Introduction to Mechanics
 Practice using the Kinematics Equations

Lana Sheridan

De Anza College

Jan 23, 2020

Last time

- how to solve problems
- the kinematics equations

Overview

- derivation of the last kinematics equation
- using kinematics equations
- problem solving practice

The Kinematics Equations

For constant acceleration:

$$
\begin{array}{r}
\overrightarrow{\mathbf{v}}=\overrightarrow{\mathbf{v}}_{0}+\overrightarrow{\mathbf{a}} t \\
\overrightarrow{\Delta \mathbf{x}}=\frac{\overrightarrow{\mathbf{v}}_{0}+\overrightarrow{\mathbf{v}}}{2} t \\
\overrightarrow{\Delta \mathbf{x}}=\overrightarrow{\mathbf{v}}_{0} t+\frac{1}{2} \overrightarrow{\mathbf{a}} t^{2} \\
\overrightarrow{\Delta \boldsymbol{x}}=\overrightarrow{\mathbf{v}} t-\frac{1}{2} \overrightarrow{\mathbf{a}} t^{2} \\
v^{2}=v_{0}^{2}+2 a \Delta x
\end{array}
$$

For zero acceleration:

$$
\overrightarrow{\Delta x}=\overrightarrow{\mathbf{v}} t
$$

The Kinematics Equations: the "no-time" equation

The last equation we will derive is a scalar equation.

The Kinematics Equations: the "no-time" equation

The last equation we will derive is a scalar equation.

$$
\overrightarrow{\Delta x}=\left(\frac{\overrightarrow{\mathbf{v}}_{0}+\overrightarrow{\mathbf{v}}}{2}\right) t
$$

We could also write this as:

$$
(\Delta x) \hat{\mathbf{i}}=\left(\frac{v_{0 x}+v_{x}}{2} t\right) \hat{\mathbf{i}}
$$

where $\Delta x, v_{0 x}$, and v_{x} could each be positive or negative.

The Kinematics Equations: the "no-time" equation

The last equation we will derive is a scalar equation.

$$
\overrightarrow{\Delta x}=\left(\frac{\overrightarrow{\mathbf{v}}_{0}+\overrightarrow{\mathbf{v}}}{2}\right) t
$$

We could also write this as:

$$
(\Delta x) \boldsymbol{f}=\left(\frac{v_{0 x}+v_{x}}{2} t\right) \tilde{\boldsymbol{i}}
$$

where $\Delta x, v_{0 x}$, and v_{x} could each be positive or negative. We do the same for equation (1):

$$
v \hat{\mathbf{i}}=\left(v_{0 x}+a_{x} t\right) \hat{f}
$$

The Kinematics Equations: the "no-time" equation

The last equation we will derive is a scalar equation.

$$
\overrightarrow{\Delta \boldsymbol{x}}=\left(\frac{\overrightarrow{\mathbf{v}}_{0}+\overrightarrow{\mathbf{v}}}{2}\right) t
$$

We could also write this as:

$$
(\Delta x)=\left(\frac{v_{0 x}+v_{x}}{2} t\right)
$$

where $\Delta x, v_{0 x}$, and v_{x} could each be positive or negative. We do the same for equation (1):

$$
v=\left(v_{0 x}+a_{x} t\right)
$$

Rearranging for t :

$$
t=\frac{v_{x}-v_{0 x}}{a_{x}}
$$

The Kinematics Equations: the "no-time" equation

$$
t=\frac{v_{x}-v_{0 x}}{a_{x}} ; \quad \Delta x=\left(\frac{v_{0 x}+v_{x}}{2}\right) t
$$

Substituting for t in our Δx equation:

$$
\begin{aligned}
\Delta x & =\left(\frac{v_{0 x}+v_{x}}{2}\right)\left(\frac{v_{x}-v_{0 x}}{a_{x}}\right) \\
2 a_{x} \Delta x & =\left(v_{0 x}+v_{x}\right)\left(v_{x}-v_{0 x}\right)
\end{aligned}
$$

so,

$$
\begin{equation*}
v_{x}^{2}=v_{0 x}^{2}+2 a_{x} \Delta x \tag{5}
\end{equation*}
$$

Example 2-7, pg 34

Jets at JFK International Airport accelerate from rest at one end of a runway, and must attain takeoff speed before reaching the other end of the runway.
(a) Plane A has acceleration a and takeoff speed $v_{t o}$. What is the minimum length of runway, Δx_{A}, required for this plane? Give a symbolic answer.
(b) Plane B has the same acceleration as plane A, but requires twice the takeoff speed. Find Δx_{B} and compare with Δx_{A}. (c) Find the minimum runway length for plane A if $a=2.20 \mathrm{~m} / \mathrm{s}^{2}$ and $v_{t o}=95.0 \mathrm{~m} / \mathrm{s}$. (These values are typical for a 747 jetliner.)

Example 2-7, pg 34

Jets at JFK International Airport accelerate from rest at one end of a runway, and must attain takeoff speed before reaching the other end of the runway.
(a) Plane A has acceleration a and takeoff speed $v_{t o}$. What is the minimum length of runway, Δx_{A}, required for this plane? Give a symbolic answer.
(b) Plane B has the same acceleration as plane A, but requires twice the takeoff speed. Find Δx_{B} and compare with Δx_{A}. (c) Find the minimum runway length for plane A if $a=2.20 \mathrm{~m} / \mathrm{s}^{2}$ and $v_{t o}=95.0 \mathrm{~m} / \mathrm{s}$. (These values are typical for a 747 jetliner.)

Sketch:

Example 2-7, pg 34

(a) Plane A has acceleration a and takeoff speed $v_{t o}$. What is the minimum length of runway, Δx_{A}, required for this plane? Give a symbolic answer.

