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Last time

• Newton’s third law

• momentum

• impulse

• momentum conservation



Overview

• energy

• work

• kinetic energy

• potential energy

• energy conservation

• energy transfer

• simple machines

• efficiency



Energy

Energy is almost impossible to clearly define, yet everyone has a
good intuitive notion of what it is.

Energy is a property of physical systems. It tells us something
about the states or configurations the system can be in. In fact, it
is possible to find the dynamics of a system purely from
understanding the distribution of energy in the system.

Importantly, it can neither be created or destroyed, but it can be
transferred between systems, and take different forms.
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Types of Energy

• motional energy (kinetic)

• energy as a result of object’s configurations or stored energy
(potential)

• heat, light, sound - can carry away energy from a mechanical
system



Types of Energy

Work is a kind of energy transfer to an object.

Work is written with the symbol, W , and its units are Joules, J.

1 J = 1 N m.

Work is defined as

Work = Force × distance

(We will make this more precise in a minute.)

Work is a scalar quantity (not a vector).
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Systems and Environments

To make some predictions about physical objects, you must identify
a system of interest. Some object (or collection of objects).

System

Everything outside the system is the system’s environment.

Energy can be transferred from the environment to the system, or
vice versa.
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Forces on systems

Force type examples:
112 Chapter 5 The Laws of Motion

orbit around the Earth. This change in velocity is caused by the gravitational force 
exerted by the Earth on the Moon.
 When a coiled spring is pulled, as in Figure 5.1a, the spring stretches. When a 
stationary cart is pulled, as in Figure 5.1b, the cart moves. When a football is kicked, 
as in Figure 5.1c, it is both deformed and set in motion. These situations are all 
examples of a class of forces called contact forces. That is, they involve physical contact 
between two objects. Other examples of contact forces are the force exerted by gas 
molecules on the walls of a container and the force exerted by your feet on the floor.
 Another class of forces, known as field forces, does not involve physical contact 
between two objects. These forces act through empty space. The gravitational force 
of attraction between two objects with mass, illustrated in Figure 5.1d, is an example 
of this class of force. The gravitational force keeps objects bound to the Earth and 
the planets in orbit around the Sun. Another common field force is the electric force 
that one electric charge exerts on another (Fig. 5.1e), such as the attractive electric 
force between an electron and a proton that form a hydrogen atom. A third example 
of a field force is the force a bar magnet exerts on a piece of iron (Fig. 5.1f).
 The distinction between contact forces and field forces is not as sharp as you may 
have been led to believe by the previous discussion. When examined at the atomic 
level, all the forces we classify as contact forces turn out to be caused by electric 
(field) forces of the type illustrated in Figure 5.1e. Nevertheless, in developing mod-
els for macroscopic phenomena, it is convenient to use both classifications of forces. 
The only known fundamental forces in nature are all field forces: (1) gravitational 
forces between objects, (2) electromagnetic forces between electric charges, (3) strong 
forces between subatomic particles, and (4) weak forces that arise in certain radioac-
tive decay processes. In classical physics, we are concerned only with gravitational 
and electromagnetic forces. We will discuss strong and weak forces in Chapter 46.

The Vector Nature of Force
It is possible to use the deformation of a spring to measure force. Suppose a verti-
cal force is applied to a spring scale that has a fixed upper end as shown in Fig-
ure  5.2a. The spring elongates when the force is applied, and a pointer on the 
scale reads the extension of the spring. We can calibrate the spring by defining a 
reference force F

S
1 as the force that produces a pointer reading of 1.00 cm. If we 

now apply a different downward force F
S

2 whose magnitude is twice that of the ref-
erence force F

S
1 as seen in Figure 5.2b, the pointer moves to 2.00 cm. Figure 5.2c 

shows that the combined effect of the two collinear forces is the sum of the effects 
of the individual forces.
 Now suppose the two forces are applied simultaneously with F

S
1 downward and 

F
S

2 horizontal as illustrated in Figure 5.2d. In this case, the pointer reads 2.24 cm.  
The single force F

S
 that would produce this same reading is the sum of the two vec-

tors F
S

1 and F
S

2 as described in Figure 5.2d. That is, 0 FS1 0 5 !F1
2 1 F2

2 5 2.24 units, 

b c
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Field forces
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Contact forces

a

Figure 5.1 Some examples of 
applied forces. In each case, a force 
is exerted on the object within the 
boxed area. Some agent in the 
environment external to the boxed 
area exerts a force on the object.

Isaac Newton
English physicist and mathematician 
(1642–1727)
Isaac Newton was one of the most 
brilliant scientists in history. Before 
the age of 30, he formulated the basic 
concepts and laws of mechanics, 
discovered the law of universal gravita-
tion, and invented the mathematical 
methods of calculus. As a consequence 
of his theories, Newton was able to 
explain the motions of the planets, 
the ebb and flow of the tides, and 
many special features of the motions 
of the Moon and the Earth. He also 
interpreted many fundamental obser-
vations concerning the nature of light. 
His contributions to physical theories 
dominated scientific thought for two 
centuries and remain important today.
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We can choose the system to be what is inside the dotted lines
and the environment to be what is outside.

1Serway & Jewett



Work

Let’s consider how the environment can effect the system by
exchanging energy with it.

Take the system to be a block.

An external force F (from the environment) acts on it.

d

F



Work

d

F

This force affects the block: it can accelerate it.

It can also change the energy of the block.



Work

d

F

If the force is constant and moves the block through a distance d
in the direction of the force, we say the force F has done work on
the block:

W = F d



Work

Consider a more general case where the force is not pointed in the
same direction as the movement of the block.

 7.2 Work Done by a Constant Force 179

eraser, which we identify as the system, and the eraser slides along the tray. If we 
want to know how effective the force is in moving the eraser, we must consider not 
only the magnitude of the force but also its direction. Notice that the finger in Fig-
ure 7.1 applies forces in three different directions on the eraser. Assuming the mag-
nitude of the applied force is the same in all three photographs, the push applied 
in Figure 7.1b does more to move the eraser than the push in Figure 7.1a. On the 
other hand, Figure 7.1c shows a situation in which the applied force does not move 
the eraser at all, regardless of how hard it is pushed (unless, of course, we apply a 
force so great that we break the chalkboard tray!). These results suggest that when 
analyzing forces to determine the influence they have on the system, we must con-
sider the vector nature of forces. We must also consider the magnitude of the force. 
Moving a force with a magnitude of 0 FS 0 5 2 N through a displacement represents a 
greater influence on the system than moving a force of magnitude 1 N through the 
same displacement. The magnitude of the displacement is also important. Moving 
the eraser 3 m along the tray represents a greater influence than moving it 2 cm if 
the same force is used in both cases.
 Let us examine the situation in Figure 7.2, where the object (the system) under-
goes a displacement along a straight line while acted on by a constant force of mag-
nitude F that makes an angle u with the direction of the displacement.

