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Last time

• rotational motion

• centripetal force vs. centrifugal “force”

• torque

• moment of inertia

• center of mass and center of gravity



Overview

• angular momentum

• Gravity!

• gravitational field

• black holes



Comparison of Linear and Rotational quantities

Linear Quantities Rotational Quantities

x θ

v = ∆x
∆t ω = ∆θ

∆t

a = ∆v
∆t α = ∆ω

∆t

mass, m moment of inertia, I

momentum, p angular momentum, L



Angular Momentum

Angular momentum is a rotational version of momentum.

Remember

momentum = mass × velocity

or p = mv.

Angular momentum, L, can be defined in a similar way:

angular momentum = moment of inertia × angular velocity

L = Iωωω



Angular Momentum: special case

The angular momentum of a small object, with mass m, moving in
a circle is:

L = mvr

This is the linear momentum mv times the distance from the
center of the circle r .

 11.2 Analysis Model: Nonisolated System (Angular Momentum) 339

tional motion that pS plays in translational motion. We call this combination the 
angular momentum of the particle:

The instantaneous angular momentum L
S

 of a particle relative to an axis 
through the origin O is defined by the cross product of the particle’s instanta-
neous position vector rS and its instantaneous linear momentum pS:

 L
S

; rS 3 pS  (11.10)

We can now write Equation 11.9 as

 a tS 5
d L

S

dt
 (11.11)

which is the rotational analog of Newton’s second law, g  F
S

5 d pS/dt. Torque 
causes the angular momentum L

S
 to change just as force causes linear momentum 

pS to change.
 Notice that Equation 11.11 is valid only if g  tS and L

S
 are measured about the 

same axis. Furthermore, the expression is valid for any axis fixed in an inertial frame.
 The SI unit of angular momentum is kg ? m2/s. Notice also that both the mag-
nitude and the direction of L

S
 depend on the choice of axis. Following the right-

hand rule, we see that the direction of L
S

 is perpendicular to the plane formed by 
rS and pS. In Figure 11.4, rS and pS are in the xy plane, so L

S
 points in the z direction. 

Because pS 5 m vS, the magnitude of L
S

 is

 L 5 mvr sin f (11.12)

where f is the angle between rS and pS. It follows that L is zero when rS is parallel to 
pS (f 5 0 or 1808). In other words, when the translational velocity of the particle is 
along a line that passes through the axis, the particle has zero angular momentum 
with respect to the axis. On the other hand, if rS is perpendicular to pS (f 5 908), 
then L 5 mvr. At that instant, the particle moves exactly as if it were on the rim of a 
wheel rotating about the axis in a plane defined by rS and pS.

Q uick Quiz 11.2  Recall the skater described at the beginning of this section.  
Let her mass be m. (i) What would be her angular momentum relative to the 
pole at the instant she is a distance d from the pole if she were skating directly 
toward it at speed v? (a) zero (b) mvd (c) impossible to determine (ii) What 
would be her angular momentum relative to the pole at the instant she is a dis-
tance d from the pole if she were skating at speed v along a straight path that is 
a perpendicular distance a from the pole? (a) zero (b) mvd (c) mva (d) impos-
sible to determine
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Pitfall Prevention 11.2
Is Rotation Necessary for Angular 
Momentum? We can define angu-
lar momentum even if the particle 
is not moving in a circular path.  
A particle moving in a straight 
line has angular momentum 
about any axis displaced from  
the path of the particle.

Example 11.3   Angular Momentum of a Particle in Circular Motion

A particle moves in the xy plane in a circular path of radius r as shown in Figure 
11.5. Find the magnitude and direction of its angular momentum relative to an axis 
through O when its velocity is vS.

Conceptualize  The linear momentum of the 
particle is always changing in direction (but not 
in magnitude). You might therefore be tempted 
to conclude that the angular momentum of the 
particle is always changing. In this situation, 
however, that is not the case. Let’s see why.

S O L U T I O N

x

y

m

O

vS

rS 
Figure 11.5  (Example 11.3) A 
particle moving in a circle of radius r 
has an angular momentum about an 
axis through O that has magnitude 
mvr. The vector L

S
5 rS 3 pS points 

out of the page.

continued
1Figure from Serway & Jewett, 9th ed.



Angular Momentum is Conserved

The momentum of a system is constant (does not change) unless
the system is acted upon by an external force.

