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Last time

• energy sources discussion

• collisions (elastic)



Overview

• inelastic collisions

• circular motion and rotation

• centripetal force

• fictitious forces

• torque

• moment of inertia

• center of mass

• angular momentum



Types of Collision

There are two different types of collisions:

Elastic collisions

are collisions in which none of the kinetic energy of the colliding
objects is lost. (Ki = Kf )

Inelastic collisions

are collisions in which energy is lost as sound, heat, or in
deformations of the colliding objects.

When the colliding objects stick together afterwards the collision is
perfectly inelastic.
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Inelastic Collisions

For general inelastic collisions, some kinetic energy is lost.

But we can still use the conservation of momentum:

pi = pf



Perfectly Inelastic Collisions

 9.4 Collisions in One Dimension 257

 In contrast, the total kinetic energy of the system of particles may or may not be con-
served, depending on the type of collision. In fact, collisions are categorized as being 
either elastic or inelastic depending on whether or not kinetic energy is conserved.
 An elastic collision between two objects is one in which the total kinetic energy 
(as well as total momentum) of the system is the same before and after the collision. 
Collisions between certain objects in the macroscopic world, such as billiard balls, 
are only approximately elastic because some deformation and loss of kinetic energy 
take place. For example, you can hear a billiard ball collision, so you know that 
some of the energy is being transferred away from the system by sound. An elastic 
collision must be perfectly silent! Truly elastic collisions occur between atomic and 
subatomic particles. These collisions are described by the isolated system model for 
both energy and momentum. Furthermore, there must be no transformation of 
kinetic energy into other types of energy within the system.
 An inelastic collision is one in which the total kinetic energy of the system is not 
the same before and after the collision (even though the momentum of the system 
is conserved). Inelastic collisions are of two types. When the objects stick together 
after they collide, as happens when a meteorite collides with the Earth, the collision 
is called perfectly inelastic. When the colliding objects do not stick together but 
some kinetic energy is transformed or transferred away, as in the case of a rubber 
ball colliding with a hard surface, the collision is called inelastic (with no modify-
ing adverb). When the rubber ball collides with the hard surface, some of the ball’s 
kinetic energy is transformed when the ball is deformed while it is in contact with 
the surface. Inelastic collisions are described by the momentum version of the iso-
lated system model. The system could be isolated for energy, with kinetic energy 
transformed to potential or internal energy. If the system is nonisolated, there could 
be energy leaving the system by some means. In this latter case, there could also 
be some transformation of energy within the system. In either of these cases, the 
kinetic energy of the system changes.
 In the remainder of this section, we investigate the mathematical details for col-
lisions in one dimension and consider the two extreme cases, perfectly inelastic 
and elastic collisions.

Perfectly Inelastic Collisions
Consider two particles of masses m1 and m2 moving with initial velocities vS1i and vS2i 
along the same straight line as shown in Figure 9.6. The two particles collide head-
on, stick together, and then move with some common velocity vSf  after the collision. 
Because the momentum of an isolated system is conserved in any collision, we can 
say that the total momentum before the collision equals the total momentum of the 
composite system after the collision:

 DpS 5 0    S    pSi 5 pSf     S    m1 vS1i 1 m2 vS2i 5 1m1 1 m2 2 vSf  (9.14)
Solving for the final velocity gives

 vSf 5
m1 vS1i 1 m2 vS2i

m1 1 m2
 (9.15)

Elastic Collisions
Consider two particles of masses m1 and m2 moving with initial velocities vS1i and vS2i 
along the same straight line as shown in Figure 9.7 on page 258. The two particles 
collide head-on and then leave the collision site with different velocities, vS1f  and 
vS2f . In an elastic collision, both the momentum and kinetic energy of the system 
are conserved. Therefore, considering velocities along the horizontal direction in 
Figure 9.7, we have

 pi 5 pf    S    m1v1i 1 m2v2i 5 m1v1f 1 m2v2f (9.16)

 Ki 5 Kf    S    12m1v1i 2 1 1
2m2v2i 2 5 1

2m1v1f 2 1 1
2m2v2f 2 (9.17)

Pitfall Prevention 9.2
Inelastic Collisions Generally, 
inelastic collisions are hard to 
analyze without additional infor-
mation. Lack of this information 
appears in the mathematical 
representation as having more 
unknowns than equations.

Figure 9.6 Schematic repre-
sentation of a perfectly inelastic 
head-on collision between two 
particles.
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Now the two particles stick together after colliding ⇒ same final
velocity!

pi = pf ⇒ m1v1i +m2v2i = (m1 +m2)vf



Inelastic Collision Example

From page 91-92 of Hewitt:

Two freight rail cars collide and lock together. Initially, one is
moving at 10 m/s and the other is at rest. Both have the same
mass. What is their final velocity?

pnet,i = pnet,f

mvi = (2m)vf

10m = 2mvf

The final mass is twice as much, so the final speed must be only
half as much: vf = 5 m/s.
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Collision Question

Two objects collide and move apart after the collision. Could the
collision be inelastic?

(A) Yes.

(B) No.
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Two objects collide and move apart after the collision. Could the
collision be inelastic?
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Question

In a perfectly inelastic one-dimensional collision between two
moving objects, what condition alone is necessary so that the final
kinetic energy of the system is zero after the collision?

(A) The objects must have initial momenta with the same
magnitude but opposite directions.

(B) The objects must have the same mass.

(C) The objects must have the same initial velocity.

(D) The objects must have the same initial speed, with velocity
vectors in opposite directions.

1Serway & Jewett, page 259, Quick Quiz 9.5.
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Rotational Motion

Objects can move through space, but they can have another kind
of motion too:

They can rotate about some axis.

Examples of rotating objects:

• the Earth, makes a complete rotation once per day

• merry-go-rounds

• records / cds on a player



Rotating disk

Consider a marked point P on the disk. As time passes it moves:

294 Chapter 10 Rotation of a Rigid Object About a Fixed Axis

defining kinematic variables: position, velocity, and acceleration. We do the same 
here for rotational motion.
 Figure 10.1 illustrates an overhead view of a rotating compact disc, or CD. The 
disc rotates about a fixed axis perpendicular to the plane of the figure and passing 
through the center of the disc at O. A small element of the disc modeled as a par-
ticle at P is at a fixed distance r from the origin and rotates about it in a circle of 
radius r. (In fact, every element of the disc undergoes circular motion about O.) It is 
convenient to represent the position of P with its polar coordinates (r, u), where r is 
the distance from the origin to P and u is measured counterclockwise from some refer-
ence line fixed in space as shown in Figure 10.1a. In this representation, the angle u  
changes in time while r remains constant. As the particle moves along the cir-
cle from the reference line, which is at angle u 5 0, it moves through an arc of 
length s as in Figure 10.1b. The arc length s is related to the angle u through the 
relationship

 s 5 r u (10.1a)

 u 5
s
r  (10.1b)

Because u is the ratio of an arc length and the radius of the circle, it is a pure num-
ber. Usually, however, we give u the artificial unit radian (rad), where one radian is 
the angle subtended by an arc length equal to the radius of the arc. Because the cir-
cumference of a circle is 2pr, it follows from Equation 10.1b that 3608 corresponds 
to an angle of (2pr/r) rad 5 2p rad. Hence, 1 rad 5 3608/2p < 57.38. To convert an 
angle in degrees to an angle in radians, we use that p rad 5 1808, so

u 1rad 2 5
p

1808
 u 1deg 2

For example, 608 equals p/3 rad and 458 equals p/4 rad.
 Because the disc in Figure 10.1 is a rigid object, as the particle moves through an 
angle u from the reference line, every other particle on the object rotates through 
the same angle u. Therefore, we can associate the angle u with the entire rigid 
object as well as with an individual particle, which allows us to define the angular 
position of a rigid object in its rotational motion. We choose a reference line on 
the object, such as a line connecting O and a chosen particle on the object. The 
angular position of the rigid object is the angle u between this reference line on 
the object and the fixed reference line in space, which is often chosen as the x axis. 
Such identification is similar to the way we define the position of an object in trans-
lational motion as the distance x between the object and the reference position, 
which is the origin, x 5 0. Therefore, the angle u plays the same role in rotational 
motion that the position x does in translational motion.
 As the particle in question on our rigid object travels from position ! to posi-
tion " in a time interval Dt as in Figure 10.2, the reference line fixed to the object 
sweeps out an angle Du 5 uf 2 ui. This quantity Du is defined as the angular dis-
placement of the rigid object:

Du ; uf 2 ui 

The rate at which this angular displacement occurs can vary. If the rigid object 
spins rapidly, this displacement can occur in a short time interval. If it rotates 
slowly, this displacement occurs in a longer time interval. These different rotation 
rates can be quantified by defining the average angular speed vavg (Greek letter 
omega) as the ratio of the angular displacement of a rigid object to the time inter-
val Dt during which the displacement occurs:

 vavg ;
uf 2 ui

tf 2 ti
5

Du

Dt
 (10.2)Average angular speed X
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To define angular position 
for the disc, a fixed reference 
line is chosen. A particle at P 
is located at a distance r from 
the rotation axis through O.

As the disc rotates, a particle at 
P moves through an arc length 
s on a circular path of radius r. 
The angular position of P is u.

a

b

Figure 10.1  A compact disc 
rotating about a fixed axis 
through O perpendicular to the 
plane of the figure.