The work W done on a system by an agent exerting a constant force on the 
system is the product of the magnitude F of the force, the magnitude Dr of 
the displacement of the point of application of the force, and cos u, where u is  
the angle between the force and displacement vectors:

 W ; F Dr cos u (7.1)

 Notice in Equation 7.1 that work is a scalar, even though it is defined in terms 
of two vectors, a force F

S
 and a displacement D rS. In Section 7.3, we explore how to 

combine two vectors to generate a scalar quantity.
 Notice also that the displacement in Equation 7.1 is that of the point of application 
of the force. If the force is applied to a particle or a rigid object that can be modeled 
as a particle, this displacement is the same as that of the particle. For a deformable 
system, however, these displacements are not the same. For example, imagine press-
ing in on the sides of a balloon with both hands. The center of the balloon moves 
through zero displacement. The points of application of the forces from your hands 
on the sides of the balloon, however, do indeed move through a displacement as 
the balloon is compressed, and that is the displacement to be used in Equation 7.1. 
We will see other examples of deformable systems, such as springs and samples of 
gas contained in a vessel.
 As an example of the distinction between the definition of work and our every-
day understanding of the word, consider holding a heavy chair at arm’s length for 
3 min. At the end of this time interval, your tired arms may lead you to think you 

�W  Work done by a  
constant force

a b c

Figure 7.1  An eraser being pushed along a chalkboard tray by a force acting at different angles 
with respect to the horizontal direction. 
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Figure 7.2  An object undergoes 
a displacement D rS under the 
action of a constant force F

S
.

Pitfall Prevention 7.2
Work Is Done by . . . on . . . Not 
only must you identify the system, 
you must also identify what agent 
in the environment is doing work 
on the system. When discussing 
work, always use the phrase, “the 
work done by . . . on . . . .” After 
“by,” insert the part of the environ-
ment that is interacting directly 
with the system. After “on,” insert 
the system. For example, “the work 
done by the hammer on the nail” 
identifies the nail as the system, 
and the force from the hammer 
represents the influence from the 
environment.
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In this case, we must generalize the expression for work.



Work
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For a constant force applied at an angle θ to the direction of the
displacement of the block Work is defined as:

W = F d cos θ



Work

If there are several forces acting on a system, each one can have an
associated work.

In other words, we can ask what is the work done on the system by
each force separately. The net work is the work done by the net
force (if the system can be modeled as a particle). It is also the
sum of all the individual works.



Work done by individual forces180 Chapter 7 Energy of a System

have done a considerable amount of work on the chair. According to our defini-
tion, however, you have done no work on it whatsoever. You exert a force to support 
the chair, but you do not move it. A force does no work on an object if the force 
does not move through a displacement. If Dr 5 0, Equation 7.1 gives W 5 0, which is 
the situation depicted in Figure 7.1c.
 Also notice from Equation 7.1 that the work done by a force on a moving object 
is zero when the force applied is perpendicular to the displacement of its point of 
application. That is, if u 5 908, then W 5 0 because cos 908 5 0. For example, in 
Figure 7.3, the work done by the normal force on the object and the work done by 
the gravitational force on the object are both zero because both forces are perpen-
dicular to the displacement and have zero components along an axis in the direc-
tion of D rS.
 The sign of the work also depends on the direction of F

S
 relative to D rS. The work 

done by the applied force on a system is positive when the projection of F
S

 onto D rS 
is in the same direction as the displacement. For example, when an object is lifted, 
the work done by the applied force on the object is positive because the direction 
of that force is upward, in the same direction as the displacement of its point of 
application. When the projection of F

S
 onto D rS is in the direction opposite the dis-

placement, W is negative. For example, as an object is lifted, the work done by the 
gravitational force on the object is negative. The factor cos u in the definition of W 
(Eq. 7.1) automatically takes care of the sign.
 If an applied force F

S
 is in the same direction as the displacement D rS, then u 5 

0 and cos 0 5 1. In this case, Equation 7.1 gives

 W 5 F Dr 

 The units of work are those of force multiplied by those of length. Therefore, 
the SI unit of work is the newton ? meter (N ? m 5 kg ? m2/s2). This combination of 
units is used so frequently that it has been given a name of its own, the joule ( J).
 An important consideration for a system approach to problems is that work is an 
energy transfer. If W is the work done on a system and W is positive, energy is trans-
ferred to the system; if W is negative, energy is transferred from the system. There-
fore, if a system interacts with its environment, this interaction can be described 
as a transfer of energy across the system boundary. The result is a change in the 
energy stored in the system. We will learn about the first type of energy storage in 
Section 7.5, after we investigate more aspects of work.

Q uick Quiz 7.1  The gravitational force exerted by the Sun on the Earth holds the 
Earth in an orbit around the Sun. Let us assume that the orbit is perfectly cir-
cular. The work done by this gravitational force during a short time interval in 
which the Earth moves through a displacement in its orbital path is (a) zero  
(b) positive (c) negative (d) impossible to determine

Q uick Quiz 7.2  Figure 7.4 shows four situations in which a force is applied to an 
object. In all four cases, the force has the same magnitude, and the displace-
ment of the object is to the right and of the same magnitude. Rank the situa-
tions in order of the work done by the force on the object, from most positive to 
most negative.

u

F
S

mgS 

nS

!rS

   is the only force 
that does work on 
the block in this 
situation.

F
S

Figure 7.3  An object is dis-
placed on a frictionless, horizon-
tal surface. The normal force nS 
and the gravitational force mgS do 
no work on the object.

Pitfall Prevention 7.3
Cause of the Displacement We can 
calculate the work done by a force 
on an object, but that force is not 
necessarily the cause of the object’s 
displacement. For example, if you 
lift an object, (negative) work is 
done on the object by the gravi-
tational force, although gravity is 
not the cause of the object moving 
upward!
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Figure 7.4  (Quick Quiz 7.2)  
A block is pulled by a force in four 
different directions. In each case, 
the displacement of the block 
is to the right and of the same 
magnitude.

Example 7.1   Mr. Clean

A man cleaning a floor pulls a vacuum cleaner with a force of magnitude F 5 50.0 N at an angle of 30.08 with the hori-
zontal (Fig. 7.5). Calculate the work done by the force on the vacuum cleaner as the vacuum cleaner is displaced 3.00 m  
to the right.



More about Work

Work can be positive or negative!

184 CHAPTER 7 WORK AND KINETIC ENERGY

Next, we present a Conceptual Checkpoint that compares the work required
to move an object along two different paths.

! d

F
! d

F !

d
F

< 90°–90° < ! < 270°90° < != ± 90°!

(a) (b) (c)

FIGURE 7–4 Positive, negative, and
zero work
Work is positive when the force is in the
same general direction as the displace-
ment and is negative if the force is gener-
ally opposite to the displacement. Zero
work is done if the force is at right angles
to the displacement.

