.

B 35 m/s.

C more than 35 m/s.

D 60 m/s.

It will be 40 m/s. (Assuming g = 10 m/s2)
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Free Fall Questions

What is the distance covered by a freely falling object starting from
rest after 4 s?

A 4 m

B 16 m

C 40 m

D 80 m
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What is the distance covered by a freely falling object starting from
rest after 4 s?
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B 16 m

C 40 m
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Review questions for motion

Can an object reverse its direction of travel while maintaining a
constant acceleration?

You are driving north on a highway. Then, without changing
speed, you round a curve and drive east. Did you accelerate?

Neglecting the effect of air resistance, how does the acceleration of
a ball that has been thrown straight up compare with its
acceleration if simply dropped?

Why does a stream of water get narrower as if falls from a faucet?

Is the acceleration due to gravity always 9.8 m s−2?

1Hewitt, page 49.
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Describing Vectors: Axes

To indicate which way an arrow (or a force, acceleration, etc.)
points, we need to have another arrow that we can compare to.

For example, North-South and West-East can be reference axes.

We could also choose axes “up” and “down” (vertical), and
parallel to the horizon (horizontal).

We typically call the direction axes x and y .
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Vectors

To describe where the vector A points, we can say, you count some
distance along the x direction, the some distance along the y
direction.

 3.4 Components of a Vector and Unit Vectors 65

3.4 Components of a Vector and Unit Vectors
The graphical method of adding vectors is not recommended whenever high 
accuracy is required or in three-dimensional problems. In this section, we 
describe a method of adding vectors that makes use of the projections of vectors 
along coordinate axes. These projections are called the components of the vec-
tor or its rectangular components. Any vector can be completely described by its 
components.
 Consider a vector A

S
 lying in the xy plane and making an arbitrary angle u  

with the positive x axis as shown in Figure 3.12a. This vector can be expressed as the 
sum of two other component vectors A

S
x , which is parallel to the x axis, and A

S
y , which  

is parallel to the y axis. From Figure 3.12b, we see that the three vectors form a 
right triangle and that A

S
5 A

S
x 1 A

S
y. We shall often refer to the “components  

of a vector A
S

,” written Ax and Ay (without the boldface notation). The compo-
nent Ax represents the projection of A

S
 along the x axis, and the component Ay  

represents the projection of A
S

 along the y axis. These components can be positive 
or negative. The component Ax is positive if the component vector A

S
x points in 

the positive x direction and is negative if A
S

x points in the negative x direction. A 
similar statement is made for the component Ay.

Use the law of sines (Appendix B.4) to find the direction 
of R

S
 measured from the northerly direction:

sin b
B

5
sin u

R

sin b 5
B
R

  sin u 5
35.0 km
48.2 km

  sin 1208 5 0.629

b 5   38.9°

The resultant displacement of the car is 48.2 km in a direction 38.9° west of north.

Finalize Does the angle b that we calculated agree with an 
estimate made by looking at Figure 3.11a or with an actual 
angle measured from the diagram using the graphical 
method? Is it reasonable that the magnitude of R

S
 is larger 

than that of both A
S

 and B
S

? Are the units of R
S

 correct?
 Although the head to tail method of adding vectors 
works well, it suffers from two disadvantages. First, some 

people find using the laws of cosines and sines to be awk-
ward. Second, a triangle only results if you are adding 
two vectors. If you are adding three or more vectors, the 
resulting geometric shape is usually not a triangle. In Sec-
tion 3.4, we explore a new method of adding vectors that 
will address both of these disadvantages.

Suppose the trip were taken with the two vectors in reverse order: 35.0 km at 60.0° west of north first and 
then 20.0 km due north. How would the magnitude and the direction of the resultant vector change?

Answer They would not change. The commutative law for vector addition tells us that the order of vectors in an 
addition is irrelevant. Graphically, Figure 3.11b shows that the vectors added in the reverse order give us the same 
resultant vector.