A similar rule holds for angular momentum:

The angular momentum of a system does not change unless
it acted upon by an external torque.



Angular Momentum is Conserved

The angular momentum of a system does not change unless
it acted upon by an external torque.

This means ∆L = 0 and so Li = Lf .

Suppose an object is changing shape, so that its moment of inertia
gets smaller: If < Ii .

Li = Lf → Iiωi = Ifωf

That means the angular speed increases! ωf > ωi
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Conservation of Angular Momentum

The conservation of angular momentum can be used to orient
spacecraft.352 Chapter 11 Angular Momentum

The angular speed vp is called the precessional frequency. This result is valid 
only when vp ,, v. Otherwise, a much more complicated motion is involved. As 
you can see from Equation 11.20, the condition vp ,, v is met when v is large, 
that is, when the wheel spins rapidly. Furthermore, notice that the precessional 
frequency decreases as v increases, that is, as the wheel spins faster about its axis 
of symmetry.
 As an example of the usefulness of gyroscopes, suppose you are in a spacecraft in 
deep space and you need to alter your trajectory. To fire the engines in the correct 
direction, you need to turn the spacecraft. How, though, do you turn a spacecraft 
in empty space? One way is to have small rocket engines that fire perpendicularly 
out the side of the spacecraft, providing a torque around its center of mass. Such a 
setup is desirable, and many spacecraft have such rockets.
 Let us consider another method, however, that does not require the consump-
tion of rocket fuel. Suppose the spacecraft carries a gyroscope that is not rotating 
as in Figure 11.15a. In this case, the angular momentum of the spacecraft about its 
center of mass is zero. Suppose the gyroscope is set into rotation, giving the gyro-
scope a nonzero angular momentum. There is no external torque on the isolated 
system (spacecraft and gyroscope), so the angular momentum of this system must 
remain zero according to the isolated system (angular momentum) model. The 
zero value can be satisfied if the spacecraft rotates in the direction opposite that 
of the gyroscope so that the angular momentum vectors of the gyroscope and the 
spacecraft cancel, resulting in no angular momentum of the system. The result of 
rotating the gyroscope, as in Figure 11.15b, is that the spacecraft turns around! By 
including three gyroscopes with mutually perpendicular axles, any desired rota-
tion in space can be achieved.
 This effect created an undesirable situation with the Voyager 2 spacecraft during 
its flight. The spacecraft carried a tape recorder whose reels rotated at high speeds. 
Each time the tape recorder was turned on, the reels acted as gyroscopes and the 
spacecraft started an undesirable rotation in the opposite direction. This rotation 
had to be counteracted by Mission Control by using the sideward-firing jets to stop 
the rotation!Figure 11.15  (a) A spacecraft 

carries a gyroscope that is not 
spinning. (b) The gyroscope is set 
into rotation.

a

When the gyroscope
turns counterclockwise,
the spacecraft turns 
clockwise.

b

Summary

Definitions

 Given two vectors A
S

 and B
S

, the vec-
tor product A

S
3 B

S
 is a vector C

S
 having a 

magnitude

 C 5 AB sin u (11.3)

where u is the angle between A
S

 and B
S

. The 
direction of the vector C

S
5 A

S
3 B

S
 is per-

pendicular to the plane formed by A
S

 and B
S

, 
and this direction is determined by the right-
hand rule.

 The torque tS on a particle due to a force F
S

 about an axis 
through the origin in an inertial frame is defined to be

 tS ; rS 3 F
S

 (11.1)

 The angular momentum L
S

 about an axis through the origin 
of a particle having linear momentum pS 5 mvS is

 L
S

; rS 3 pS (11.10)

where rS is the vector position of the particle relative to the origin.

352 Chapter 11 Angular Momentum
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1Figures from Serway & Jewett, 9th ed.



Conservation of Angular Momentum

The conservation of angular momentum also makes tops and
gyroscopes stable when rotating.

1From http://www.livescience.com/33614-the-cool-physics-of-7-toys.html



Motion of the stars, planets, and falling apples

Part of Newton’s genius was to realize that the same force that
dictates the motion of the stars and planets is what holds us on
the Earth.

This realization is called the Newtonian synthesis.

The planets are also falling, but they are constantly falling around
the Sun.



Law of Gravitation

Newton’s Universal Law of Gravitation states that any two massive
object in the universe interact with each other according to the
same rule.