▲

CONCEPTUAL CHECKPOINT 7–1 Path Dependence of Work
You want to load a box into the back of a truck. One way is to lift it straight up through a height h, as shown, doing a work W1. Alternatively, you can
slide the box up a loading ramp a distance L, doing a work W2. Assuming the box slides on the ramp without friction, which of the following is
correct: (a) W1 6 W2, (b) W1 = W2, (c) W1 7 W2?

Reasoning and Discussion
You might think that W2 is less than W1, since the force needed to slide the box up the ramp, F2, is less than the force needed to lift it straight up. On
the other hand, the distance up the ramp, L, is greater than the vertical distance, h, so perhaps W2 should be greater than W1. In fact, these two effects
cancel exactly, giving W1 = W2.

To see this, we first calculate W1. The force needed to lift the box with constant speed is F1 = mg, and the height is h, therefore W1 = mgh.

Next, the work to slide the box up the ramp with constant speed is W2 = F2L, where F2 is the force required to push against the tangential component of
gravity. In the figure we see that F2 = mg sin f. The figure also shows that sin f = h/L; thus W2 = (mg sin f)L = (mg)(h/L)L = mgh = W1.

Clearly, the ramp is a useful device—it reduces the force required to move the box upward from F1 = mg to F2 = mg(h/L). Even so, it doesn’t decrease
the amount of work we need to do. As we have seen, the reduced force on the ramp is offset by the increased distance.

Answer:
(b) W1 = W2

L

W1

h

F1

mg

φ

W2

L

F2

mg
φ

φ

mg sinφ

mg cos φ h

Negative Work and Total Work
Work depends on the angle between the force, and the displacement (or direc-
tion of motion), This dependence gives rise to three distinct possibilities, as
shown in Figure 7–4:

(i) Work is positive if the force has a component in the direction of motion

(ii) Work is zero if the force has no component in the direction of motion
(iii) Work is negative if the force has a component opposite to the direction of motion

Thus, whenever we calculate work, we must be careful about its sign and not just
assume it to be positive.

190° 6 u 6 270°2. 1u = ;90°2.1-90° 6 u 6 90°2.
d
!
.

F
!
,
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W = Fd cos θ > 0

positive work

W = Fd cos θ = 0

zero work

W = Fd cos θ < 0

negative work

For work done on a system:

• Positive ⇒ energy is transferred to the system.

• Negative ⇒ energy is transferred from the system.



Question

A car coasts down a hill that makes an angle φ to the horizontal.

7–1 WORK DONE BY A CONSTANT FORCE 185

When more than one force acts on an object, the total work is the sum of the
work done by each force separately. Thus, if force does work force does
work and so on, the total work is

7–4

Equivalently, the total work can be calculated by first performing a vector sum of
all the forces acting on an object to obtain and then using our basic definition
of work:

7–5

where is the angle between and the displacement In the next two Exam-
ples we calculate the total work in each of these ways.

d
!
.F

!
totalu

Wtotal = 1Ftotal cos u2d = Ftotal d cos u

F
!
total

Wtotal = W1 + W2 + W3 + Á = aWi

W2,
F
!
2W1,F

!
1

PROBLEM-SOLVING NOTE

Be Careful About the Angle 

In calculating be sure that
the angle you use in the cosine is the angle
between the force and the displacement
vectors when they are placed tail to tail.
Sometimes may be used to label a differ-
ent angle in a given problem. For exam-
ple, is often used to label the angle of a
slope, in which case it may have nothing
to do with the angle between the force and
the displacement. To summarize: Just be-
cause an angle is labeled doesn’t mean
it’s automatically the correct angle to use
in the work formula.

u

u

u

W = Fd cos u

U

EXAMPLE 7–3 A Coasting Car I
A car of mass m coasts down a hill inclined at an angle below the horizontal. The car is acted on by three forces: (i) the normal
force exerted by the road, (ii) a force due to air resistance, and (iii) the force of gravity, Find the total work done on
the car as it travels a distance d along the road.

Picture the Problem
Because is the angle the slope makes with the horizontal, it is also the angle between and the downward normal direction, as
was shown in Figure 5–15. It follows that the angle between and the displacement is Our sketch also shows that
the angle between and is and the angle between and is 

Strategy
For each force we calculate the work using where is the angle between that particular force and the displace-
ment The total work is the sum of the work done by each of the three forces.

Solution

1. We start with the work done by the normal force, 
From the figure we see that for this force:

2. For the force of air resistance, 

3. For gravity the angle is as indicated in the 
figure. Recall that (see Appendix A):

4. The total work is the sum of the individual works:

Insight
The normal force is perpendicular to the motion of the car, and thus does no work. Air resistance points in a direction that op-
poses the motion, so it does negative work. On the other hand, gravity has a component in the direction of motion; therefore, its
work is positive. The physical significance of positive, negative, and zero work will be discussed in detail in the next section.

Practice Problem
Calculate the total work done on a 1550-kg car as it coasts 20.4 m down a hill with Let the force due to air resistance
be 15.0 N. [Answer: ]

Some related homework problems: Problem 12, Problem 66

Wtotal = WN + Wair + Wmg = 0 - Faird + mgd sin f = 0 - 306 J + 2.70 * 104 J = 2.67 * 104 J
f = 5.00°.

Wtotal = WN + Wair + Wmg = 0 - Faird + mgd sin f

cos190° - f2 = sin f
Wmg = mgd cos190° - f2 = mgd sin fu = 90° - f,u

Wair = Faird cos 180° = Faird1-12 = -Fairdu = 180°:

u = 90°
WN = Nd cos u = Nd cos 90° = Nd102 = 0N

!
.

d
!
.

uW = Fd cos u,

u = 180°.d
!

F
!
airu = 90°,d

!
N

! u = 90° - f.d
!

mg
! mg

!
f

mg
!
.F

!
air,N

! f

!

!

!

N

Fair d

mg

N

d

Fair d

!

d

mg

 = 90°"

 = 180°"

! = 90° –  "

WALKMC07_0131536311.QXD  12/8/05  17:24  Page 185

The work done by the weight (mg force) is

(A) positive

(B) negative

(C) zero

(D) cannot be determined
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ent angle in a given problem. For exam-
ple, is often used to label the angle of a
slope, in which case it may have nothing
to do with the angle between the force and
the displacement. To summarize: Just be-
cause an angle is labeled doesn’t mean
it’s automatically the correct angle to use
in the work formula.
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EXAMPLE 7–3 A Coasting Car I
A car of mass m coasts down a hill inclined at an angle below the horizontal. The car is acted on by three forces: (i) the normal
force exerted by the road, (ii) a force due to air resistance, and (iii) the force of gravity, Find the total work done on
the car as it travels a distance d along the road.