WHAT IF ?

Figure 3.12  (a) A vector A
S

  
lying in the xy plane can be rep-
resented by its component vectors 
A
S

x and A
S

y. (b) The y component 
vector A

S
y can be moved to the 

right so that it adds to A
S

x. The 
vector sum of the component 
vectors is A

S
. These three vectors 

form a right triangle.
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x
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y
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y

x
O

x

y
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A
S

 A
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A
S

 

A
S

 
a b

▸ 3.2 c o n t i n u e d

 

1Figure from Serway & Jewett, Physics for Scientists and Engineers, 9th ed.



Representing Vectors: Unit Vectors

We can count along the directions with special units: unit vectors.

Unit vectors have a length of one unit.

A unit vector in the x direction is usually written i

A unit vector in the y direction is usually written j.
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We can count along the directions with special units: unit vectors.

Unit vectors have a length of one unit.

A unit vector in the x direction is usually written i

A unit vector in the y direction is usually written j.



Components

Vector A is the sum of a piece along x and a piece along y :

A = Ax i+ Ay j.

 3.4 Components of a Vector and Unit Vectors 65
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Notice that Ax = A cos θ and Ay = A sin θ.

↗
x component

↖
y component



Adding Vectors

A+ B

62 Chapter 3 Vectors

Q uick Quiz 3.1  Which of the following are vector quantities and which are scalar 
quantities? (a) your age (b) acceleration (c) velocity (d) speed (e) mass

3.3 Some Properties of Vectors
In this section, we shall investigate general properties of vectors representing physi-
cal quantities. We also discuss how to add and subtract vectors using both algebraic 
and geometric methods.

Equality of Two Vectors
For many purposes, two vectors A

S
 and B

S
 may be defined to be equal if they have 

the same magnitude and if they point in the same direction. That is, A
S

5 B
S

 only if  
A ! B and if A

S
 and B

S
 point in the same direction along parallel lines. For exam-

ple, all the vectors in Figure 3.5 are equal even though they have different starting 
points. This property allows us to move a vector to a position parallel to itself in a 
diagram without affecting the vector.

Adding Vectors
The rules for adding vectors are conveniently described by a graphical method. 
To add vector B

S
 to vector A

S
, first draw vector A

S
 on graph paper, with its magni-

tude represented by a convenient length scale, and then draw vector B
S

 to the same 
scale, with its tail starting from the tip of A

S
, as shown in Figure 3.6. The resultant 

vector R
S

5 A
S

1 B
S

 is the vector drawn from the tail of A
S

 to the tip of B
S

.
 A geometric construction can also be used to add more than two vectors as  
shown in Figure 3.7 for the case of four vectors. The resultant vector R

S
 5 A

S
 1 B

S
 1  

C
S

 1 D
S

 is the vector that completes the polygon. In other words, R
S

 is the vector 
drawn from the tail of the first vector to the tip of the last vector. This technique for 
adding vectors is often called the “head to tail method.”
 When two vectors are added, the sum is independent of the order of the addi-
tion. (This fact may seem trivial, but as you will see in Chapter 11, the order is 
important when vectors are multiplied. Procedures for multiplying vectors are dis-
cussed in Chapters 7 and 11.) This property, which can be seen from the geometric 
construction in Figure 3.8, is known as the commutative law of addition:

 A
S

1 B
S

5 B
S

1 A
S

 (3.5)Commutative law of addition X

O

y

x

Figure 3.5  These four vectors 
are equal because they have equal 
lengths and point in the same 
direction.
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tion for summing four vectors. The  
resultant vector R
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 is by definition 
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Figure 3.8 This construction 
shows that A

S
1 B

S
5 B

S
1 A

S
 or, in 

other words, that vector addition is 
commutative.

Pitfall Prevention 3.1
Vector Addition Versus  
Scalar Addition Notice that 
A
S

1 B
S

5 C
S

 is very different 
from A " B ! C. The first equa-
tion is a vector sum, which must 
be handled carefully, such as  
with the graphical method. The 
second equation is a simple alge-
braic addition of numbers that  
is handled with the normal rules 
of arithmetic.