They attract each other with a force that depends on the two
masses and the distance between their centers:

Force ∼ mass1×mass2
distance×distance

As an equation:

F = G
m1m2

r2

(where G is a constant.)

(In the book, distance r is written with the symbol d instead.)



The Universal Gravitational Constant, G

F = G
m1m2

r2

G sets the scale of the force due to gravity (and makes the units
come out correctly).

G = 6.67× 10−11N m2/kg2

This could also be written:

G = 0.0000000000667N m2/kg2

so it is quite a small number.
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The Universal Gravitational Constant, G

The fact that G is so small indicates that gravity is a weak force.

Force ∼ Rel. strength Range (m) Attract/Repel

Gravitational 10−38 ∞ attractive
Electromagnetic 10−2 ∞ attr. & rep.
Weak Nuclear 10−13 < 10−18 attr. & rep.
Strong Nuclear 1 < 10−15 attr. & rep.

Despite the fact that gravity is a weak force, it is the only one that
(typically) matters on large scales.
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Measurement of G

G was first measured by Henry Cavendish using a torsion balance.

1Diagram from Wikipedia by Chris Burks.



Mass of the Earth

Determining G allowed for a the mass of the Earth ME to be
calculated.

The weight of an object is the force on the object due to gravity,
when the distance is the radius of the Earth.

F = G
mME

r2
= mg

G
ME

R2
E

= g

ME =
gR2

E

G

ME = 6× 1024 kg



Mass of the Earth

ME = 6× 1024 kg

This is a very large number!

And yet, despite the fact that the force on you from the Earth
depends on:

F ∼ your mass × the mass of the Earth

you still have the strength to jump off the floor!

So G must be very small, and the force of gravity very weak.



Value of g

mg = G
mME

r2

g = G
ME

r2

g takes the value 9.8 m s−2 at the Earth’s surface, but it can vary
with height: as r increases, g decreases.



Variation of g

1Figure from www.physbot.co.uk
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Fields

field

A field is any kind of physical quantity that has values specified at
every point in space and time.

Fields were first introduced as a calculation tool. A force-field can
be used to identify the force a particular particle will feel at a
certain point in space and time based on the other objects in its
environment that it will interact with.

Fields are drawn with lines showing the direction of force that a
particle will feel at that point. The density of the lines at that
point in the diagram indicates the approximate magnitude of the
force at that point.
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Gravitational Field

The gravitational field is a force-field.

Gravity attracts two masses even though they are far apart.

A large mass can be thought of as altering the space around it.

Another mass feels a force because of the distortion to the space
where it is located.



Gravitational Field

The gravitational field caused by the Sun-Earth system looks
something like:

1Figure from http://www.launc.tased.edu.au



What about the Gravitational Field inside the Earth?

At the very center of the Earth, the Earth’s mass is distributed all
around equally in each direction.

At that point, you would be equally attracted in all directions.

The net force on you is zero, and the acceleration due to gravity
would also be zero.



What about the Gravitational Field inside the Earth?

1Figure from www.physbot.co.uk
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Form of Newton’s Law of Gravitation

F = G
m1m2

r2

This kind of law is called an inverse square law.

1Figure from Wikipedia.



Other effects of gravity: Waves

Waves in the ocean are the result of displacement of water.

The force of gravity restores the denser fluid to a lower position
but the kinetic energy involved (and also wind) causes these
disturbances to propagate.



Other effects of gravity: Tides

The height of the ocean at a particular point changes with the
time of the day.

In a single day there are two high tides and two low tides.

High tides occur when the Moon is overhead, or on the opposite
side of the Earth.

The Moon’s mass attracts the water of the oceans which pool
beneath the Moon. The Earth is also attracted to the Moon, and
being nearer, is more strongly accelerated than the water on the
far side.



Tides

1Diagram from Wikipedia.



Stronger and weaker tides

Strong tides called spring tides occur when the Sun is also aligned
on the Earth-Moon axis.

Weaker than usual tides called neap tides occur when the Sun is
perpendicular to the Earth-Moon axis and partially cancels out the
Moon’s effect.



Tides

While we tend to notice ocean tides, there are also tidal forces on
the Earth’s crust causing land to rise and fall with the Moon’s
orbit also, albeit to a lesser degree.

The atmosphere also experiences tides, but this is most noticeable
in the upper atmosphere.



Moon tides

The Earth’s force on the Moon also deforms the Moon causing it
to be not-quite spherical.