Picture the Problem
Because is the angle the slope makes with the horizontal, it is also the angle between and the downward normal direction, as
was shown in Figure 5–15. It follows that the angle between and the displacement is Our sketch also shows that
the angle between and is and the angle between and is 

Strategy
For each force we calculate the work using where is the angle between that particular force and the displace-
ment The total work is the sum of the work done by each of the three forces.

Solution

1. We start with the work done by the normal force, 
From the figure we see that for this force:

2. For the force of air resistance, 

3. For gravity the angle is as indicated in the 
figure. Recall that (see Appendix A):

4. The total work is the sum of the individual works:

Insight
The normal force is perpendicular to the motion of the car, and thus does no work. Air resistance points in a direction that op-
poses the motion, so it does negative work. On the other hand, gravity has a component in the direction of motion; therefore, its
work is positive. The physical significance of positive, negative, and zero work will be discussed in detail in the next section.

Practice Problem
Calculate the total work done on a 1550-kg car as it coasts 20.4 m down a hill with Let the force due to air resistance
be 15.0 N. [Answer: ]

Some related homework problems: Problem 12, Problem 66
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The work done by the weight (mg force) is

(A) positive ←
(B) negative

(C) zero

(D) cannot be determined
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When more than one force acts on an object, the total work is the sum of the
work done by each force separately. Thus, if force does work force does
work and so on, the total work is

7–4

Equivalently, the total work can be calculated by first performing a vector sum of
all the forces acting on an object to obtain and then using our basic definition
of work:

7–5

where is the angle between and the displacement In the next two Exam-
ples we calculate the total work in each of these ways.
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The work done by the normal force, N, is
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The work done by the air resistance (Fair force) is

(A) positive

(B) negative

(C) zero

(D) cannot be determined
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The work done by the air resistance (Fair force) is

(A) positive

(B) negative ←
(C) zero

(D) cannot be determined



Question

The gravitational force exerted by the Sun on the an asteroid holds
the asteroid in an orbit around the Sun. The work done by
someone applying a force to move the asteroid further away from
the Sun is

(A) zero

(B) positive

(C) negative

(D) impossible to determine



Question

The gravitational force exerted by the Sun on the an asteroid holds
the asteroid in an orbit around the Sun. The work done by
someone applying a force to move the asteroid further away from
the Sun is

(A) zero

(B) positive ←
(C) negative

(D) impossible to determine



Question

The gravitational force exerted by the Sun on the an asteroid holds
the asteroid in an orbit around the Sun. The work done by the
force of gravity on the asteroid as the asteroid moves further away
from the Sun is

(A) zero

(B) positive

(C) negative

(D) impossible to determine



Question

The gravitational force exerted by the Sun on the an asteroid holds
the asteroid in an orbit around the Sun. The work done by the
force of gravity on the asteroid as the asteroid moves further away
from the Sun is

(A) zero

(B) positive

(C) negative ←
(D) impossible to determine



Question

The gravitational force exerted by the Sun on the Earth holds the
Earth in an orbit around the Sun. Let us assume that the orbit is
perfectly circular. The work done by this gravitational force during
a short time interval in which the Earth moves through a
displacement in its orbital path is

(A) zero

(B) positive

(C) negative

(D) impossible to determine

1Serway and Jewett, page 180.
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Work Example
192 Chapter 7 Energy of a System

 Let us imagine a system consisting of a book and the Earth, interacting via the 
gravitational force. We do some work on the system by lifting the book slowly from 
rest through a vertical displacement D rS 5 1yf 2 yi 2 ĵ as in Figure 7.15. According 
to our discussion of work as an energy transfer, this work done on the system must 
appear as an increase in energy of the system. The book is at rest before we perform 
the work and is at rest after we perform the work. Therefore, there is no change in 
the kinetic energy of the system.
 Because the energy change of the system is not in the form of kinetic energy, 
the work-kinetic energy theorem does not apply here and the energy change must 
appear as some form of energy storage other than kinetic energy. After lifting the 
book, we could release it and let it fall back to the position yi . Notice that the book 
(and therefore, the system) now has kinetic energy and that its source is in the work 
that was done in lifting the book. While the book was at the highest point, the sys-
tem had the potential to possess kinetic energy, but it did not do so until the book was 
allowed to fall. Therefore, we call the energy storage mechanism before the book 
is released potential energy. We will find that the potential energy of a system can 
only be associated with specific types of forces acting between members of a system. 
The amount of potential energy in the system is determined by the configuration of 
the system. Moving members of the system to different positions or rotating them 
may change the configuration of the system and therefore its potential energy.
 Let us now derive an expression for the potential energy associated with an object 
at a given location above the surface of the Earth. Consider an external agent lift-
ing an object of mass m from an initial height yi above the ground to a final height 
yf as in Figure 7.15. We assume the lifting is done slowly, with no acceleration, so the 
applied force from the agent is equal in magnitude to the gravitational force on the 
object: the object is modeled as a particle in equilibrium moving at constant veloc-
ity. The work done by the external agent on the system (object and the Earth) as the 
object undergoes this upward displacement is given by the product of the upward 
applied force F

S
app and the upward displacement of this force, D rS 5 Dy ĵ:

 Wext 5 1 F
S

app 2 ? D rS 5 1mg  ĵ 2 ? 3 1yf 2 yi 2  ĵ 4 5 mgyf 2 mgyi (7.18)

where this result is the net work done on the system because the applied force is the 
only force on the system from the environment. (Remember that the gravitational 
force is internal to the system.) Notice the similarity between Equation 7.18 and Equa-
tion 7.15. In each equation, the work done on a system equals a difference between 
the final and initial values of a quantity. In Equation 7.15, the work represents a trans-
fer of energy into the system and the increase in energy of the system is kinetic in 
form. In Equation 7.18, the work represents a transfer of energy into the system and 
the system energy appears in a different form, which we have called potential energy.
 Therefore, we can identify the quantity mgy as the gravitational potential 
energy Ug  of the system of an object of mass m and the Earth:
 Ug ; mgy (7.19)

The units of gravitational potential energy are joules, the same as the units of work 
and kinetic energy. Potential energy, like work and kinetic energy, is a scalar quan-
tity. Notice that Equation 7.19 is valid only for objects near the surface of the Earth, 
where g is approximately constant.3
 Using our definition of gravitational potential energy, Equation 7.18 can now be 
rewritten as
 Wext 5 DUg (7.20)

which mathematically describes that the net external work done on the system in 
this situation appears as a change in the gravitational potential energy of the system.
 Equation 7.20 is similar in form to the work–kinetic energy theorem, Equation 
7.17. In Equation 7.17, work is done on a system and energy appears in the system as 

Gravitational X
 potential energy

Figure 7.15 An external agent 
lifts a book slowly from a height yi 
to a height yf .
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!
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The work done by 
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book–Earth system is 
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Pitfall Prevention 7.7
Potential Energy The phrase 
potential energy does not refer to 
something that has the poten-
tial to become energy. Potential 
energy is energy.

