Name:			
i vallie.			

Electric Field

Read from Lesson 4 of the Static Electricity chapter at The Physics Classroom:

http://www.physicsclassroom.com/Class/estatics/u8l4a.html http://www.physicsclassroom.com/Class/estatics/u8l4b.html

MOP	Connection:	Static Electricity: sublevels 10 and 11
1.	The standard metri	c units of measurements for electric field strength are

2.	The direction of the electric field vector is defined as _		

Use the electric field equations to answer the following questions.

- A test charge of $+1.0 \times 10^{-6}$ C experiences a force of 0.050 N. The electric field strength is _____.
- A test charge of $+1.0 \times 10^{-6}$ C experiences a force of 0.10 N. The electric field strength is 4.
- An object with a charge of $2.0x10^{-4}$ C creates an electric field. A test charge of $+1.0x10^{-6}$ C 5. experiences a force of 0.050 N. The electric field strength is _____
- An object with a charge of 2.0×10^{-4} C creates an electric field. A test charge of $+2.0 \times 10^{-6}$ C experiences a force of 0.10 N. The electric field strength is _____.
- An object with a charge of 4.0×10^{-4} C creates an electric field. A test charge of $+1.0 \times 10^{-6}$ C 7. experiences a force of 0.10 N. The electric field strength is ___
- An object with a charge of **Q** creates an electric field. A positive test charge, q, is used to test the strength of the field. Use this scenario to answer the following questions:

- a. If the charge of the test charge \mathbf{q} is doubled, then it will experience (2X, 4X, 1/2, 1/4-th, the same) force; the electric field strength at this location will be (2X, 4X, 1/2, 1/4-th, the same as) the original value.
- b. If the charge of the object **Q** is doubled, then the test charge will experience 1/4-th, the same) force; the electric field strength at this location will be _____ (2X, 4X, 1/2, 1/4-th, the same as) the original value.
- If the distance between the charge and the test charge is doubled, then the test charge will (2X, 4X, 1/2, 1/4-th, the same) force; the electric field strength at this location $\overline{(2X, 4X, 1/2, 1/4}$ -th, the same as) the original value.
- Use your understanding of electric force and electric field to fill in the following table.

	Charge creating the E field (C)	Charge used to test the E field (C)	Force experienced by test charge (N)	Electric Field Intensity (N/C)	Distance (fictional units)
a.	4.0 x10 ⁻⁴ C	1.0 x 10 ⁻⁶ C	0.20 N		d
b.	4.0 x10 ⁻⁴ C	2.0 x 10 ⁻⁶ C		2.0 x10 ⁵ N/C	d
c.	8.0 x10 ⁻⁴ C	1.0 x 10 ⁻⁶ C	0.40 N		d
d.	8.0 x10 ⁻⁴ C	2.0 x 10 ⁻⁶ C		4.0 x10 ⁵ N/C	d
e.	8.0 x10 ⁻⁴ C		0.60 N		d
f.	8.0 x10 ⁻⁴ C	1.0 x 10 ⁻⁶ C		1.0 x10 ⁵ N/C	2d
g.	8.0 x10 ⁻⁴ C	2.0 x 10 ⁻⁶ C			2d
h.	8.0 x10 ⁻⁴ C		0.10 N		2d
i.	4.0 x10 ⁻⁴ C			8.0 x10 ⁵ N/C	0.5 d
j.	4.0 x10 ⁻⁴ C				0.5 d