Figure 3.6 When vector B
S

 is 
added to vector A

S
, the resultant R

S
 is 

the vector that runs from the tail of 
A
S

 to the tip of B
S

.

!
"

A
S

 

R
S A

S  B
S  

B
S

 



Adding Vectors

Order of addition doesn’t matter!

A+ B = B+ A

62 Chapter 3 Vectors

Q uick Quiz 3.1  Which of the following are vector quantities and which are scalar 
quantities? (a) your age (b) acceleration (c) velocity (d) speed (e) mass

3.3 Some Properties of Vectors
In this section, we shall investigate general properties of vectors representing physi-
cal quantities. We also discuss how to add and subtract vectors using both algebraic 
and geometric methods.

Equality of Two Vectors
For many purposes, two vectors A

S
 and B

S
 may be defined to be equal if they have 

the same magnitude and if they point in the same direction. That is, A
S

5 B
S

 only if  
A ! B and if A

S
 and B

S
 point in the same direction along parallel lines. For exam-

ple, all the vectors in Figure 3.5 are equal even though they have different starting 
points. This property allows us to move a vector to a position parallel to itself in a 
diagram without affecting the vector.

Adding Vectors
The rules for adding vectors are conveniently described by a graphical method. 
To add vector B

S
 to vector A

S
, first draw vector A

S
 on graph paper, with its magni-

tude represented by a convenient length scale, and then draw vector B
S

 to the same 
scale, with its tail starting from the tip of A

S
, as shown in Figure 3.6. The resultant 

vector R
S

5 A
S

1 B
S

 is the vector drawn from the tail of A
S

 to the tip of B
S

.
 A geometric construction can also be used to add more than two vectors as  
shown in Figure 3.7 for the case of four vectors. The resultant vector R

S
 5 A

S
 1 B

S
 1  

C
S

 1 D
S

 is the vector that completes the polygon. In other words, R
S

 is the vector 
drawn from the tail of the first vector to the tip of the last vector. This technique for 
adding vectors is often called the “head to tail method.”
 When two vectors are added, the sum is independent of the order of the addi-
tion. (This fact may seem trivial, but as you will see in Chapter 11, the order is 
important when vectors are multiplied. Procedures for multiplying vectors are dis-
cussed in Chapters 7 and 11.) This property, which can be seen from the geometric 
construction in Figure 3.8, is known as the commutative law of addition:

 A
S

1 B
S

5 B
S

1 A
S

 (3.5)Commutative law of addition X

O

y

x

Figure 3.5  These four vectors 
are equal because they have equal 
lengths and point in the same 
direction.

A
S

 

B
S

 

C
S

 

D
S

 

AS  
BS  

CS  
DS  

RS
!

"
"

"

Figure 3.7 Geometric construc-
tion for summing four vectors. The  
resultant vector R

S
 is by definition 

the one that completes the polygon.

A
S

 

B
S

 
B
S

 

AS  
AS  

BS  

BS  

RS !

!
"

"

Draw    , 
then add    .

A
S

 
B
S

 

A
S

 

Draw    , 
then add    .A

S
 

B
S

 

Figure 3.8 This construction 
shows that A

S
1 B

S
5 B

S
1 A

S
 or, in 

other words, that vector addition is 
commutative.

Pitfall Prevention 3.1
Vector Addition Versus  
Scalar Addition Notice that 
A
S

1 B
S

5 C
S

 is very different 
from A " B ! C. The first equa-
tion is a vector sum, which must 
be handled carefully, such as  
with the graphical method. The 
second equation is a simple alge-
braic addition of numbers that  
is handled with the normal rules 
of arithmetic.

Figure 3.6 When vector B
S

 is 
added to vector A

S
, the resultant R

S
 is 

the vector that runs from the tail of 
A
S

 to the tip of B
S

.