Pitfall Prevention 7.8
Potential Energy Belongs to a 
System Potential energy is always 
associated with a system of two or 
more interacting objects. When 
a small object moves near the 
surface of the Earth under the 
influence of gravity, we may some-
times refer to the potential energy 
“associated with the object” rather 
than the more proper “associ-
ated with the system” because the 
Earth does not move significantly. 
We will not, however, refer to the 
potential energy “of the object” 
because this wording ignores the 
role of the Earth.

3The assumption that g is constant is valid as long as the vertical displacement of the object is small compared with 
the Earth’s radius.

What is the work done to lift a 1 kg
physics book 30 cm?

W = Fd

= mgd

= (1 kg)(10 m/s)(0.3 m)

= 3.0 J
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only be associated with specific types of forces acting between members of a system. 
The amount of potential energy in the system is determined by the configuration of 
the system. Moving members of the system to different positions or rotating them 
may change the configuration of the system and therefore its potential energy.
 Let us now derive an expression for the potential energy associated with an object 
at a given location above the surface of the Earth. Consider an external agent lift-
ing an object of mass m from an initial height yi above the ground to a final height 
yf as in Figure 7.15. We assume the lifting is done slowly, with no acceleration, so the 
applied force from the agent is equal in magnitude to the gravitational force on the 
object: the object is modeled as a particle in equilibrium moving at constant veloc-
ity. The work done by the external agent on the system (object and the Earth) as the 
object undergoes this upward displacement is given by the product of the upward 
applied force F

S
app and the upward displacement of this force, D rS 5 Dy ĵ:

 Wext 5 1 F
S

app 2 ? D rS 5 1mg  ĵ 2 ? 3 1yf 2 yi 2  ĵ 4 5 mgyf 2 mgyi (7.18)

where this result is the net work done on the system because the applied force is the 
only force on the system from the environment. (Remember that the gravitational 
force is internal to the system.) Notice the similarity between Equation 7.18 and Equa-
tion 7.15. In each equation, the work done on a system equals a difference between 
the final and initial values of a quantity. In Equation 7.15, the work represents a trans-
fer of energy into the system and the increase in energy of the system is kinetic in 
form. In Equation 7.18, the work represents a transfer of energy into the system and 
the system energy appears in a different form, which we have called potential energy.
 Therefore, we can identify the quantity mgy as the gravitational potential 
energy Ug  of the system of an object of mass m and the Earth:
 Ug ; mgy (7.19)

The units of gravitational potential energy are joules, the same as the units of work 
and kinetic energy. Potential energy, like work and kinetic energy, is a scalar quan-
tity. Notice that Equation 7.19 is valid only for objects near the surface of the Earth, 
where g is approximately constant.3
 Using our definition of gravitational potential energy, Equation 7.18 can now be 
rewritten as
 Wext 5 DUg (7.20)

which mathematically describes that the net external work done on the system in 
this situation appears as a change in the gravitational potential energy of the system.
 Equation 7.20 is similar in form to the work–kinetic energy theorem, Equation 
7.17. In Equation 7.17, work is done on a system and energy appears in the system as 
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Pitfall Prevention 7.7
Potential Energy The phrase 
potential energy does not refer to 
something that has the poten-
tial to become energy. Potential 
energy is energy.

Pitfall Prevention 7.8
Potential Energy Belongs to a 
System Potential energy is always 
associated with a system of two or 
more interacting objects. When 
a small object moves near the 
surface of the Earth under the 
influence of gravity, we may some-
times refer to the potential energy 
“associated with the object” rather 
than the more proper “associ-
ated with the system” because the 
Earth does not move significantly. 
We will not, however, refer to the 
potential energy “of the object” 
because this wording ignores the 
role of the Earth.

3The assumption that g is constant is valid as long as the vertical displacement of the object is small compared with 
the Earth’s radius.

What is the work done to lift a 1 kg
physics book 30 cm?

W = Fd

= mgd

= (1 kg)(10 m/s)(0.3 m)

= 3.0 J
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only force on the system from the environment. (Remember that the gravitational 
force is internal to the system.) Notice the similarity between Equation 7.18 and Equa-
tion 7.15. In each equation, the work done on a system equals a difference between 
the final and initial values of a quantity. In Equation 7.15, the work represents a trans-
fer of energy into the system and the increase in energy of the system is kinetic in 
form. In Equation 7.18, the work represents a transfer of energy into the system and 
the system energy appears in a different form, which we have called potential energy.
 Therefore, we can identify the quantity mgy as the gravitational potential 
energy Ug  of the system of an object of mass m and the Earth:
 Ug ; mgy (7.19)

The units of gravitational potential energy are joules, the same as the units of work 
and kinetic energy. Potential energy, like work and kinetic energy, is a scalar quan-
tity. Notice that Equation 7.19 is valid only for objects near the surface of the Earth, 
where g is approximately constant.3
 Using our definition of gravitational potential energy, Equation 7.18 can now be 
rewritten as
 Wext 5 DUg (7.20)

which mathematically describes that the net external work done on the system in 
this situation appears as a change in the gravitational potential energy of the system.
 Equation 7.20 is similar in form to the work–kinetic energy theorem, Equation 
7.17. In Equation 7.17, work is done on a system and energy appears in the system as 
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something that has the poten-
tial to become energy. Potential 
energy is energy.

Pitfall Prevention 7.8
Potential Energy Belongs to a 
System Potential energy is always 
associated with a system of two or 
more interacting objects. When 
a small object moves near the 
surface of the Earth under the 
influence of gravity, we may some-
times refer to the potential energy 
“associated with the object” rather 
than the more proper “associ-
ated with the system” because the 
Earth does not move significantly. 
We will not, however, refer to the 
potential energy “of the object” 
because this wording ignores the 
role of the Earth.

3The assumption that g is constant is valid as long as the vertical displacement of the object is small compared with 
the Earth’s radius.

What is the work done to lift a 1 kg
physics book 30 cm?

W = Fd

= mgd

= (1 kg)(10 m/s)(0.3 m)

= 3.0 J



Work Done and Force-Displacement Graphs
We can understand that the work done by a force is the area under
the force-displacement curve.

Plotting a constant force F as a function of x (∆x = d), F (x):
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3. Substitute numerical values to get the final answer:

Insight
If the sled had started from rest, instead of with an initial speed of 0.500 m/s, would its final speed be 

No. If the initial speed is zero, then Why don’t the speeds add and subtract in a 

straightforward way? The reason is that the work-energy theorem depends on the square of the speeds rather than on and 
directly.