Pitfall Prevention 10.1
Remember the Radian In rota-
tional equations, you must use 
angles expressed in radians.  
Don’t fall into the trap of using 
angles measured in degrees in 
rotational equations.
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Figure 10.2  A particle on a rotat-
ing rigid object moves from ! to 
" along the arc of a circle. In the 
time interval Dt 5 tf 2 ti , the radial 
line of length r moves through an 
angular displacement Du 5 uf 2 ui.

The distance it moves is s, if θ is measured in radians.

s = rθ

1Figures from Serway & Jewett, 9th ed.
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Angular speed
The angle that the disk rotates by is θ, in some amount of time t
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the angular speed (“rotational speed”) of the disk is

angular speed =
change in angle
change in time

In notation:

ω =
θ

t

where we let ω represent angular speed.



Angular speed
The angle that the disk rotates by is θ, in some amount of time t
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slowly, this displacement occurs in a longer time interval. These different rotation 
rates can be quantified by defining the average angular speed vavg (Greek letter 
omega) as the ratio of the angular displacement of a rigid object to the time inter-
val Dt during which the displacement occurs:

 vavg ;
uf 2 ui

tf 2 ti
5

Du

Dt
 (10.2)Average angular speed X

Reference
line

O P
r

O

P

Reference
line

r s
u

To define angular position 
for the disc, a fixed reference 
line is chosen. A particle at P 
is located at a distance r from 
the rotation axis through O.

As the disc rotates, a particle at 
P moves through an arc length 
s on a circular path of radius r. 
The angular position of P is u.

a

b

Figure 10.1  A compact disc 
rotating about a fixed axis 
through O perpendicular to the 
plane of the figure.

Pitfall Prevention 10.1
Remember the Radian In rota-
tional equations, you must use 
angles expressed in radians.  
Don’t fall into the trap of using 
angles measured in degrees in 
rotational equations.

x
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", t f

!, ti
r

i
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fu

u

Figure 10.2  A particle on a rotat-
ing rigid object moves from ! to 
" along the arc of a circle. In the 
time interval Dt 5 tf 2 ti , the radial 
line of length r moves through an 
angular displacement Du 5 uf 2 ui.

the angular speed (“rotational speed”) of the disk is

angular speed =
change in angle
change in time

In notation:

ω =
θ

t

where we let ω represent angular speed.



Angular speed

The angular speed of the Earth’s rotation is 2π per day or

ωE =
2π

86, 400 s

The units are radians per second. (Or just s−1.)

We can also measure rotational speed in terms of the number of
complete rotations in some amount of time.

Records speeds are a good example of this. Typical angular speeds:

• 331
3 RPM (called “a 33”)

• 45 RPM

• 78 RPM

where RPM means rotations per minute.



Angular speed and Tangential speed

The tangential speed of point P is its instantaneous speed. We
write it as v because it is fundamentally the same thing we called
speed before:

speed = distance traveled
change in time

For the point P it travels a distance s in time t

v =
s

t



Angular speed and Tangential speed

But remember: s = rθ.

We can write

v =
s

t
=

rθ

t

However, ω = θ
t so we can make a relation between tangential

speed v and angular speed ω:

v = rω

( tangential speed = distance to axis × angular speed )
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We can write

v =
s

t
=

rθ

t

However, ω = θ
t so we can make a relation between tangential

speed v and angular speed ω:

v = rω

( tangential speed = distance to axis × angular speed )



Rolling Motion
A rolling object moves along a surface as it rotates. Consider a
wheel:

 10.9 Rolling Motion of a Rigid Object 317

Figure 10.23  Two points on a 
rolling object take different paths 
through space.

One light source at the center of a 
rolling cylinder and another at one 
point on the rim illustrate the 
different paths these two points take. 

The point on the 
rim moves in the 
path called a cycloid 
(red curve).

The center 
moves in a 
straight line 
(green line). 
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moves a linear distance s 5 Ru (see Eq. 10.1a). Therefore, the translational speed of 
the center of mass for pure rolling motion is given by

 vCM 5
ds
dt

5 R 
du

dt
5 Rv (10.28)

where v is the angular speed of the cylinder. Equation 10.28 holds whenever a cyl-
inder or sphere rolls without slipping and is the condition for pure rolling motion. 
The magnitude of the linear acceleration of the center of mass for pure rolling 
motion is

 aCM 5
dvCM 

dt
5 R 

dv

dt
5 Ra (10.29)

where a is the angular acceleration of the cylinder.
 Imagine that you are moving along with a rolling object at speed vCM, staying 
in a frame of reference at rest with respect to the center of mass of the object. As 
you observe the object, you will see the object in pure rotation around its center 
of mass. Figure 10.25a shows the velocities of points at the top, center, and bottom 
of the object as observed by you. In addition to these velocities, every point on the 
object moves in the same direction with speed vCM relative to the surface on which 
it rolls. Figure 10.25b shows these velocities for a nonrotating object. In the refer-
ence frame at rest with respect to the surface, the velocity of a given point on the 
object is the sum of the velocities shown in Figures 10.25a and 10.25b. Figure 10.25c 
shows the results of adding these velocities.
 Notice that the contact point between the surface and object in Figure 10.25c 
has a translational speed of zero. At this instant, the rolling object is moving in 
exactly the same way as if the surface were removed and the object were pivoted at 
point P and spun about an axis passing through P. We can express the total kinetic 
energy of this imagined spinning object as

 K 5 1
2IP v2 (10.30)

where IP is the moment of inertia about a rotation axis through P.

vCM

CM
vCM

vCM
P

CM v ! 0  

P

v ! R

v ! R

CM

P
v ! 0

v ! vCM

v ! vCM " R  ! 2vCMv
v

v

Pure rotation Pure translation Combination of 
translation and rotation

a b c

Figure 10.25 The motion of a 
rolling object can be modeled as 
a combination of pure translation 
and pure rotation.

s ! R

R s

u

u

Figure 10.24 For pure rolling 
motion, as the cylinder rotates 
through an angle u its center 
moves a linear distance s 5 Ru.

Pitfall Prevention 10.6
Equation 10.28 Looks Familiar  
Equation 10.28 looks very similar 
to Equation 10.10, so be sure to 
be clear on the difference. Equa-
tion 10.10 gives the tangential 
speed of a point on a rotating 
object located a distance r from 
a fixed rotation axis if the object 
is rotating with angular speed v. 
Equation 10.28 gives the trans-
lational speed of the center of 
mass of a rolling object of radius R 
rotating with angular speed v.

If the outside edge of the wheel does not slip on the surface, then
there is a relation between the angular speed of the wheel’s
rotation and the speed that the wheel itself moves along.

Interestingly, it is also:
vwheel = rω



Centripetal Force

Now consider an object that is rotating about an axis. For example
a puck on a string: 6.1 Extending the Particle in Uniform Circular Motion Model 151

The acceleration is called centripetal acceleration because aSc is directed toward 
the center of the circle. Furthermore, aSc is always perpendicular to vS. (If there 
were a component of acceleration parallel to vS, the particle’s speed would be 
changing.)
 Let us now extend the particle in uniform circular motion model from Section 
4.4 by incorporating the concept of force. Consider a puck of mass m that is tied 
to a string of length r and moves at constant speed in a horizontal, circular path 
as illustrated in Figure 6.1. Its weight is supported by a frictionless table, and the 
string is anchored to a peg at the center of the circular path of the puck. Why does 
the puck move in a circle? According to Newton’s first law, the puck would move 
in a straight line if there were no force on it; the string, however, prevents motion 
along a straight line by exerting on the puck a radial force F

S
r that makes it follow 

the circular path. This force is directed along the string toward the center of the 
circle as shown in Figure 6.1.
 If Newton’s second law is applied along the radial direction, the net force caus-
ing the centripetal acceleration can be related to the acceleration as follows:

 a  F 5 mac 5 m 
v2

r  (6.1)

A force causing a centripetal acceleration acts toward the center of the circular 
path and causes a change in the direction of the velocity vector. If that force 
should vanish, the object would no longer move in its circular path; instead, it 
would move along a straight-line path tangent to the circle. This idea is illustrated 
in Figure 6.2 for the puck moving in a circular path at the end of a string in a 
horizontal plane. If the string breaks at some instant, the puck moves along the 
straight-line path that is tangent to the circle at the position of the puck at this 
instant.

Q uick Quiz 6.1 You are riding on a Ferris wheel that is rotating with constant 
speed. The car in which you are riding always maintains its correct upward ori-
entation; it does not invert. (i) What is the direction of the normal force on you 
from the seat when you are at the top of the wheel? (a) upward (b) downward  
(c) impossible to determine (ii) From the same choices, what is the direction of 
the net force on you when you are at the top of the wheel?

�W Force causing centripetal  
acceleration

m

r

r

r

F
S

F 
S

A force F  , directed 
toward the center 
of the circle, keeps 
the puck moving 
in its circular path.

S
r

Figure 6.1 An overhead view of a 
puck moving in a circular path in a 
horizontal plane.

Figure 6.2 The string holding the 
puck in its circular path breaks.

r

When the 
string breaks, 
the puck
moves in the
direction 
tangent
to the circle. 

vS

Pitfall Prevention 6.1
Direction of Travel When  
the String Is Cut Study Figure 
6.2 very carefully. Many students 
(wrongly) think that the puck will 
move radially away from the center 
of the circle when the string is cut. 
The velocity of the puck is tangent 
to the circle. By Newton’s first law, 
the puck continues to move in 
the same direction in which it is 
moving just as the force from the 
string disappears. 



