| Name: | | | | |-----------|--|--|--| | i vallie. | | | | ## **Electric Field** Read from Lesson 4 of the Static Electricity chapter at The Physics Classroom: http://www.physicsclassroom.com/Class/estatics/u8l4a.html http://www.physicsclassroom.com/Class/estatics/u8l4b.html | MOP | Connection: | Static Electricity: sublevels 10 and 11 | |-----|--------------------|---| | 1. | The standard metri | c units of measurements for electric field strength are | | 2. | The direction of the electric field vector is defined as _ | | | |----|--|--|--| Use the electric field equations to answer the following questions. - A test charge of $+1.0 \times 10^{-6}$ C experiences a force of 0.050 N. The electric field strength is _____. - A test charge of $+1.0 \times 10^{-6}$ C experiences a force of 0.10 N. The electric field strength is 4. - An object with a charge of $2.0x10^{-4}$ C creates an electric field. A test charge of $+1.0x10^{-6}$ C 5. experiences a force of 0.050 N. The electric field strength is _____ - An object with a charge of 2.0×10^{-4} C creates an electric field. A test charge of $+2.0 \times 10^{-6}$ C experiences a force of 0.10 N. The electric field strength is _____. - An object with a charge of 4.0×10^{-4} C creates an electric field. A test charge of $+1.0 \times 10^{-6}$ C 7. experiences a force of 0.10 N. The electric field strength is ___ - An object with a charge of **Q** creates an electric field. A positive test charge, q, is used to test the strength of the field. Use this scenario to answer the following questions: - a. If the charge of the test charge \mathbf{q} is doubled, then it will experience (2X, 4X, 1/2, 1/4-th, the same) force; the electric field strength at this location will be (2X, 4X, 1/2, 1/4-th, the same as) the original value. - b. If the charge of the object **Q** is doubled, then the test charge will experience 1/4-th, the same) force; the electric field strength at this location will be _____ (2X, 4X, 1/2, 1/4-th, the same as) the original value. - If the distance between the charge and the test charge is doubled, then the test charge will (2X, 4X, 1/2, 1/4-th, the same) force; the electric field strength at this location $\overline{(2X, 4X, 1/2, 1/4}$ -th, the same as) the original value. - Use your understanding of electric force and electric field to fill in the following table. | | Charge creating
the E field
(C) | Charge used to
test the E field
(C) | Force
experienced by
test charge (N) | Electric Field
Intensity
(N/C) | Distance
(fictional units) | |----|---------------------------------------|---|--|--------------------------------------|-------------------------------| | a. | 4.0 x10 ⁻⁴ C | 1.0 x 10 ⁻⁶ C | 0.20 N | | d | | b. | 4.0 x10 ⁻⁴ C | 2.0 x 10 ⁻⁶ C | | 2.0 x10 ⁵ N/C | d | | c. | 8.0 x10 ⁻⁴ C | 1.0 x 10 ⁻⁶ C | 0.40 N | | d | | d. | 8.0 x10 ⁻⁴ C | 2.0 x 10 ⁻⁶ C | | 4.0 x10 ⁵ N/C | d | | e. | 8.0 x10 ⁻⁴ C | | 0.60 N | | d | | f. | 8.0 x10 ⁻⁴ C | 1.0 x 10 ⁻⁶ C | | 1.0 x10 ⁵ N/C | 2d | | g. | 8.0 x10 ⁻⁴ C | 2.0 x 10 ⁻⁶ C | | | 2d | | h. | 8.0 x10 ⁻⁴ C | | 0.10 N | | 2d | | i. | 4.0 x10 ⁻⁴ C | | | 8.0 x10 ⁵ N/C | 0.5 d | | j. | 4.0 x10 ⁻⁴ C | | | | 0.5 d |