Practice Problem
Suppose the sled starts with a speed of 0.500 m/s and has a final speed of 2.50 m/s after the boy pulls it through a distance
of 3.00 m. What force did the boy exert on the sled? [Answer: ]

Some related homework problems: Problem 22, Problem 48

F = Wtotal/1d cos u2 = ¢K/1d cos u2 = 7.32 N

vfvi

vf = A2Wtotal
m

= A2119.2 J2
6.40 kg

= 2.45 m/s.

2.00 m/s?
2.50 m/s - 0.500 m/s =

 = 2.50 m/s

 vf = A2119.2 J2
6.40 kg

+ 10.500 m/s22

The final speeds in the previous Examples could have been found using
Newton’s laws and the constant-acceleration kinematics of Chapter 2, as indicated
in the Insight following Example 7–5. The work-energy theorem provides an alter-
native method of calculation that is often much easier to apply than Newton’s
laws. We return to this point in Chapter 8.

CONCEPTUAL CHECKPOINT 7–2 Compare the Work
To accelerate a certain car from rest to the speed v requires the work W1. The work needed to ac-
celerate the car from v to 2v is W2. Which of the following is correct: (a) W2 = W1, (b) W2 = 2W1,
(c) W2 = 3W1, (d) W2 = 4W1?

Reasoning and Discussion
A common mistake is to reason that since we increase the speed by the same amount in each case,
the work required is the same. It is not, and the reason is that work depends on the speed squared
rather than on the speed itself.

To see how this works, first calculate W1, the work needed to go from rest to a speed v. From the
work-energy theorem, with vi = 0, and vf = v, we find Similarly, the

work needed to go from rest, vi= 0, to a speed vf= 2v, is simply There-
fore, the work needed to increase the speed from v to 2v is the difference:

Answer:
(c) W2 = 3W1

7–3 Work Done by a Variable Force
Thus far we have calculated work only for constant forces, yet most forces in na-
ture vary with position. For example, the force exerted by a spring depends on
how far the spring is stretched, and the force of gravity between planets depends
on their separation. In this section we show how to calculate the work for a force
that varies with position.

First, let’s review briefly the case of a constant force, and develop a graphical in-
terpretation of work. Figure 7–6 shows a constant force plotted versus position, x.

W2 = 4W1 - W1 = 3W1.

1
2 m12v22 = 4 A12 mv2 B = 4W1.

W1 = 1
2 mvf 

2 - 1
2 mvi 

2 = 1
2 mv2.

▲ FIGURE 7–6 Graphical representation
of the work done by a constant force
A constant force F acting through a dis-
tance d does a work Note that
Fd is also equal to the shaded area be-
tween the force line and the x axis.

W = Fd.

v 2vv = 0

W1 W2

PROBLEM-SOLVING NOTE

Be Careful About Linear
Reasoning

Though some relations are linear—if you
double the mass, you double the kinetic
energy—others are not. For example, if
you double the speed, you quadruple the
kinetic energy. Be careful not to jump to
conclusions based on linear reasoning.
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Position

F
d

x1 x2O

Area = Fd = W
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Work Done by a Variable Force

When F (x) is not constant, we can approximate the area under
the curve by breaking it up into rectangles and adding the area of
each rectangle.

7–3 WORK DONE BY A VARIABLE FORCE 191

1Usually, area has the dimensions of or In this case, however,
the vertical axis is force and the horizontal axis is distance. As a result, the dimensions of
area are which in SI units is N # m = J.1force2 * 1distance2, length2.1length2 * 1length2,

If the force acts in the positive x direction and moves an object a distance d, from
to the work it does is Referring to the figure, we see

that the work is equal to the shaded area1 between the force line and the x axis.
Next, consider a force that has the value from to and a differ-

ent value from to as in Figure 7–7 (a). The work in this case is the
sum of the works done by and Therefore, which,
again, is the area between the force lines and the x axis. Clearly, this type of calcu-
lation can be extended to a force with any number of different values, as indicated
in Figure 7–7 (b).

If a force varies continuously with position, we can approximate it with a series
of constant values that follow the shape of the curve, as shown in Figure 7–8 (a). It
follows that the work done by the continuous force is approximately equal to the
area of the corresponding rectangles, as Figure 7–8 (b) shows. The approximation
can be made better by using more rectangles, as illustrated in Figure 7–8 (c). In the
limit of an infinite number of vanishingly small rectangles, the area of the rectan-
gles becomes identical to the area under the force curve. Hence this area is the work
done by the continuous force. To summarize:

The work done by a force in moving an object from and is equal to the
corresponding area between the force curve and the x axis.

A case of particular interest is that of a spring. Since the force exerted by a
spring is given by (Section 6–2), it follows that the force we must exert
to hold it at the position x is This is illustrated in Figure 7–9, where we also+kx.

Fx = -kx

x2x1

W = F1x1 + F21x2 - x12F2.F1

x = x2,x = x1F2

x = x1x = 0F1

W = Fd = F1x2 - x12.x2,x1

Fo
rc

e

Position

F2

F1

x1 x2

F2 (x2 – x1)

F1 x1

(a)

O

Fo
rc

e

Position

(b)

O

FIGURE 7–7 Work done by a noncon-
stant force
(a) A force with a value from 0 to 
and a value from to does the
work This is
simply the area of the two shaded rectan-
gles. (b) If a force takes on a number of
different values, the work it does is still
the total area between the force lines and
the x axis, just as in part (a).

W = F1x1 + F21x2 - x12.x2x1F2

x1F1

▲

Position

x1 x2

(c)
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e
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x1 x2

(b)
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x1 x2

(a)

O O O

▲ FIGURE 7–8 Work done by a continuously varying force
(a) A continuously varying force can be approximated by a series of constant values that follow the shape of the curve. (b) The
work done by the continuous force is approximately equal to the area of the small rectangles corresponding to the constant values
of force shown in part (a). (c) In the limit of an infinite number of vanishingly small rectangles, we see that the work done by the
force is equal to the area between the force curve and the x axis.

O

x

Force 
of spring

Applied
force–kx +kx

F = kx

Equilibrium position
of spring

x = 0 x

A
pp
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d 
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e

Position
▲ FIGURE 7–9 Stretching a spring
The force we must exert on a spring to
stretch it a distance x is Thus,
applied force versus position for a spring
is a straight line of slope k.

+ kx.
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Power

Power

the rate at which work can be done.

Power = work done
time interval

Units: Watts, W.

1 W = 1 J/s



Power

Power

the rate at which work can be done.

Power = work done
time interval

Units: Watts, W.

1 W = 1 J/s



Power Example

A motor can lift a crate 20 m in 10 s.

If the motor is replaced with a new motor with twice as much
power, how long does it take to lift the crate now?

If the new motor was used to lift a crate that was twice as heavy,
how long would it take to lift the second crate?