Centripetal Force
If an object moves on a circular path, its velocity must always be
changing. ⇒ It is accelerating.

Fnet = ma ⇒ Fnet 6= 0

Any object moving in a circular (or curved) path must be
experiencing a force.

We call this the centripetal force.

152 Chapter 6 Circular Motion and Other Applications of Newton’s Laws

 

Example 6.1   The Conical Pendulum 

A small ball of mass m is suspended from a string of length L. The ball revolves 
with constant speed v in a horizontal circle of radius r as shown in Figure 6.3. 
(Because the string sweeps out the surface of a cone, the system is known as a 
conical pendulum.) Find an expression for v in terms of the geometry in Figure 6.3.

Conceptualize Imagine the motion of the ball in Figure 6.3a and convince your-
self that the string sweeps out a cone and that the ball moves in a horizontal circle.

Categorize The ball in Figure 6.3 does not accelerate vertically. Therefore, we 
model it as a particle in equilibrium in the vertical direction. It experiences a cen-
tripetal acceleration in the horizontal direction, so it is modeled as a particle in 
uniform circular motion in this direction.

Analyze Let u represent the angle between the string and the vertical. In the dia-
gram of forces acting on the ball in Figure 6.3b, the force T

S
 exerted by the string on the ball is resolved into a vertical 

component T cos u and a horizontal component T sin u acting toward the center of the circular path.

AM

S O L U T I O N

Apply the particle in equilibrium model in the vertical 
direction:

o Fy 5 T cos u 2 mg 5 0

(1)   T cos u 5 mg

Use Equation 6.1 from the particle in uniform circular 
motion model in the horizontal direction:

(2)   a  Fx 5 T sin u 5 mac 5
mv2

r

Divide Equation (2) by Equation (1) and use  
sin u/cos u 5 tan u:

tan u 5
v2

rg

Solve for v:  v 5 "rg tan u

Incorporate r 5 L sin u from the geometry in Figure 6.3a:  v 5  "Lg sin u tan u

Finalize Notice that the speed is independent of the mass of the ball. Consider what happens when u goes to 908 so 
that the string is horizontal. Because the tangent of 908 is infinite, the speed v is infinite, which tells us the string can-
not possibly be horizontal. If it were, there would be no vertical component of the force T

S
 to balance the gravitational 

force on the ball. That is why we mentioned in regard to Figure 6.1 that the puck’s weight in the figure is supported by 
a frictionless table.

Imagine a moving object that can be mod-
eled as a particle. If it moves in a circular 
path of radius r at a constant speed v, it 
experiences a centripetal acceleration.  
Because the particle is accelerating, there 
must be a net force acting on the particle. 
That force is directed toward the center of 
the circular path and is given by 

 a  F 5 mac 5 m 
v2

r
 (6.1)

Analysis Model   Particle in Uniform Circular Motion (Extension)

Examples

acting on a rock twirled in a circle

traveling around the Sun in a perfectly 
circular orbit (Chapter 13)

particle moving in a uniform magnetic field (Chapter 29)

nucleus in the Bohr model of the hydrogen atom (Chapter 42)
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Figure 6.3 (Example 6.1) (a) A 
conical pendulum. The path of the 
ball is a horizontal circle. (b) The 
forces acting on the ball.

1Figures from Serway & Jewett.
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force on the ball. That is why we mentioned in regard to Figure 6.1 that the puck’s weight in the figure is supported by 
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path of radius r at a constant speed v, it 
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Uniform Circular Motion

For an object moving in a circle at constant speed v ,

a = ac =
v2

r
= rω2

This gives the expression for centripetal force!

F = ma

so,

Fc =
mv2

r
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Centripetal Force

Something must provide this force: 6.1 Extending the Particle in Uniform Circular Motion Model 151

The acceleration is called centripetal acceleration because aSc is directed toward 
the center of the circle. Furthermore, aSc is always perpendicular to vS. (If there 
were a component of acceleration parallel to vS, the particle’s speed would be 
changing.)
 Let us now extend the particle in uniform circular motion model from Section 
4.4 by incorporating the concept of force. Consider a puck of mass m that is tied 
to a string of length r and moves at constant speed in a horizontal, circular path 
as illustrated in Figure 6.1. Its weight is supported by a frictionless table, and the 
string is anchored to a peg at the center of the circular path of the puck. Why does 
the puck move in a circle? According to Newton’s first law, the puck would move 
in a straight line if there were no force on it; the string, however, prevents motion 
along a straight line by exerting on the puck a radial force F

S
r that makes it follow 

the circular path. This force is directed along the string toward the center of the 
circle as shown in Figure 6.1.
 If Newton’s second law is applied along the radial direction, the net force caus-
ing the centripetal acceleration can be related to the acceleration as follows:

 a  F 5 mac 5 m 
v2

r  (6.1)

A force causing a centripetal acceleration acts toward the center of the circular 
path and causes a change in the direction of the velocity vector. If that force 
should vanish, the object would no longer move in its circular path; instead, it 
would move along a straight-line path tangent to the circle. This idea is illustrated 
in Figure 6.2 for the puck moving in a circular path at the end of a string in a 
horizontal plane. If the string breaks at some instant, the puck moves along the 
straight-line path that is tangent to the circle at the position of the puck at this 
instant.

Q uick Quiz 6.1 You are riding on a Ferris wheel that is rotating with constant 
speed. The car in which you are riding always maintains its correct upward ori-
entation; it does not invert. (i) What is the direction of the normal force on you 
from the seat when you are at the top of the wheel? (a) upward (b) downward  
(c) impossible to determine (ii) From the same choices, what is the direction of 
the net force on you when you are at the top of the wheel?
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Figure 6.1 An overhead view of a 
puck moving in a circular path in a 
horizontal plane.

Figure 6.2 The string holding the 
puck in its circular path breaks.

r

When the 
string breaks, 
the puck
moves in the
direction 
tangent
to the circle. 

vS

Pitfall Prevention 6.1
Direction of Travel When  
the String Is Cut Study Figure 
6.2 very carefully. Many students 
(wrongly) think that the puck will 
move radially away from the center 
of the circle when the string is cut. 
The velocity of the puck is tangent 
to the circle. By Newton’s first law, 
the puck continues to move in 
the same direction in which it is 
moving just as the force from the 
string disappears. 

It could be tension in a rope.



Centripetal Force

Something must provide this force: 

Example 6.2   How Fast Can It Spin? 

A puck of mass 0.500 kg is attached to the end of a cord 1.50 m long. The puck moves in a horizontal circle as shown in 
Figure 6.1. If the cord can withstand a maximum tension of 50.0 N, what is the maximum speed at which the puck can 
move before the cord breaks? Assume the string remains horizontal during the motion.

Conceptualize It makes sense that the stronger the cord, the faster the puck can move before the cord breaks. Also, we 
expect a more massive puck to break the cord at a lower speed. (Imagine whirling a bowling ball on the cord!)

Categorize Because the puck moves in a circular path, we model it as a particle in uniform circular motion.

AM

S O L U T I O N

Analyze Incorporate the tension and the centripetal acceler-
ation into Newton’s second law as described by Equation 6.1:

T 5 m 
v2

r
 

continued

Solve for v: (1)   v 5 ÅTr
m

  

Example 6.3   What Is the Maximum Speed of the Car? 

A 1 500-kg car moving on a flat, horizontal road negotiates a curve as shown 
in Figure 6.4a. If the radius of the curve is 35.0 m and the coefficient of static 
friction between the tires and dry pavement is 0.523, find the maximum speed 
the car can have and still make the turn successfully.

Conceptualize Imagine that the curved roadway is part of a large circle so 
that the car is moving in a circular path.

Categorize Based on the Conceptualize step of the problem, we model the car 
as a particle in uniform circular motion in the horizontal direction. The car is not 
accelerating vertically, so it is modeled as a particle in equilibrium in the vertical 
direction.

Analyze Figure 6.4b shows the forces on the car. The force that enables the 
car to remain in its circular path is the force of static friction. (It is static 
because no slipping occurs at the point of contact between road and tires. If 
this force of static friction were zero—for example, if the car were on an icy 
road—the car would continue in a straight line and slide off the curved road.) 
The maximum speed vmax the car can have around the curve is the speed at 
which it is on the verge of skidding outward. At this point, the friction force 
has its maximum value fs,max 5 msn.

AM

S O L U T I O N

Find the maximum speed the puck can have, which corre-
sponds to the maximum tension the string can withstand:

vmax 5 ÅTmaxr
m

5 Å 150.0 N 2 11.50 m 2
0.500 kg

5  12.2 m/s

Finalize Equation (1) shows that v increases with T and decreases with larger m, as we expected from our conceptual-
ization of the problem.

Suppose the puck moves in a circle of larger radius at the same speed v. Is the cord more likely or less 
likely to break?

Answer The larger radius means that the change in the direction of the velocity vector will be smaller in a given time 
interval. Therefore, the acceleration is smaller and the required tension in the string is smaller. As a result, the string 
is less likely to break when the puck travels in a circle of larger radius.