Since the Earth’s gravitational field is not uniform across the
Moon, the Moon’s center of gravity is not in the same place as its
center of mass: the Earth exerts a torque on the Moon if the
Moon’s long axis is not aligned with the Earth.

This is called tidal locking and is the reason that the same side of
the Moon always faces the Earth.



Einstein’s General Relativity and Gravity

According to relativity, space and time are not really separate but
should be thought of together as spacetime.

General relativity predicts that gravitational fields warp spacetime.

1Image by NASA, http://www.nasa.gov/mission pages/gpb/gpb 012.html



General Relativity and the Orbit of Mercury

General relativity correctly predicts the orbit of Mercury.

The perihelion of a planet’s orbit is the closest point in the orbit to
the sun.

1Figure by Wikipedia user Chris55.



General Relativity and the Orbit of Mercury

The perihelion of Mercury advances over time.

Newtonian mechanics is unable to explain the amount of advance
observed, but general relativity can.

1Figure from HyperPhyiscs.



Einstein’s General Relativity and Gravity

Light follows paths of least time from one point to another.

However, if spacetime is curved, these paths do not appear to us
to be straight lines.

Why?



Non-Euclidean Geometry

Fight paths in the northern hemisphere seem to curve very far
northward when viewed with a flat projection of Earth:

Yet on a sphere, these paths are close to the shortest path between
the two points.

1Globe map from http://web.mit.edu/dsheehan/www/MapsAPIexamples
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Visible effects of curved spacetime

1Image from ESA / Hubble & NASA,
http://apod.nasa.gov/apod/image/1112/lensshoe hubble 3235.jpg



Visible effects of curved spacetime
An Einstein cross: the same object imaged in four places.

1Image from NASA, ESA, and STScI,
http://hubblesite.org/newscenter/archive/releases/1990/20/image/a/



Black holes

1Image by Ute Kraus, Physics education group Kraus, Universität
Hildesheim, Space Time Travel



Black holes
Stars are hot and bright because of continuous nuclear fusion
reactions.

When a star’s fuel runs out, the fusion ends and the gas making up
the star begin to rapidly cool and collapse under the force of
gravity.

Stars with masses greater than about 1.5 times the mass of the
Sun can collapse so strongly that the repulsion of electrons cannot
keep atoms separate: they collapse together to form neutron
stars.

Stars with masses greater than about 3 times the mass of the Sun
experience even more gravitational force and can collapse even
further. These form black holes. Nothing that falls in can come
back out.

Supermassive black holes are found at the centers of galaxies.
These are millions of times the mass of our sun.
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Motion in 2 directions

Imagine an air hockey puck moving with horizontally constant
velocity:

 4.2 Two-Dimensional Motion with Constant Acceleration 81

dimensional) motion. Second, the direction of the velocity vector may change with 
time even if its magnitude (speed) remains constant as in two-dimensional motion 
along a curved path. Finally, both the magnitude and the direction of the velocity 
vector may change simultaneously.

Q uick Quiz 4.1  Consider the following controls in an automobile in motion: gas 
pedal, brake, steering wheel. What are the controls in this list that cause an 
acceleration of the car? (a) all three controls (b) the gas pedal and the brake 
(c) only the brake (d) only the gas pedal (e) only the steering wheel

4.2  Two-Dimensional Motion  
with Constant Acceleration

In Section 2.5, we investigated one-dimensional motion of a particle under con-
stant acceleration and developed the particle under constant acceleration model. 
Let us now consider two-dimensional motion during which the acceleration of a 
particle remains constant in both magnitude and direction. As we shall see, this 
approach is useful for analyzing some common types of motion.
 Before embarking on this investigation, we need to emphasize an important 
point regarding two-dimensional motion. Imagine an air hockey puck moving in 
a straight line along a perfectly level, friction-free surface of an air hockey table. 
Figure 4.4a shows a motion diagram from an overhead point of view of this puck. 
Recall that in Section 2.4 we related the acceleration of an object to a force on the 
object. Because there are no forces on the puck in the horizontal plane, it moves 
with constant velocity in the x direction. Now suppose you blow a puff of air on 
the puck as it passes your position, with the force from your puff of air exactly in 
the y direction. Because the force from this puff of air has no component in the x 
direction, it causes no acceleration in the x direction. It only causes a momentary 
acceleration in the y direction, causing the puck to have a constant y component 
of velocity once the force from the puff of air is removed. After your puff of air on 
the puck, its velocity component in the x direction is unchanged as shown in Figure 
4.4b. The generalization of this simple experiment is that motion in two dimen-
sions can be modeled as two independent motions in each of the two perpendicular 
directions associated with the x and y axes. That is, any influence in the y direc-
tion does not affect the motion in the x direction and vice versa.
 The position vector for a particle moving in the xy plane can be written