Kinetic Energy

kinetic energy

energy that a system has as a result of its motion

To do work, we apply a force, a force can cause an acceleration.

F = ma



Kinetic Energy

Kinetic Energy = 1
2 mass × speed2

or, calling the kinetic energy K ,

K =
1

2
mv2

Notice that this means that if the speed of an object is doubled,
it’s kinetic energy quadruples!



Kinetic Energy

Kinetic Energy = 1
2 mass × speed2

or, calling the kinetic energy K ,

K =
1

2
mv2

Notice that this means that if the speed of an object is doubled,
it’s kinetic energy quadruples!



Work and Kinetic Energy

The fact that doing work on an object can increase its kinetic
energy leads to an important relation.

Work-Kinetic Energy theorem

The net work done by all external forces is equal to the change in
the kinetic energy of the system.

Wnet = ∆K



Question

A dart is inserted into a spring-loaded dart gun and then released
so that work W is done by the spring as the dart is fired. If the
gun is reloaded and the spring is compressed further so that it now
does work 4W on the dart, how much faster does the second dart
leave the gun compared with the first?

(A) four times as fast

(B) two times as fast

(C) the same

(D) half as fast

1Modified from question in Serway and Jewett, 9th ed.
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Potential Energy

potential energy

energy that a system has as a result of its configuration; stored
energy

There are different kinds of potential energy

• gravitational

• elastic

• chemical



Potential Energy

The only form that we will use to solve problems in this course is
gravitational potential energy.

An object at some height above the ground can be said to have
potential energy.

This is reasonable because if we dropped the object it would
accelerate and develop kinetic energy.

Potential energy = weight × height

Using the symbol U for potential energy:

U = mgh



Mechanical Energy

mechanical energy

the useful energy in a system; the sum of kinetic and potential
energy

Emech = K + U

Mechanical energy is “useful” because it can be used to do work.



Conservation of Energy

Just like momentum, the total amount of energy in an isolated
system is constant: it can’t change!

Energy cannot be created or destroyed, though it can be
changed from one form into another.

For example, potential energy can be changed to kinetic energy,
and back to potential, but you will never find more than you
started with.



Conservation of Energy and a Nonisolated system

Just like momentum, the total amount of energy in an isolated
system is constant: it can’t change!

Energy can be transferred into a system if it is not isolated.

214 Chapter 8 Conservation of Energy

are familiar with work, we can simplify the appearance of equations by letting the 
simple symbol W represent the external work Wext on a system. For internal work, we 
will always use Wint to differentiate it from W.) The other four members of our list 
do not have established symbols, so we will call them TMW (mechanical waves), TMT 
(matter transfer), TET (electrical transmission), and TER (electromagnetic radiation).
 The full expansion of Equation 8.1 is

 DK 1 DU 1 DEint 5 W 1 Q 1 TMW 1 TMT 1 TET 1 TER (8.2)

which is the primary mathematical representation of the energy version of the anal-
ysis model of the nonisolated system. (We will see other versions of the nonisolated 
system model, involving linear momentum and angular momentum, in later chap-
ters.) In most cases, Equation 8.2 reduces to a much simpler one because some of 
the terms are zero for the specific situation. If, for a given system, all terms on the 
right side of the conservation of energy equation are zero, the system is an isolated 
system, which we study in the next section.
 The conservation of energy equation is no more complicated in theory than the 
process of balancing your checking account statement. If your account is the sys-
tem, the change in the account balance for a given month is the sum of all the 
transfers: deposits, withdrawals, fees, interest, and checks written. You may find it 
useful to think of energy as the currency of nature!
 Suppose a force is applied to a nonisolated system and the point of application 
of the force moves through a displacement. Then suppose the only effect on the 
system is to change its speed. In this case, the only transfer mechanism is work (so 
that the right side of Eq. 8.2 reduces to just W) and the only kind of energy in the 
system that changes is the kinetic energy (so that the left side of Eq. 8.2 reduces to 
just DK). Equation 8.2 then becomes

DK 5 W

which is the work–kinetic energy theorem. This theorem is a special case of the 
more general principle of conservation of energy. We shall see several more special 
cases in future chapters.

Q uick Quiz 8.1  By what transfer mechanisms does energy enter and leave (a) your 
television set? (b) Your gasoline-powered lawn mower? (c) Your hand-cranked 
pencil sharpener?

Q uick Quiz 8.2  Consider a block sliding over a horizontal surface with friction. 
Ignore any sound the sliding might make. (i) If the system is the block, this sys-
tem is (a) isolated (b) nonisolated (c) impossible to determine (ii) If the system 
is the surface, describe the system from the same set of choices. (iii) If the system 
is the block and the surface, describe the system from the same set of choices.

Analysis Model   Nonisolated System (Energy)
Imagine you have identified a system to be analyzed 
and have defined a system boundary.  Energy can 
exist in the system in three forms: kinetic, potential, 
and internal. The total of that energy can be changed 
when energy crosses the system boundary by any of six 
transfer methods shown in the diagram here. The total 
change in the energy in the system is equal to the total 
amount of energy that has crossed the system bound-
ary. The mathematical statement of that concept is 
expressed in the conservation of energy equation:

 DEsystem 5 o T (8.1)

Work Heat Mechanical
waves

Matter
transfer

Electrical
transmission

Electromagnetic
radiation

Kinetic energy
Potential energy
Internal energy

System
boundary

The change in the total 
amount of energy in 
the system is equal to 
the total amount of 
energy that crosses the 
boundary of the system.



Energy transfer examples

212 Chapter 8 Conservation of Energy

Energy transfers to 
the handle of the 
spoon by heat.
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Energy is transferred 
to the block by work.
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Energy leaves the light- 
bulb by electromagnetic 
radiation.
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electrical transmission.
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automobile gas tank 
by matter transfer.
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Figure 8.1  Energy trans-
fer mechanisms. In each 
case, the system into which 
or from which energy is 
transferred is indicated.

 Situations involving the transformation of mechanical energy to internal energy due to 
nonconservative forces require special handling. We investigate the procedures for these 
types of problems.
 Finally, we recognize that energy can cross the boundary of a system at different rates. 
We describe the rate of energy transfer with the quantity power.

8.1 Analysis Model: Nonisolated System (Energy)
As we have seen, an object, modeled as a particle, can be acted on by various 
forces, resulting in a change in its kinetic energy according to the work–kinetic 
energy theorem from Chapter 7. If we choose the object as the system, this very 
simple situation is the first example of a nonisolated system, for which energy crosses 
the boundary of the system during some time interval due to an interaction with 
the environment. This scenario is common in physics problems. If a system does 
not interact with its environment, it is an isolated system, which we will study in Sec-
tion 8.2.
 The work–kinetic energy theorem is our first example of an energy equation 
appropriate for a nonisolated system. In the case of that theorem, the interaction 
of the system with its environment is the work done by the external force, and the 
quantity in the system that changes is the kinetic energy.
 So far, we have seen only one way to transfer energy into a system: work. We men-
tion below a few other ways to transfer energy into or out of a system. The details of 
these processes will be studied in other sections of the book. We illustrate mecha-
nisms to transfer energy in Figure 8.1 and summarize them as follows.
 Work, as we have learned in Chapter 7, is a method of transferring energy to a 
system by applying a force to the system such that the point of application of the 
force undergoes a displacement (Fig. 8.1a).