WHAT IF ?

nS

fs
S

 

fs
S

 

mgS 

a

b

Figure 6.4 (Example 6.3) (a) The force 
of static friction directed toward the center 
of the curve keeps the car moving in a cir-
cular path. (b) The forces acting on the car.

 6.1 Extending the Particle in Uniform Circular Motion Model 153

It could be friction.



Centripetal Force

Consider the example of a string constraining the motion of a puck: 6.1 Extending the Particle in Uniform Circular Motion Model 151

The acceleration is called centripetal acceleration because aSc is directed toward 
the center of the circle. Furthermore, aSc is always perpendicular to vS. (If there 
were a component of acceleration parallel to vS, the particle’s speed would be 
changing.)
 Let us now extend the particle in uniform circular motion model from Section 
4.4 by incorporating the concept of force. Consider a puck of mass m that is tied 
to a string of length r and moves at constant speed in a horizontal, circular path 
as illustrated in Figure 6.1. Its weight is supported by a frictionless table, and the 
string is anchored to a peg at the center of the circular path of the puck. Why does 
the puck move in a circle? According to Newton’s first law, the puck would move 
in a straight line if there were no force on it; the string, however, prevents motion 
along a straight line by exerting on the puck a radial force F

S
r that makes it follow 

the circular path. This force is directed along the string toward the center of the 
circle as shown in Figure 6.1.
 If Newton’s second law is applied along the radial direction, the net force caus-
ing the centripetal acceleration can be related to the acceleration as follows:

 a  F 5 mac 5 m 
v2

r  (6.1)

A force causing a centripetal acceleration acts toward the center of the circular 
path and causes a change in the direction of the velocity vector. If that force 
should vanish, the object would no longer move in its circular path; instead, it 
would move along a straight-line path tangent to the circle. This idea is illustrated 
in Figure 6.2 for the puck moving in a circular path at the end of a string in a 
horizontal plane. If the string breaks at some instant, the puck moves along the 
straight-line path that is tangent to the circle at the position of the puck at this 
instant.

Q uick Quiz 6.1 You are riding on a Ferris wheel that is rotating with constant 
speed. The car in which you are riding always maintains its correct upward ori-
entation; it does not invert. (i) What is the direction of the normal force on you 
from the seat when you are at the top of the wheel? (a) upward (b) downward  
(c) impossible to determine (ii) From the same choices, what is the direction of 
the net force on you when you are at the top of the wheel?

�W Force causing centripetal  
acceleration

m

r

r

r

F
S

F 
S

A force F  , directed 
toward the center 
of the circle, keeps 
the puck moving 
in its circular path.

S
r

Figure 6.1 An overhead view of a 
puck moving in a circular path in a 
horizontal plane.

Figure 6.2 The string holding the 
puck in its circular path breaks.
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Pitfall Prevention 6.1
Direction of Travel When  
the String Is Cut Study Figure 
6.2 very carefully. Many students 
(wrongly) think that the puck will 
move radially away from the center 
of the circle when the string is cut. 
The velocity of the puck is tangent 
to the circle. By Newton’s first law, 
the puck continues to move in 
the same direction in which it is 
moving just as the force from the 
string disappears. 



Centripetal Force

Question. What will the puck do if the string breaks?

(A) Fly radially outward.

(B) Continue along the circle.

(C) Move tangentially to the circle.
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The acceleration is called centripetal acceleration because aSc is directed toward 
the center of the circle. Furthermore, aSc is always perpendicular to vS. (If there 
were a component of acceleration parallel to vS, the particle’s speed would be 
changing.)
 Let us now extend the particle in uniform circular motion model from Section 
4.4 by incorporating the concept of force. Consider a puck of mass m that is tied 
to a string of length r and moves at constant speed in a horizontal, circular path 
as illustrated in Figure 6.1. Its weight is supported by a frictionless table, and the 
string is anchored to a peg at the center of the circular path of the puck. Why does 
the puck move in a circle? According to Newton’s first law, the puck would move 
in a straight line if there were no force on it; the string, however, prevents motion 
along a straight line by exerting on the puck a radial force F
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the circular path. This force is directed along the string toward the center of the 
circle as shown in Figure 6.1.
 If Newton’s second law is applied along the radial direction, the net force caus-
ing the centripetal acceleration can be related to the acceleration as follows:
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path and causes a change in the direction of the velocity vector. If that force 
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Orbits

A centripetal force also holds Earth in orbit around the Sun.

What is the force due to?

1Figure from EarthSky.org.



A Fictitious Force: Centrifugal force

“fictitious” → fictional.

The centrifugal force is the “force” that makes you feel sucked to
the outside in a turn:
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force has acted on the puck to cause it to accelerate. We call an apparent force such 
as this one a fictitious force because it is not a real force and is due only to observa-
tions made in an accelerated reference frame. A fictitious force appears to act on an 
object in the same way as a real force. Real forces are always interactions between 
two objects, however, and you cannot identify a second object for a fictitious force. 
(What second object is interacting with the puck to cause it to accelerate?) In gen-
eral, simple fictitious forces appear to act in the direction opposite that of the acceler-
ation of the noninertial frame. For example, the train accelerates forward and there 
appears to be a fictitious force causing the puck to slide toward the back of the train.
 The train example describes a fictitious force due to a change in the train’s 
speed. Another fictitious force is due to the change in the direction of the veloc-
ity vector. To understand the motion of a system that is noninertial because of a 
change in direction, consider a car traveling along a highway at a high speed and 
approaching a curved exit ramp on the left as shown in Figure 6.10a. As the car 
takes the sharp left turn on the ramp, a person sitting in the passenger seat leans or 
slides to the right and hits the door. At that point the force exerted by the door on 
the passenger keeps her from being ejected from the car. What causes her to move 
toward the door? A popular but incorrect explanation is that a force acting toward 
the right in Figure 6.10b pushes the passenger outward from the center of the cir-
cular path. Although often called the “centrifugal force,” it is a fictitious force. The 
car represents a noninertial reference frame that has a centripetal  acceleration 
toward the center of its circular path. As a result, the passenger feels an apparent 
force which is outward from the center of the circular path, or to the right in Figure 
6.10b, in the direction opposite that of the acceleration.
 Let us address this phenomenon in terms of Newton’s laws. Before the car enters 
the ramp, the passenger is moving in a straight-line path. As the car enters the 
ramp and travels a curved path, the passenger tends to move along the original 
straight-line path, which is in accordance with Newton’s first law: the natural ten-
dency of an object is to continue moving in a straight line. If a sufficiently large 
force (toward the center of curvature) acts on the passenger as in Figure 6.10c, 
however, she moves in a curved path along with the car. This force is the force of 
friction between her and the car seat. If this friction force is not large enough, the 
seat follows a curved path while the passenger tends to continue in the straight-line 
path of the car before the car began the turn. Therefore, from the point of view of 
an observer in the car, the passenger leans or slides to the right relative to the seat. 
Eventually, she encounters the door, which provides a force large enough to enable 
her to follow the same curved path as the car.
 Another interesting fictitious force is the “Coriolis force.” It is an apparent force 
caused by changing the radial position of an object in a rotating coordinate system.
 For example, suppose you and a friend are on opposite sides of a rotating circular 
platform and you decide to throw a baseball to your friend. Figure 6.11a on page 
160 represents what an observer would see if the ball is viewed while the observer is 
hovering at rest above the rotating platform. According to this observer, who is in an 
inertial frame, the ball follows a straight line as it must according to Newton’s first 
law. At t 5 0 you throw the ball toward your friend, but by the time tf when the ball 
has crossed the platform, your friend has moved to a new position and can’t catch 
the ball. Now, however, consider the situation from your friend’s viewpoint. Your 
friend is in a noninertial reference frame because he is undergoing a centripetal 
acceleration relative to the inertial frame of the Earth’s surface. He starts off seeing 
the baseball coming toward him, but as it crosses the platform, it veers to one side 
as shown in Figure 6.11b. Therefore, your friend on the rotating platform states that 
the ball does not obey Newton’s first law and claims that a sideways force is causing 
the ball to follow a curved path. This fictitious force is called the Coriolis force.
 Fictitious forces may not be real forces, but they can have real effects. An object 
on your dashboard really slides off if you press the accelerator of your car. As you 
ride on a merry-go-round, you feel pushed toward the outside as if due to the ficti-
tious “centrifugal force.” You are likely to fall over and injure yourself due to the 

From the passenger’s frame of 
reference, a force appears to push 
her toward the right door, but it is 
a fictitious force.

Fictitious
force

Relative to the reference frame of 
the Earth, the car seat applies a 
real force (friction) toward the 
left on the passenger, causing her 
to change direction along with 
the rest of the car.