 rS 5 x î 1 y ĵ (4.6)

where x, y, and rS change with time as the particle moves while the unit vectors î 
and ĵ remain constant. If the position vector is known, the velocity of the particle 
can be obtained from Equations 4.3 and 4.6, which give

 vS 5
d rS

dt
5

dx
dt

 î 1
dy
dt

 ĵ 5 vx î 1 vy ĵ (4.7)

The horizontal red vectors, 
representing the x 
component of the velocity, 
are the same length in 
both parts of the figure, 
which demonstrates that 
motion in two dimensions 
can be modeled as two 
independent motions in 
perpendicular directions.

x

y

x

y

a

b

Figure 4.4  (a) A puck moves 
across a horizontal air hockey 
table at constant velocity in the x 
direction. (b) After a puff of air 
in the y direction is applied to the 
puck, the puck has gained a y com-
ponent of velocity, but the x com-
ponent is unaffected by the force 
in the perpendicular direction.

If it experiences a momentary upward (in the diagram)
acceleration, it will have a component of velocity upwards. The
horizontal motion remains unchanged!

1Figure from Serway & Jewett, 9th ed.



Motion in 2 directions

Motion in perpendicular directions can be analyzed separately.

5 Projectile Motion

A ball’s velocity can be resolved into horizontal and 
vertical components.

5.3 Components of Vectors

A vertical force (gravity) does
not affect horizontal motion.

The horizontal component of
velocity is constant.

1Drawing by Hewitt, via Pearson.



Projectiles

projectile

Any object that is thrown. We will use this word specifically to
refer to thrown objects that experience a vertical acceleration g .

For projectile motion, we assume air resistance is negligible. This
gives symmetrical parabolic trajectories.

Why do we care?
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Projectile Velocity 4.3 Projectile Motion 85

Figure 4.7 The parabolic path 
of a projectile that leaves the ori-
gin with a velocity vSi . The velocity 
vector vS changes with time in 
both magnitude and direction. 
This change is the result of accel-
eration aS 5 gS in the negative  
y direction.

f
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(x,y)
it
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t21
2 gS 

rS 

vS

Figure 4.8  The position vector 
rSf  of a projectile launched from 
the origin whose initial velocity 
at the origin is vSi . The vector vSit 
would be the displacement of the 
projectile if gravity were absent, 
and the vector 12 gSt 2 is its vertical 
displacement from a straight-line 
path due to its downward gravita-
tional acceleration.
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Figure 4.9 A projectile launched 
over a flat surface from the origin 
at ti 5 0 with an initial velocity 
vSi . The maximum height of the 
projectile is h, and the horizontal 
range is R. At !, the peak of the 
trajectory, the particle has coordi-
nates (R/2, h).

 In Section 4.2, we stated that two-dimensional motion with constant accelera-
tion can be analyzed as a combination of two independent motions in the x and y 
directions, with accelerations ax and ay. Projectile motion can also be handled in 
this way, with acceleration ax 5 0 in the x direction and a constant acceleration ay 5 
2g in the y direction. Therefore, when solving projectile motion problems, use two 
analysis models: (1) the particle under constant velocity in the horizontal direction 
(Eq. 2.7):

xf 5 xi 1 vxit

and (2) the particle under constant acceleration in the vertical direction (Eqs. 
2.13–2.17 with x changed to y and ay = –g):

vyf 5 vyi 2 gt

vy,avg 5
vyi 1 vyf

2

   yf 5 yi 1 1
2 1vyi 1 vyf 2 t 

 yf 5 yi 1 vyit 2 1
2gt 2

vyf
2 5 vyi

2
 2 2g 1 yf 2 yi 2

The horizontal and vertical components of a projectile’s motion are completely 
independent of each other and can be handled separately, with time t as the com-
mon variable for both components.

Q uick Quiz 4.2  (i) As a projectile thrown upward moves in its parabolic path 
(such as in Fig. 4.8), at what point along its path are the velocity and accelera-
tion vectors for the projectile perpendicular to each other? (a) nowhere (b) the 
highest point (c) the launch point (ii) From the same choices, at what point are 
the velocity and acceleration vectors for the projectile parallel to each other?