Work and a simple machine

Can we do less work by using a ramp to lift a refrigerator?
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Answer  If we pull harder, the block should accelerate to a given speed in a shorter distance, so we expect that  
Dx9 , Dx. In both cases, the block experiences the same change in kinetic energy DK. Mathematically, from the work–
kinetic energy theorem, we find that

Wext 5 F rDx r 5 DK 5 F Dx

Dx r 5
F
F r

 Dx 5
F
2F

  Dx 5 1
2 Dx

and the distance is shorter as suggested by our conceptual argument.

Conceptual Example 7.7   Does the Ramp Lessen the Work Required?

A man wishes to load a refrigerator onto a truck using 
a ramp at angle u as shown in Figure 7.14. He claims 
that less work would be required to load the truck if the 
length L of the ramp were increased. Is his claim valid?

No. Suppose the refrigerator is wheeled on a hand 
truck up the ramp at constant speed. In this case, for 
the system of the refrigerator and the hand truck, DK 5 
0. The normal force exerted by the ramp on the system 
is directed at 908 to the displacement of its point of 
application and so does no work on the system. Because 
DK 5 0, the work–kinetic energy theorem gives

Wext 5 Wby man 1 Wby gravity 5 0

The work done by the gravitational force equals the product of the weight mg of the system, the distance L through 
which the refrigerator is displaced, and cos (u 1 908). Therefore,

Wby man 5 2Wby gravity 5 2 1mg 2 1L 2 3cos 1u 1 908 2 4
5 mgL sin u 5 mgh

where h 5 L sin u is the height of the ramp. Therefore, the man must do the same amount of work mgh on the system 
regardless of the length of the ramp. The work depends only on the height of the ramp. Although less force is required 
with a longer ramp, the point of application of that force moves through a greater displacement.
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Figure 7.14  (Conceptual Example 7.7) A refrigerator attached to 
a frictionless, wheeled hand truck is moved up a ramp at constant 
speed.

7.6 Potential Energy of a System
So far in this chapter, we have defined a system in general, but have focused our 
attention primarily on single particles or objects under the influence of external 
forces. Let us now consider systems of two or more particles or objects interacting 
via a force that is internal to the system. The kinetic energy of such a system is the 
algebraic sum of the kinetic energies of all members of the system. There may be 
systems, however, in which one object is so massive that it can be modeled as sta-
tionary and its kinetic energy can be neglected. For example, if we consider a ball– 
Earth system as the ball falls to the Earth, the kinetic energy of the system can be 
considered as just the kinetic energy of the ball. The Earth moves so slowly in this 
process that we can ignore its kinetic energy. On the other hand, the kinetic energy 
of a system of two electrons must include the kinetic energies of both particles.

 

▸ 7.6 c o n t i n u e d

(Assume the axle of the wheels on the cart is frictionless...)



Work and a simple machine

 

 7.6 Potential Energy of a System 191

Answer  If we pull harder, the block should accelerate to a given speed in a shorter distance, so we expect that  
Dx9 , Dx. In both cases, the block experiences the same change in kinetic energy DK. Mathematically, from the work–
kinetic energy theorem, we find that

Wext 5 F rDx r 5 DK 5 F Dx

Dx r 5
F
F r

 Dx 5
F
2F

  Dx 5 1
2 Dx

and the distance is shorter as suggested by our conceptual argument.

Conceptual Example 7.7   Does the Ramp Lessen the Work Required?
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a ramp at angle u as shown in Figure 7.14. He claims 
that less work would be required to load the truck if the 
length L of the ramp were increased. Is his claim valid?

No. Suppose the refrigerator is wheeled on a hand 
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application and so does no work on the system. Because 
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▸ 7.6 c o n t i n u e d

If we just lifted the fridge directly, we would require and upward
force F = mg to do work on the fridge against gravity:

W = Fd

= mgh
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If we pushed the fridge up a ramp, we would require F = mg sin θ:
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If we pushed the fridge up a ramp, we would require F = mg sin θ:

W = Fd

= (mg sin θ)L

= mg(L sin θ)

= mgh



Work and a simple machine

Implication: the ramp allows us to use less force, but we still must
do the same amount of work.

This also shows that it doesn’t matter how the fridge gets into the
truck, it has the same potential energy once it gets there: the
potential energy it gains from the external agent (the man) doing
work.

This is an example of a simple machine.



Simple Machines

A simple machine is any tool or set of tools designed to change the
magnitude or direction of the force we need to apply to do some
work.

The ramp (an incline) did both: we exerted less force in a different
direction.

However:

Work input = Work output

We had to move the refrigerator a further distance, so either way,
we did the same work.
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Simple Machines

A simple machine is any tool or set of tools designed to change the
magnitude or direction of the force we need to apply to do some
work.

The Mechanical Advantage of a simple machine is the ratio:

Mechanical Advantage = Force out
Force input



Simple Machines

Other examples of simple machines:

• levers

• pulleys

• screws

• wedges

• wheels

This helps us when there is a limit to how much force we can
supply.



Efficiency

In principle, simple machines are 100% efficient. That means:

Work input = Work output

But life is seldom that kind to us.

Almost always there are losses due to friction, etc.

We can define the efficiency of a machine as:

efficiency =
Work output
Work input

It is usually stated as a percentage.
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Efficiency

efficiency =
Work output
Work input

For example, a typical efficiency of a car is around 20%, but can be
higher particularly for diesels and hybrids/electrics.
(This is actually thermal efficiency - it’s a little more complicated.)



Sources of Energy

Sources of energy:

• oil

• coal

• natural gas

• wood / charcoal / peat

• solar - photovoltaics and heating

• wind

• waves

• hydroelectric

• geothermal

• nuclear - thermonuclear, fission, and fusion(?)



Summary
• Energy!

• types of energy and work

• conservation of energy

Essay Homework due July 19th.

Homework Hewitt,

• Read about “Sources of Energy”

• Ch 7, onward from page 118. Plug & Chug: 3, 7, 11;
Ranking: 3; Exerc: 1, 7, 13, 21, 25, (35); Probs: 3

Other: Think about energy sources that provide electricity and
heat for our homes and offices. Pick one particular source of
energy and study it. Come to tomorrows’s class prepared to tell
the class about it: what are its benefits and drawbacks? Is it
renewable? Is it cheap? And so on.