Real
force
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Figure 6.10 (a) A car approach-
ing a curved exit ramp. What 
causes a passenger in the front 
seat to move toward the right-
hand door? (b) Passenger’s frame 
of reference. (c) Reference frame 
of the Earth.
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object in the same way as a real force. Real forces are always interactions between 
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appears to be a fictitious force causing the puck to slide toward the back of the train.
 The train example describes a fictitious force due to a change in the train’s 
speed. Another fictitious force is due to the change in the direction of the veloc-
ity vector. To understand the motion of a system that is noninertial because of a 
change in direction, consider a car traveling along a highway at a high speed and 
approaching a curved exit ramp on the left as shown in Figure 6.10a. As the car 
takes the sharp left turn on the ramp, a person sitting in the passenger seat leans or 
slides to the right and hits the door. At that point the force exerted by the door on 
the passenger keeps her from being ejected from the car. What causes her to move 
toward the door? A popular but incorrect explanation is that a force acting toward 
the right in Figure 6.10b pushes the passenger outward from the center of the cir-
cular path. Although often called the “centrifugal force,” it is a fictitious force. The 
car represents a noninertial reference frame that has a centripetal  acceleration 
toward the center of its circular path. As a result, the passenger feels an apparent 
force which is outward from the center of the circular path, or to the right in Figure 
6.10b, in the direction opposite that of the acceleration.
 Let us address this phenomenon in terms of Newton’s laws. Before the car enters 
the ramp, the passenger is moving in a straight-line path. As the car enters the 
ramp and travels a curved path, the passenger tends to move along the original 
straight-line path, which is in accordance with Newton’s first law: the natural ten-
dency of an object is to continue moving in a straight line. If a sufficiently large 
force (toward the center of curvature) acts on the passenger as in Figure 6.10c, 
however, she moves in a curved path along with the car. This force is the force of 
friction between her and the car seat. If this friction force is not large enough, the 
seat follows a curved path while the passenger tends to continue in the straight-line 
path of the car before the car began the turn. Therefore, from the point of view of 
an observer in the car, the passenger leans or slides to the right relative to the seat. 
Eventually, she encounters the door, which provides a force large enough to enable 
her to follow the same curved path as the car.
 Another interesting fictitious force is the “Coriolis force.” It is an apparent force 
caused by changing the radial position of an object in a rotating coordinate system.
 For example, suppose you and a friend are on opposite sides of a rotating circular 
platform and you decide to throw a baseball to your friend. Figure 6.11a on page 
160 represents what an observer would see if the ball is viewed while the observer is 
hovering at rest above the rotating platform. According to this observer, who is in an 
inertial frame, the ball follows a straight line as it must according to Newton’s first 
law. At t 5 0 you throw the ball toward your friend, but by the time tf when the ball 
has crossed the platform, your friend has moved to a new position and can’t catch 
the ball. Now, however, consider the situation from your friend’s viewpoint. Your 
friend is in a noninertial reference frame because he is undergoing a centripetal 
acceleration relative to the inertial frame of the Earth’s surface. He starts off seeing 
the baseball coming toward him, but as it crosses the platform, it veers to one side 
as shown in Figure 6.11b. Therefore, your friend on the rotating platform states that 
the ball does not obey Newton’s first law and claims that a sideways force is causing 
the ball to follow a curved path. This fictitious force is called the Coriolis force.
 Fictitious forces may not be real forces, but they can have real effects. An object 
on your dashboard really slides off if you press the accelerator of your car. As you 
ride on a merry-go-round, you feel pushed toward the outside as if due to the ficti-
tious “centrifugal force.” You are likely to fall over and injure yourself due to the 
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Example 6.2   How Fast Can It Spin? 

A puck of mass 0.500 kg is attached to the end of a cord 1.50 m long. The puck moves in a horizontal circle as shown in 
Figure 6.1. If the cord can withstand a maximum tension of 50.0 N, what is the maximum speed at which the puck can 
move before the cord breaks? Assume the string remains horizontal during the motion.

Conceptualize It makes sense that the stronger the cord, the faster the puck can move before the cord breaks. Also, we 
expect a more massive puck to break the cord at a lower speed. (Imagine whirling a bowling ball on the cord!)

Categorize Because the puck moves in a circular path, we model it as a particle in uniform circular motion.

AM

S O L U T I O N

Analyze Incorporate the tension and the centripetal acceler-
ation into Newton’s second law as described by Equation 6.1:

T 5 m 
v2

r
 

continued

Solve for v: (1)   v 5 ÅTr
m

  

Example 6.3   What Is the Maximum Speed of the Car? 

A 1 500-kg car moving on a flat, horizontal road negotiates a curve as shown 
in Figure 6.4a. If the radius of the curve is 35.0 m and the coefficient of static 
friction between the tires and dry pavement is 0.523, find the maximum speed 
the car can have and still make the turn successfully.

Conceptualize Imagine that the curved roadway is part of a large circle so 
that the car is moving in a circular path.

Categorize Based on the Conceptualize step of the problem, we model the car 
as a particle in uniform circular motion in the horizontal direction. The car is not 
accelerating vertically, so it is modeled as a particle in equilibrium in the vertical 
direction.

Analyze Figure 6.4b shows the forces on the car. The force that enables the 
car to remain in its circular path is the force of static friction. (It is static 
because no slipping occurs at the point of contact between road and tires. If 
this force of static friction were zero—for example, if the car were on an icy 
road—the car would continue in a straight line and slide off the curved road.) 
The maximum speed vmax the car can have around the curve is the speed at 
which it is on the verge of skidding outward. At this point, the friction force 
has its maximum value fs,max 5 msn.

AM

S O L U T I O N

Find the maximum speed the puck can have, which corre-
sponds to the maximum tension the string can withstand:

vmax 5 ÅTmaxr
m

5 Å 150.0 N 2 11.50 m 2
0.500 kg

5  12.2 m/s

Finalize Equation (1) shows that v increases with T and decreases with larger m, as we expected from our conceptual-
ization of the problem.

Suppose the puck moves in a circle of larger radius at the same speed v. Is the cord more likely or less 
likely to break?

Answer The larger radius means that the change in the direction of the velocity vector will be smaller in a given time 
interval. Therefore, the acceleration is smaller and the required tension in the string is smaller. As a result, the string 
is less likely to break when the puck travels in a circle of larger radius.

WHAT IF ?

nS

fs
S

 

fs
S

 

mgS 

a

b

Figure 6.4 (Example 6.3) (a) The force 
of static friction directed toward the center 
of the curve keeps the car moving in a cir-
cular path. (b) The forces acting on the car.
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force has acted on the puck to cause it to accelerate. We call an apparent force such 
as this one a fictitious force because it is not a real force and is due only to observa-
tions made in an accelerated reference frame. A fictitious force appears to act on an 
object in the same way as a real force. Real forces are always interactions between 
two objects, however, and you cannot identify a second object for a fictitious force. 
(What second object is interacting with the puck to cause it to accelerate?) In gen-
eral, simple fictitious forces appear to act in the direction opposite that of the acceler-
ation of the noninertial frame. For example, the train accelerates forward and there 
appears to be a fictitious force causing the puck to slide toward the back of the train.
 The train example describes a fictitious force due to a change in the train’s 
speed. Another fictitious force is due to the change in the direction of the veloc-
ity vector. To understand the motion of a system that is noninertial because of a 
change in direction, consider a car traveling along a highway at a high speed and 
approaching a curved exit ramp on the left as shown in Figure 6.10a. As the car 
takes the sharp left turn on the ramp, a person sitting in the passenger seat leans or 
slides to the right and hits the door. At that point the force exerted by the door on 
the passenger keeps her from being ejected from the car. What causes her to move 
toward the door? A popular but incorrect explanation is that a force acting toward 
the right in Figure 6.10b pushes the passenger outward from the center of the cir-
cular path. Although often called the “centrifugal force,” it is a fictitious force. The 
car represents a noninertial reference frame that has a centripetal  acceleration 
toward the center of its circular path. As a result, the passenger feels an apparent 
force which is outward from the center of the circular path, or to the right in Figure 
6.10b, in the direction opposite that of the acceleration.
 Let us address this phenomenon in terms of Newton’s laws. Before the car enters 
the ramp, the passenger is moving in a straight-line path. As the car enters the 
ramp and travels a curved path, the passenger tends to move along the original 
straight-line path, which is in accordance with Newton’s first law: the natural ten-
dency of an object is to continue moving in a straight line. If a sufficiently large 
force (toward the center of curvature) acts on the passenger as in Figure 6.10c, 
however, she moves in a curved path along with the car. This force is the force of 
friction between her and the car seat. If this friction force is not large enough, the 
seat follows a curved path while the passenger tends to continue in the straight-line 
path of the car before the car began the turn. Therefore, from the point of view of 
an observer in the car, the passenger leans or slides to the right relative to the seat. 
Eventually, she encounters the door, which provides a force large enough to enable 
her to follow the same curved path as the car.
 Another interesting fictitious force is the “Coriolis force.” It is an apparent force 
caused by changing the radial position of an object in a rotating coordinate system.
 For example, suppose you and a friend are on opposite sides of a rotating circular 
platform and you decide to throw a baseball to your friend. Figure 6.11a on page 
160 represents what an observer would see if the ball is viewed while the observer is 
hovering at rest above the rotating platform. According to this observer, who is in an 
inertial frame, the ball follows a straight line as it must according to Newton’s first 
law. At t 5 0 you throw the ball toward your friend, but by the time tf when the ball 
has crossed the platform, your friend has moved to a new position and can’t catch 
the ball. Now, however, consider the situation from your friend’s viewpoint. Your 
friend is in a noninertial reference frame because he is undergoing a centripetal 
acceleration relative to the inertial frame of the Earth’s surface. He starts off seeing 
the baseball coming toward him, but as it crosses the platform, it veers to one side 
as shown in Figure 6.11b. Therefore, your friend on the rotating platform states that 
the ball does not obey Newton’s first law and claims that a sideways force is causing 
the ball to follow a curved path. This fictitious force is called the Coriolis force.
 Fictitious forces may not be real forces, but they can have real effects. An object 
on your dashboard really slides off if you press the accelerator of your car. As you 
ride on a merry-go-round, you feel pushed toward the outside as if due to the ficti-
tious “centrifugal force.” You are likely to fall over and injure yourself due to the 
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Rotation and Force Question

Two pennies are place on a circular rotating platform, one near to
the center, the other, towards the outside rim. The platform starts
at rest and is slowly spun faster and faster (increasing angular
speed). Which penny slides off the platform first?