!
"

A
S

 

R
S A

S  B
S  

B
S

 



Using Vectors

Example

Andy runs 100 m south then turns west and runs another 50.0 m.
All this takes him 15.0 s.

What is his displacement from his starting point?

What is his average velocity?

answer: displacement: 112 m

average velocity: 7.45 m/s, in a direction 26.6◦ west of south.
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Thinking about Vectors

What can you say about two vectors that add together to equal
zero?

When can a nonzero vector have a zero horizontal component?
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What can you say about two vectors that add together to equal
zero?

When can a nonzero vector have a zero horizontal component?



Using Vectors

We’ve seen how to add vectors, but what do we use this for?

We’ll look at examples.

• Finding components of velocity.

• Relative motion.

• Finding net force.



Components of Velocity

5 Projectile Motion

A ball’s velocity can be resolved into horizontal and 
vertical components.

5.3 Components of Vectors

If we know the vertical
component of velocity, we can
find the time of flight, the
maximum height, etc. of the ball.

1Drawing by Hewitt, via Pearson.



Acceleration due to gravity and kinematics

Let’s think about the components of the motion separately.

5 Projectile Motion

A ball’s velocity can be resolved into horizontal and 
vertical components.

5.3 Components of Vectors

Vertical (y -direction):

vy = vi ,y − gt

dy = vi ,y t −
1

2
gt2

Horizontal (x-direction):

ax = 0 , vx = vi ,x

dx = vi ,x t

We will return to this in a later chapter!

1Drawing by Hewitt, via Pearson.



Linear Motion

When we say something is moving, we mean that it is moving
relative to something else.

Motion is relative.

In order to describe measurements of

• where something is

• how fast it is moving

we must have reference frames.

An example of references for time an space might be picking an
object, declaring that it is at rest, and describing the motion of all
objects relative to that.



Intuitive Example for Relative Velocities5 Projectile Motion

The airplane’s velocity relative to 
the ground depends on the 
airplane’s velocity relative to the 
air and on the wind’s velocity.

5.2 Velocity Vectors



Intuitive Example

Now, imagine an airplane that is flying North at 80 km/h but is
blown off course by a cross wind going East at 60 km/h.

How fast is the airplane moving relative to the ground? In which
direction?

5 Projectile Motion

An 80-km/h airplane flying in a 60-km/h crosswind has a 
resultant speed of 100 km/h relative to the ground.

5.2 Velocity Vectors

v = 100 km/h at 36.9◦ East of North (or 53.1◦ North of East)



Intuitive Example

Now, imagine an airplane that is flying North at 80 km/h but is
blown off course by a cross wind going East at 60 km/h.

How fast is the airplane moving relative to the ground? In which
direction?

5 Projectile Motion

An 80-km/h airplane flying in a 60-km/h crosswind has a 
resultant speed of 100 km/h relative to the ground.

5.2 Velocity Vectors

v = 100 km/h at 36.9◦ East of North (or 53.1◦ North of East)



Intuitive Example

Now, imagine an airplane that is flying North at 80 km/h but is
blown off course by a cross wind going East at 60 km/h.

How fast is the airplane moving relative to the ground? In which
direction?

5 Projectile Motion

An 80-km/h airplane flying in a 60-km/h crosswind has a 
resultant speed of 100 km/h relative to the ground.

5.2 Velocity Vectors

v = 100 km/h at 36.9◦ East of North (or 53.1◦ North of East)



Relative Motion and Components of Velocity

Hewitt, page 79, ranking question 4.

Three motorboats crossing a river.