Horizontal Range and Maximum Height of a Projectile
Before embarking on some examples, let us consider a special case of projectile 
motion that occurs often. Assume a projectile is launched from the origin at ti 5 
0 with a positive vyi component as shown in Figure 4.9 and returns to the same hori-
zontal level. This situation is common in sports, where baseballs, footballs, and golf 
balls often land at the same level from which they were launched.
 Two points in this motion are especially interesting to analyze: the peak point !, 
which has Cartesian coordinates (R/2, h), and the point ", which has coordinates  
(R , 0). The distance R is called the horizontal range of the projectile, and the distance 
h is its maximum height. Let us find h and R mathematically in terms of vi, ui, and g.
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1Figure from Serway & Jewett, 9th ed.
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Figure 4.7 The parabolic path 
of a projectile that leaves the ori-
gin with a velocity vSi . The velocity 
vector vS changes with time in 
both magnitude and direction. 
This change is the result of accel-
eration aS 5 gS in the negative  
y direction.
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rSf  of a projectile launched from 
the origin whose initial velocity 
at the origin is vSi . The vector vSit 
would be the displacement of the 
projectile if gravity were absent, 
and the vector 12 gSt 2 is its vertical 
displacement from a straight-line 
path due to its downward gravita-
tional acceleration.
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Figure 4.9 A projectile launched 
over a flat surface from the origin 
at ti 5 0 with an initial velocity 
vSi . The maximum height of the 
projectile is h, and the horizontal 
range is R. At !, the peak of the 
trajectory, the particle has coordi-
nates (R/2, h).

 In Section 4.2, we stated that two-dimensional motion with constant accelera-
tion can be analyzed as a combination of two independent motions in the x and y 
directions, with accelerations ax and ay. Projectile motion can also be handled in 
this way, with acceleration ax 5 0 in the x direction and a constant acceleration ay 5 
2g in the y direction. Therefore, when solving projectile motion problems, use two 
analysis models: (1) the particle under constant velocity in the horizontal direction 
(Eq. 2.7):

xf 5 xi 1 vxit

and (2) the particle under constant acceleration in the vertical direction (Eqs. 
2.13–2.17 with x changed to y and ay = –g):
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The horizontal and vertical components of a projectile’s motion are completely 
independent of each other and can be handled separately, with time t as the com-
mon variable for both components.

Q uick Quiz 4.2  (i) As a projectile thrown upward moves in its parabolic path 
(such as in Fig. 4.8), at what point along its path are the velocity and accelera-
tion vectors for the projectile perpendicular to each other? (a) nowhere (b) the 
highest point (c) the launch point (ii) From the same choices, at what point are 
the velocity and acceleration vectors for the projectile parallel to each other?

Horizontal Range and Maximum Height of a Projectile
Before embarking on some examples, let us consider a special case of projectile 
motion that occurs often. Assume a projectile is launched from the origin at ti 5 
0 with a positive vyi component as shown in Figure 4.9 and returns to the same hori-
zontal level. This situation is common in sports, where baseballs, footballs, and golf 
balls often land at the same level from which they were launched.
 Two points in this motion are especially interesting to analyze: the peak point !, 
which has Cartesian coordinates (R/2, h), and the point ", which has coordinates  
(R , 0). The distance R is called the horizontal range of the projectile, and the distance 
h is its maximum height. Let us find h and R mathematically in terms of vi, ui, and g.
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← But the y
acceleration
is not zero!



Summary
• center of mass

• angular momentum

• Newton’s Universal Law of Gravitation

• the gravitational field

Essay Homework! due tomorrow.

Midterm Thursday, July 20th.

Homework Hewitt,

• Ch 8, onward from page 145. Plug and Chug: 5.

• Ch 9, onward from page 167. Plug and chug: 1, 3; Ranking 3,
5; Exercises: 7, 11, 53; Problems: 1, 3

• (Will set Tomorrow: Ch 10, onward from page 190. Exercises:
15, 19, 23, 45, 59; Problems: 3)



Essay

Essay Homework due tomorrow.

• Describe the design features of cars that make them safer for
passengers in collisions. Comment on how the design of cars
has changed over time to improve these features. In what
other circumstances might people be involved in collisions?
What is / can be done to make those collisions safer for the
people involved? Make sure use physics principles
(momentum, impulse) in your answers!