(A) The one near the center.

(B) The one near the rim.
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Rotating reference frame

If you are in a rotating frame, you can describe your world as if it
is at rest by adding a fictitious outward centrifugal force to your
physics.

You can use this to simulate gravity: for example, in rotating space
stations, eg. in the films 2001, Elysium, Interstellar.

Water in a bucket...
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Rotating Frames: Coriolis “Force”

There is another fictitious force that non-inertial observers see in a
rotating frame.

160 Chapter 6 Circular Motion and Other Applications of Newton’s Laws

Coriolis force if you walk along a radial line while a merry-go-round rotates. (One 
of the authors did so and suffered a separation of the ligaments from his ribs when 
he fell over.) The Coriolis force due to the rotation of the Earth is responsible for 
rotations of hurricanes and for large-scale ocean currents.

Q uick Quiz 6.3 Consider the passenger in the car making a left turn in Figure 6.10.  
Which of the following is correct about forces in the horizontal direction if she 
is making contact with the right-hand door? (a) The passenger is in equilibrium 
between real forces acting to the right and real forces acting to the left. (b) The 
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By the time tf  that the ball arrives at the other side 
of the platform, your friend is no longer there to 
catch it. According to this observer, the ball follows 
a straight-line path, consistent with Newton’s laws.

From your friend’s point of view, the ball veers to 
one side during its flight. Your friend introduces a 
fictitious force to explain this deviation from the 
expected path.

a b

Figure 6.11 You and your friend stand at the edge of a rotating circular platform. You throw the 
ball at t 5 0 in the direction of your friend. (a) Overhead view observed by someone in an inertial ref-
erence frame attached to the Earth. The ground appears stationary, and the platform rotates clock-
wise. (b) Overhead view observed by someone in an inertial reference frame attached to the platform. 
The platform appears stationary, and the ground rotates counterclockwise.

Pitfall Prevention 6.2
Centrifugal Force The commonly 
heard phrase “centrifugal force” 
is described as a force pulling 
outward on an object moving in a 
circular path. If you are feeling a 
“centrifugal force” on a rotating 
carnival ride, what is the other 
object with which you are interact-
ing? You cannot identify another 
object because it is a fictitious 
force that occurs when you are in 
a noninertial reference frame. 

Example 6.7   Fictitious Forces in Linear Motion 

A small sphere of mass m hangs by a cord from the ceiling of a boxcar that is accelerating to the right as shown in Fig-
ure 6.12. Both the inertial observer on the ground in Figure 6.12a and the noninertial observer on the train in Figure 
6.12b agree that the cord makes an angle u with respect to the vertical. The noninertial observer claims that a force, 
which we know to be fictitious, causes the observed deviation of the cord from the vertical. How is the magnitude of 
this force related to the boxcar’s acceleration measured by the inertial observer in Figure 6.12a?

Conceptualize Place yourself in the role of each of the two observers in Figure 6.12. As the inertial observer on the 
ground, you see the boxcar accelerating and know that the deviation of the cord is due to this acceleration. As the 
noninertial observer on the boxcar, imagine that you ignore any effects of the car’s motion so that you are not aware of 
its acceleration. Because you are unaware of this acceleration, you claim that a force is pushing sideways on the sphere 
to cause the deviation of the cord from the vertical. To make the conceptualization more real, try running from rest 
while holding a hanging object on a string and notice that the string is at an angle to the vertical while you are acceler-
ating, as if a force is pushing the object backward.

AM

S O L U T I O N

The Coriolis “force” appears as a fictitious sideways force to a
non-inertial observer.



Rotating Frames: Coriolis “Force”

We can detect the effect of Earth’s rotation: they manifest as
Coriolis effects.

eg. ocean surface currents:

1Figure from http://www.seos-project.eu/



Torque
Torque is a force causing a rotation.

Torque = lever arm × force

300 Chapter 10 Rotation of a Rigid Object About a Fixed Axis

(C) What is the angular acceleration of the compact disc over the 4 473-s time interval?

Categorize  We again model the disc as a rigid object under constant angular acceleration. In this case, Equation 10.6 gives 
the value of the constant angular acceleration. Another approach is to use Equation 10.4 to find the average angular 
acceleration. In this case, we are not assuming the angular acceleration is constant. The answer is the same from both 
equations; only the interpretation of the result is different.

S O L U T I O N

Analyze  Use Equation 10.6 to find the angular 
acceleration: a 5

vf 2 vi

t
5

22 rad/s 2 57 rad/s
4 473 s

5 27.6 3 1023 rad/s2

Finalize  The disc experiences a very gradual decrease in its rotation rate, as expected from the long time interval 
required for the angular speed to change from the initial value to the final value. In reality, the angular acceleration of 
the disc is not constant. Problem 90 allows you to explore the actual time behavior of the angular acceleration.

Do the same for the outer track: vf 5
v
rf

5
1.3 m/s

5.8 3 1022 m
5 22 rad/s 5 2.1 3 102 rev/min

Use Equation 10.9 to find the angular displacement of 
the disc at t 5 4 473 s:

Du 5 uf 2 ui 5 1
2 1vi 1 vf 2 t 

5 1
2 157 rad/s 1 22 rad/s 2 14 473 s 2 5 1.8 3 105 rad

The CD player adjusts the angular speed v of the disc within this range so that information moves past the objective 
lens at a constant rate.

(B)  The maximum playing time of a standard music disc is 74 min and 33 s. How many revolutions does the disc 
make during that time?

Categorize  From part (A), the angular speed decreases as the disc plays. Let us assume it decreases steadily, with a 
constant. We can then apply the rigid object under constant angular acceleration model to the disc.

Analyze  If t 5 0 is the instant the disc begins rotating, with angular speed of 57 rad/s, the final value of the time t is 
(74 min)(60 s/min) 1 33 s 5 4 473 s. We are looking for the angular displacement Du during this time interval.

Convert this angular displacement to revolutions: Du 5 11.8 3 105 rad 2 a 1 rev
2p rad

b 5 2.8 3 104 rev

 

▸ 10.2 c o n t i n u e d

10.4 Torque
In our study of translational motion, after investigating the description of motion, 
we studied the cause of changes in motion: force. We follow the same plan here: 
What is the cause of changes in rotational motion? 
 Imagine trying to rotate a door by applying a force of magnitude F perpendic-
ular to the door surface near the hinges and then at various distances from the 
hinges. You will achieve a more rapid rate of rotation for the door by applying the 
force near the doorknob than by applying it near the hinges.
 When a force is exerted on a rigid object pivoted about an axis, the object tends 
to rotate about that axis. The tendency of a force to rotate an object about some 
axis is measured by a quantity called torque tS(Greek letter tau). Torque is a vector, 
but we will consider only its magnitude here; we will explore its vector nature in 
Chapter 11.
 Consider the wrench in Figure 10.7 that we wish to rotate around an axis that is 
perpendicular to the page and passes through the center of the bolt. The applied 

r

F sin f

 F cos f

d

O

Line of
action

f

The component F sin f 
tends to rotate the wrench 
about an axis through O.

f

F
S

rS

Figure 10.7  The force F
S

 has a 
greater rotating tendency about an 
axis through O as F increases and 
as the moment arm d increases.

S O L U T I O N

Torque is written τ (“tau”)

τ = d F = (r sinφ)F



Torque

Torque = lever arm × force

τ = (r sinφ)F = d F

The units of torque are N m (Newton meters).



Torque is not Work
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S O L U T I O N

If we take the lever arm to be d , as in d = r sinφ, then we can
write:

τ = d F

This looks a lot like the formula for work: W = Fd cos θ.

Work is measured in Joules, and 1 J = 1 N × 1 m.

But torque is not the same thing at all!



Torque is not Work
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greater rotating tendency about an 
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S O L U T I O N

In the diagram, the force does not move the end of wrench in the
direction of r.

It moves the end of the wrench perpendicular to r. This causes a
rotation.

1Figures from Serway & Jewett.



Torque is a Force causing a Rotation

Technically, torque is a vector: the direction of the vector tells us
whether the rotation will be clockwise or counterclockwise.296 Chapter 10 Rotation of a Rigid Object About a Fixed Axis

direction of vS for the particle is out of the plane of the diagram when the rotation 
is counterclockwise and into the plane of the diagram when the rotation is clock-
wise. To illustrate this convention, it is convenient to use the right-hand rule demon-
strated in Figure 10.3. When the four fingers of the right hand are wrapped in the 
direction of rotation, the extended right thumb points in the direction of vS . The 
direction of aS follows from its definition aS ; dvS  /dt. It is in the same direction as 
vS if the angular speed is increasing in time, and it is antiparallel to vS if the angular 
speed is decreasing in time.