Relative Motion Example

A boat crossing a wide river moves with a speed of 10.0 km/h
relative to the water. The water in the river has a uniform speed of
5.00 km/h due east relative to the Earth. If the boat heads due
north, determine the velocity of the boat relative to an observer
standing on either bank.1
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will be separated by a distance vBAt. We label the position P of the particle relative 
to observer A with the position vector rSP A and that relative to observer B with the 
position vector rSP B, both at time t. From Figure 4.20, we see that the vectors rSP A 
and rSP B are related to each other through the expression

 rSP A 5 rSP B 1 vSBAt (4.22)

 By differentiating Equation 4.22 with respect to time, noting that vSBA is con-
stant, we obtain

d rSP A

dt
5

d rSP B

dt
1 vSBA 

 uSP A 5 uSP B 1 vSBA (4.23)

where uSPA is the velocity of the particle at P measured by observer A and uSP B is its 
velocity measured by B. (We use the symbol uS for particle velocity rather than vS, 
which we have already used for the relative velocity of two reference frames.) Equa-
tions 4.22 and 4.23 are known as Galilean transformation equations. They relate 
the position and velocity of a particle as measured by observers in relative motion. 
Notice the pattern of the subscripts in Equation 4.23. When relative velocities are 
added, the inner subscripts (B) are the same and the outer ones (P, A) match the 
subscripts on the velocity on the left of the equation.
 Although observers in two frames measure different velocities for the particle, 
they measure the same acceleration when vSBA is constant. We can verify that by taking 
the time derivative of Equation 4.23:

d uSP A

dt
5

d uSP B

dt
1

d vSBA

dt

Because vSBA is constant, d vSBA/dt 5 0. Therefore, we conclude that aSP A 5 aSP B 
because aSP A 5 d uSP A/dt and aSP B 5 d uSP B/dt. That is, the acceleration of the parti-
cle measured by an observer in one frame of reference is the same as that measured 
by any other observer moving with constant velocity relative to the first frame.

WW  Galilean velocity 
transformation

continued

Example 4.8   A Boat Crossing a River

A boat crossing a wide river moves with a speed of  
10.0 km/h relative to the water. The water in the river has a 
uniform speed of 5.00 km/h due east relative to the Earth.

(A) If the boat heads due north, determine the velocity of 
the boat relative to an observer standing on either bank.

Conceptualize Imagine moving in a boat across a river 
while the current pushes you down the river. You will not 
be able to move directly across the river, but will end up 
downstream as suggested in Figure 4.21a.

Categorize Because of the combined velocities of you rela-
tive to the river and the river relative to the Earth, we can 
categorize this problem as one involving relative velocities.

Analyze We know vSbr, the velocity of the boat relative to the river, and vSrE, the velocity of the river relative to the Earth. 
What we must find is vSbE, the velocity of the boat relative to the Earth. The relationship between these three quantities 
is vSbE 5 vSbr 1 vSrE. The terms in the equation must be manipulated as vector quantities; the vectors are shown in Fig-
ure 4.21a. The quantity vSbr is due north; vSrE is due east; and the vector sum of the two, vSbE, is at an angle u as defined 
in Figure 4.21a.
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Figure 4.21 (Example 4.8) (a) A boat aims directly across a 
river and ends up downstream. (b) To move directly across the 
river, the boat must aim upstream.
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Figure 4.20  A particle located 
at P is described by two observers,  
one in the fixed frame of refer-
ence SA and the other in the 
frame SB, which moves to the right 
with a constant velocity vSBA. The 
vector rSPA is the particle’s position 
vector relative to SA, and rSP B is its 
position vector relative to SB.

vbr = 10.0 km/h
vrE = 5.00 km/h

Simply use vector addition to
find vbE .

vbE =
√

102 + 52

= 11.2 km/h

θ = tan−1

(
5

10

)
= 26.6◦
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Summary

• graphing motional quantities

• free fall

• vectors

Homework
Worksheets,

• graphs worksheet (for Tues)

• vector worksheet (for Tues)

Hewitt, Ch 3, onward from page 47

• Review Questions: 3, 9, 21

• Plug and Chug: 5, 13, 21

• Exercises: 15, 17, 19, 41

• read pages 74-77, in Ch 5

• Ch 5, onward from page 78. Exercises: 31, 33