10.2  Analysis Model: Rigid Object Under  
Constant Angular Acceleration

In our study of translational motion, after introducing the kinematic variables, we 
considered the special case of a particle under constant acceleration. We follow the 
same procedure here for a rigid object under constant angular acceleration. 
 Imagine a rigid object such as the CD in Figure 10.1 rotates about a fixed axis 
and has a constant angular acceleration. In parallel with our analysis model of the 
particle under constant acceleration, we generate a new analysis model for rota-
tional motion called the rigid object under constant angular acceleration. We 
develop kinematic relationships for this model in this section. Writing Equation 
10.5 in the form dv 5 a dt and integrating from ti 5 0 to tf 5 t gives

 vf 5 vi 1 at (for constant a) (10.6)

where vi is the angular speed of the rigid object at time t 5 0. Equation 10.6 allows 
us to find the angular speed vf of the object at any later time t. Substituting Equa-
tion 10.6 into Equation 10.3 and integrating once more, we obtain

 uf 5 ui 1 vit 1 1
2at 2 1 for constant a 2  (10.7)

where ui is the angular position of the rigid object at time t 5 0. Equation 10.7 
allows us to find the angular position uf of the object at any later time t. Eliminating 
t from Equations 10.6 and 10.7 gives

 vf
2 5 vi

2 1 2a(uf 2 ui) (for constant a) (10.8)

This equation allows us to find the angular speed vf of the rigid object for any value of  
its angular position uf . If we eliminate a between Equations 10.6 and 10.7, we obtain

 uf 5 ui 1 1
2 1vi 1 vf 2 t 1 for constant a 2  (10.9)

 Notice that these kinematic expressions for the rigid object under constant angu-
lar acceleration are of the same mathematical form as those for a particle under 
constant acceleration (Chapter 2). They can be generated from the equations for 
translational motion by making the substitutions x S u, v S v, and a S a. Table 
10.1 compares the kinematic equations for the rigid object under constant angular 
acceleration and particle under constant acceleration models.

Q uick Quiz 10.2  Consider again the pairs of angular positions for the rigid 
object in Quick Quiz 10.1. If the object starts from rest at the initial angular 
position, moves counterclockwise with constant angular acceleration, and 
arrives at the final angular position with the same angular speed in all three 
cases, for which choice is the angular acceleration the highest?

Rotational kinematic X 
equations

 

 v
S

v
S

Figure 10.3  The right-hand rule 
for determining the direction of the 
angular velocity vector.

Pitfall Prevention 10.3
Just Like Translation? Equations 
10.6 to 10.9 and Table 10.1 might 
suggest that rotational kinematics 
is just like translational kinemat-
ics. That is almost true, with two 
key differences. (1) In rotational 
kinematics, you must specify a 
rotation axis (per Pitfall Pre-
vention 10.2). (2) In rotational 
motion, the object keeps return-
ing to its original orientation; 
therefore, you may be asked for 
the number of revolutions made 
by a rigid object. This concept has 
no analog in translational motion.

Table 10.1 Kinematic Equations for Rotational and Translational Motion
Rigid Object Under Constant Angular Acceleration Particle Under Constant Acceleration
 vf 5 vi 1 at (10.6) vf 5 vi 1 at (2.13)
 uf 5 ui 1 vit 1 12at2 (10.7) xf 5 xi 1 vit 1 12at2 (2.16)
 vf

2 5 vi
2 1 2a(uf 2 ui) (10.8) vf

2 5 vi
2 1 2a(xf 2 xi) (2.17)

 uf 5 ui 1 12(vi 1 vf)t (10.9) xf 5 xi 1 12(vi 1 vf)t (2.15)
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Pitfall Prevention 10.3
Just Like Translation? Equations 
10.6 to 10.9 and Table 10.1 might 
suggest that rotational kinematics 
is just like translational kinemat-
ics. That is almost true, with two 
key differences. (1) In rotational 
kinematics, you must specify a 
rotation axis (per Pitfall Pre-
vention 10.2). (2) In rotational 
motion, the object keeps return-
ing to its original orientation; 
therefore, you may be asked for 
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Table 10.1 Kinematic Equations for Rotational and Translational Motion
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 uf 5 ui 1 vit 1 12at2 (10.7) xf 5 xi 1 vit 1 12at2 (2.16)
 vf

2 5 vi
2 1 2a(uf 2 ui) (10.8) vf

2 5 vi
2 1 2a(xf 2 xi) (2.17)

 uf 5 ui 1 12(vi 1 vf)t (10.9) xf 5 xi 1 12(vi 1 vf)t (2.15)

So, to keep it separate:

• units of torque: N m

• units of work or energy: J

1Figures from Serway & Jewett.



Question

A torque is supplied by applying a force at point A. To produce the
same torque, the force applied at point B must be:

(A) greater

(B) less

(C) the same
1Image from Harbor Freight Tools, www.harborfreight.com

B

A



Question

A torque is supplied by applying a force at point A. To produce the
same torque, the force applied at point B must be:

(A) greater ←
(B) less

(C) the same
1Image from Harbor Freight Tools, www.harborfreight.com

B

A



Moment of Inertia

A solid, rigid object like a ball, a record (disk), a brick, etc. has a
moment of inertia.

Moment of inertia, I, is similar to mass.

A net torque causes an object to rotate, and moment of inertia
measures the object’s resistance to rotation.

Mass behaves the same way! A net force causes the motion
(acceleration) of an object and the mass measures the object’s
resistance to changes in its motion.



Moment of Inertia

If the object’s mass is far from the point of rotation, more torque
is needed to rotate the object (with some angular acceleration).

The barbell on the right has a greater moment of inertia.

1Diagram from Dr. Hunter’s page at http://biomech.byu.edu (by Hewitt?)



Different shapes have different Moments of Inertia
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Table 10.2 Moments of Inertia of Homogeneous Rigid Objects  
with Different Geometries

Hoop or thin
cylindrical shell
ICM ! MR 

2
R

Solid cylinder
or disk

R

Long, thin rod
with rotation axis
through center

Solid sphere

Hollow cylinder

R 2
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rod with
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through end

L
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 2
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 2
3
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2

1
3
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Q uick Quiz 10.5  You turn off your electric drill and find that the time interval 
for the rotating bit to come to rest due to frictional torque in the drill is Dt. You 
replace the bit with a larger one that results in a doubling of the moment of 
inertia of the drill’s entire rotating mechanism. When this larger bit is rotated 
at the same angular speed as the first and the drill is turned off, the frictional 
torque remains the same as that for the previous situation. What is the time 
interval for this second bit to come to rest? (a) 4Dt (b) 2Dt (c) Dt (d) 0.5Dt  
(e) 0.25Dt (f) impossible to determine

Analysis Model   Rigid Object Under a Net Torque
Imagine you are analyzing the motion of an object that is free to rotate about a fixed axis. The cause 
of changes in rotational motion of this object is torque applied to the object and, in parallel to New-
ton’s second law for translation motion, the torque is equal to the product of the moment of inertia of 
the object and the angular acceleration:

 o text 5 Ia (10.18)

The torque, the moment of inertia, and the angular acceleration must all be evaluated around the 
same rotation axis. 

a



Different shapes have different Moments of Inertia

If an object changes shape, its moment of inertia can change also.



Center of Mass

For a solid, rigid object:

center of mass

the point on an object where we can model all the mass as being,
in order to find the object’s trajectory; a freely moving object
rotates about this point

The center of mass of the wrench follows a straight line as the
wrench rotates about that point.



Center of Mass

For a solid, rigid object:

center of mass

the point on an object where we can model all the mass as being,
in order to find the object’s trajectory; a freely moving object
rotates about this point

The center of mass of the wrench follows a straight line as the
wrench rotates about that point.



Center of Mass

1Figure from
http://www4.uwsp.edu/physastr/kmenning/Phys203/Lect18.html



Center of Mass Questions

Where is the center of mass of this pencil?

(A) Location A.

(B) Location B.

(C) Location C.

(D) Location D.

1Pencil picture from kingofwallpapers.com.



Center of Mass Questions

Where is the center of mass of this pencil?

(A) Location A.

(B) Location B.

(C) Location C. ←
(D) Location D.

1Pencil picture from kingofwallpapers.com.



Center of Mass Questions
Where is the center of mass of this hammer?

(A) Location A.

(B) Location B.

(C) Location C.

(D) Location D.
1Hammer picture from pngimg.com.



Center of Mass Questions
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Center of Mass Questions

Where is the center of mass of this boomerang?

(A) Location A.

(B) Location B.

(C) Location C.

(D) Location D.

1Boomerang picture from http://motivatedonline.com.



Center of Mass Questions
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(A) Location A.

(B) Location B.

(C) Location C. ←
(D) Location D.

1Boomerang picture from http://motivatedonline.com.



Center of Gravity

The center of gravity is the single point on an object where we can
model the force of gravity as acting on the object.

Near the surface of the Earth, the Earth’s gravitational field is
uniform, so this is the same as the center of mass.

The center of gravity is the point at which you can balance an
object on a single point of support.

1Figure from http://dev.physicslab.org/



Center of Mass vs Center of Gravity

For a solid, rigid object:

center of mass

the point on an object where we can model all the mass as being,
in order to find the object’s trajectory; a freely moving object
rotates about this point

center of gravity

the single point on an object where we can model the force of
gravity as acting on the object; the point at which you can balance
the object.



Angular Momentum

Angular momentum is a rotational version of momentum.

Remember

momentum = mass × velocity

or p = mv.

Angular momentum, L, can be defined in a similar way:

angular momentum = moment of inertia × angular velocity

L = Iωωω



Angular Momentum: special case

The angular momentum of a small object, with mass m, moving in
a circle is:

L = mvr

This is the linear momentum mv times the distance from the
center of the circle r .

 11.2 Analysis Model: Nonisolated System (Angular Momentum) 339

tional motion that pS plays in translational motion. We call this combination the 
angular momentum of the particle:

The instantaneous angular momentum L
S

 of a particle relative to an axis 
through the origin O is defined by the cross product of the particle’s instanta-
neous position vector rS and its instantaneous linear momentum pS:

 L
S

; rS 3 pS  (11.10)

We can now write Equation 11.9 as

 a tS 5
d L

S

dt
 (11.11)

which is the rotational analog of Newton’s second law, g  F
S

5 d pS/dt. Torque 
causes the angular momentum L

S
 to change just as force causes linear momentum 

pS to change.
 Notice that Equation 11.11 is valid only if g  tS and L

S
 are measured about the 

same axis. Furthermore, the expression is valid for any axis fixed in an inertial frame.
 The SI unit of angular momentum is kg ? m2/s. Notice also that both the mag-
nitude and the direction of L

S
 depend on the choice of axis. Following the right-

hand rule, we see that the direction of L
S

 is perpendicular to the plane formed by 
rS and pS. In Figure 11.4, rS and pS are in the xy plane, so L

S
 points in the z direction. 

Because pS 5 m vS, the magnitude of L
S

 is

 L 5 mvr sin f (11.12)

where f is the angle between rS and pS. It follows that L is zero when rS is parallel to 
pS (f 5 0 or 1808). In other words, when the translational velocity of the particle is 
along a line that passes through the axis, the particle has zero angular momentum 
with respect to the axis. On the other hand, if rS is perpendicular to pS (f 5 908), 
then L 5 mvr. At that instant, the particle moves exactly as if it were on the rim of a 
wheel rotating about the axis in a plane defined by rS and pS.

Q uick Quiz 11.2  Recall the skater described at the beginning of this section.  
Let her mass be m. (i) What would be her angular momentum relative to the 
pole at the instant she is a distance d from the pole if she were skating directly 
toward it at speed v? (a) zero (b) mvd (c) impossible to determine (ii) What 
would be her angular momentum relative to the pole at the instant she is a dis-
tance d from the pole if she were skating at speed v along a straight path that is 
a perpendicular distance a from the pole? (a) zero (b) mvd (c) mva (d) impos-
sible to determine

�W  Angular momentum  
of a particle

Figure 11.4 The angular 
momentum L

S
 of a particle is a  

vector given by L
S

5 rS 3 pS.

O

z

m
y

x
f

The angular momentum L of a 
particle about an axis is a vector 
perpendicular to both the 
particle’s position r relative to 
the axis and its momentum p.

rS

S

rS

pS

S

pS

L
S

S

! !

Pitfall Prevention 11.2
Is Rotation Necessary for Angular 
Momentum? We can define angu-
lar momentum even if the particle 
is not moving in a circular path.  
A particle moving in a straight 
line has angular momentum 
about any axis displaced from  
the path of the particle.

Example 11.3   Angular Momentum of a Particle in Circular Motion

A particle moves in the xy plane in a circular path of radius r as shown in Figure 
11.5. Find the magnitude and direction of its angular momentum relative to an axis 
through O when its velocity is vS.

Conceptualize  The linear momentum of the 
particle is always changing in direction (but not 
in magnitude). You might therefore be tempted 
to conclude that the angular momentum of the 
particle is always changing. In this situation, 
however, that is not the case. Let’s see why.

S O L U T I O N

x

y

m

O

vS

rS 
Figure 11.5  (Example 11.3) A 
particle moving in a circle of radius r 
has an angular momentum about an 
axis through O that has magnitude 
mvr. The vector L

S
5 rS 3 pS points 

out of the page.

continued
1Figure from Serway & Jewett, 9th ed.



Angular Momentum is Conserved

The momentum of a system is constant (does not change) unless
the system is acted upon by an external force.

A similar rule holds for angular momentum:

The angular momentum of a system does not change unless
it acted upon by an external torque.



Angular Momentum is Conserved

The angular momentum of a system does not change unless
it acted upon by an external torque.

This means ∆L = 0 and so Li = Lf .

Suppose an object is changing shape, so that its moment of inertia
gets smaller: If < Ii .

Li = Lf → Iiωi = Ifωf

That means the angular speed increases! ωf > ωi
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Conservation of Angular Momentum

The conservation of angular momentum can be used to orient
spacecraft.352 Chapter 11 Angular Momentum

The angular speed vp is called the precessional frequency. This result is valid 
only when vp ,, v. Otherwise, a much more complicated motion is involved. As 
you can see from Equation 11.20, the condition vp ,, v is met when v is large, 
that is, when the wheel spins rapidly. Furthermore, notice that the precessional 
frequency decreases as v increases, that is, as the wheel spins faster about its axis 
of symmetry.
 As an example of the usefulness of gyroscopes, suppose you are in a spacecraft in 
deep space and you need to alter your trajectory. To fire the engines in the correct 
direction, you need to turn the spacecraft. How, though, do you turn a spacecraft 
in empty space? One way is to have small rocket engines that fire perpendicularly 
out the side of the spacecraft, providing a torque around its center of mass. Such a 
setup is desirable, and many spacecraft have such rockets.
 Let us consider another method, however, that does not require the consump-
tion of rocket fuel. Suppose the spacecraft carries a gyroscope that is not rotating 
as in Figure 11.15a. In this case, the angular momentum of the spacecraft about its 
center of mass is zero. Suppose the gyroscope is set into rotation, giving the gyro-
scope a nonzero angular momentum. There is no external torque on the isolated 
system (spacecraft and gyroscope), so the angular momentum of this system must 
remain zero according to the isolated system (angular momentum) model. The 
zero value can be satisfied if the spacecraft rotates in the direction opposite that 
of the gyroscope so that the angular momentum vectors of the gyroscope and the 
spacecraft cancel, resulting in no angular momentum of the system. The result of 
rotating the gyroscope, as in Figure 11.15b, is that the spacecraft turns around! By 
including three gyroscopes with mutually perpendicular axles, any desired rota-
tion in space can be achieved.
 This effect created an undesirable situation with the Voyager 2 spacecraft during 
its flight. The spacecraft carried a tape recorder whose reels rotated at high speeds. 
Each time the tape recorder was turned on, the reels acted as gyroscopes and the 
spacecraft started an undesirable rotation in the opposite direction. This rotation 
had to be counteracted by Mission Control by using the sideward-firing jets to stop 
the rotation!Figure 11.15  (a) A spacecraft 

carries a gyroscope that is not 
spinning. (b) The gyroscope is set 
into rotation.

a

When the gyroscope
turns counterclockwise,
the spacecraft turns 
clockwise.

b

Summary

Definitions

 Given two vectors A
S

 and B
S

, the vec-
tor product A

S
3 B

S
 is a vector C

S
 having a 

magnitude

 C 5 AB sin u (11.3)

where u is the angle between A
S

 and B
S

. The 
direction of the vector C

S
5 A

S
3 B

S
 is per-

pendicular to the plane formed by A
S

 and B
S

, 
and this direction is determined by the right-
hand rule.

 The torque tS on a particle due to a force F
S

 about an axis 
through the origin in an inertial frame is defined to be

 tS ; rS 3 F
S

 (11.1)

 The angular momentum L
S

 about an axis through the origin 
of a particle having linear momentum pS 5 mvS is

 L
S

; rS 3 pS (11.10)

where rS is the vector position of the particle relative to the origin.
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of symmetry.
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deep space and you need to alter your trajectory. To fire the engines in the correct 
direction, you need to turn the spacecraft. How, though, do you turn a spacecraft 
in empty space? One way is to have small rocket engines that fire perpendicularly 
out the side of the spacecraft, providing a torque around its center of mass. Such a 
setup is desirable, and many spacecraft have such rockets.
 Let us consider another method, however, that does not require the consump-
tion of rocket fuel. Suppose the spacecraft carries a gyroscope that is not rotating 
as in Figure 11.15a. In this case, the angular momentum of the spacecraft about its 
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 The torque tS on a particle due to a force F
S

 about an axis 
through the origin in an inertial frame is defined to be

 tS ; rS 3 F
S

 (11.1)

 The angular momentum L
S

 about an axis through the origin 
of a particle having linear momentum pS 5 mvS is

 L
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where rS is the vector position of the particle relative to the origin.

1Figures from Serway & Jewett, 9th ed.



Conservation of Angular Momentum

The conservation of angular momentum also makes tops and
gyroscopes stable when rotating.

1From http://www.livescience.com/33614-the-cool-physics-of-7-toys.html



Summary
• inelastic collisions

• circular motion / rotation

• torque

• moment of inertia

• center of mass

• angular momentum

Essay Homework due July 19th.

Midterm Thursday, July 20th.

Homework Hewitt,

• prev: Ch 6, onward from page 96, Plug and chug: 1, 3, 5, 7;
Ranking: 1; Exercises: 5, 7, 19, 31, 47

• NEW: Ch 8, onward from page 145. Plug and Chug: 1, 3, 5.
Exercises: 1, 3, 19, 39, 41; Problems: 5.