Hypothesis: Δx_{A} will be directly proportional to $v_{t o}$ and inversely proportional to the acceleration, a.

Example 2-7, pg 34

(a) Plane A has acceleration a and takeoff speed $v_{t o}$. What is the minimum length of runway, Δx_{A}, required for this plane? Give a symbolic answer.

Hypothesis: Δx_{A} will be directly proportional to $v_{t o}$ and inversely proportional to the acceleration, a.
(b) Plane B has the same acceleration as plane A, but requires twice the takeoff speed. Find Δx_{B} and compare with Δx_{A}.

Hypothesis: Δx_{B} will be twice as big as Δx_{A}.

Example 2-7, pg 34

(a) Plane A has acceleration a and takeoff speed $v_{t o}$. What is the minimum length of runway, Δx_{A}, required for this plane? Give a symbolic answer.

Hypothesis: Δx_{A} will be directly proportional to $v_{t o}$ and inversely proportional to the acceleration, a.
(b) Plane B has the same acceleration as plane A, but requires twice the takeoff speed. Find Δx_{B} and compare with Δx_{A}.

Hypothesis: Δx_{B} will be twice as big as Δx_{A}.
(c) Find the minimum runway length for plane A if $a=2.20 \mathrm{~m} / \mathrm{s}^{2}$ and $v_{t o}=95.0 \mathrm{~m} / \mathrm{s}$.

Hypothesis: I guess a minimum runway length would be about 2 football fields, about 200 m .

Example 2-7, pg 34

Given: $a, v=v_{t o}, v_{0}=0$.
Asked for: Δx.
Strategy: Use equation

$$
v^{2}=v_{0}^{2}+2 a(\Delta x)
$$

Example 2-7, pg 34

Given: $a, v=v_{t o}, v_{0}=0$.
Asked for: Δx.
Strategy: Use equation

$$
v^{2}=v_{0}^{2}+2 a(\Delta x)
$$

(a) Rearrange for Δx :

$$
\begin{aligned}
v_{t o}^{2} & =y_{0}^{2_{1}^{1}}+2 a\left(\Delta x_{A}\right) \\
\Delta x_{A} & =\frac{v_{t o}^{2}}{2 a}
\end{aligned}
$$

Example 2-7, pg 34

Given: $a, v=v_{t o}, v_{0}=0$.
Asked for: Δx.
Strategy: Use equation

$$
v^{2}=v_{0}^{2}+2 a(\Delta x)
$$

(a) Rearrange for Δx :

$$
\begin{aligned}
v_{t o}^{2} & =y_{0}^{2^{1}}+2 a\left(\Delta x_{A}\right) \\
\Delta x_{A} & =\frac{v_{t o}^{2}}{2 a}
\end{aligned}
$$

(b) Now for plane B, $v=2 v_{t o}$:

$$
\begin{aligned}
\left(2 v_{t o}\right)^{2} & =2 a\left(\Delta x_{B}\right) \\
\Delta x_{B} & =\frac{4 v_{t o}^{2}}{2 a} \\
\Delta x_{B} & =4 \Delta x_{A}
\end{aligned}
$$

Example 2-7, pg 34

(c) Find the minimum runway length for plane A if $a=2.20 \mathrm{~m} / \mathrm{s}^{2}$ and $v_{t o}=95.0 \mathrm{~m} / \mathrm{s}$.

Using our expression from (a):

$$
\begin{aligned}
\Delta x_{A} & =\frac{v_{\text {to }}^{2}}{2 a} \\
& =\frac{(95.0 \mathrm{~m} / \mathrm{s})^{2}}{2\left(2.20 \mathrm{~m} / \mathrm{s}^{2}\right)} \\
& =\underline{2.05 \times 10^{3} \mathrm{~m}}
\end{aligned}
$$

Example 2-7, pg 34

Analysis: My hypotheses were not correct!
For part (a), the distance was inversely proportional to the acceleration, but it was proportional to the square of the takeoff velocity.

For part (b), Δx_{B} is four times as big as Δx_{A}. This makes sense because the distance is proportional to the square of the speed.

In part (c), my guess was an order of magnitude too small. The 747 is one of the biggest commercial jets, so it makes sense that it needs a long runway. Looking at Google Maps, the length of the SJC airport is about 3 km , which makes sense if runways need to be at least 2 km .

Using the Kinematics Equations to solve problems

Process:
(1) Identify which quantity we need to find and which ones we are given.
(2) Is there a quantity that we are not given and are not asked for?
(1) If so, use the equation that does not include that quantity.
(2) If there is not, more that one kinematics equation may be required or there may be several equivalent approaches.
(3) Input known quantities and solve.

Example 1

How long would it take a car, starting from rest and accelerating uniformly in a straight line at $5.00 \mathrm{~m} / \mathrm{s}^{2}$, to cover a distance of $200.0 \mathrm{~m}^{1}$
${ }^{1}$ Leduc, "Cracking the AP Physics B Exam" Princeton Review.

Example 1

How long would it take a car, starting from rest and accelerating uniformly in a straight line at $5.00 \mathrm{~m} / \mathrm{s}^{2}$, to cover a distance of 200.0 m? ${ }^{1}$

Draw a sketch.
${ }^{1}$ Leduc, "Cracking the AP Physics B Exam" Princeton Review.

Example 1

How long would it take a car, starting from rest and accelerating uniformly in a straight line at $5.00 \mathrm{~m} / \mathrm{s}^{2}$, to cover a distance of 200.0 m? ${ }^{1}$

Draw a sketch.
Hypothesis: Less than 10 s .
Given: $a=5 \mathrm{~m} / \mathrm{s}^{2}, \Delta x=200 \mathrm{~m}, v_{0}=0 \mathrm{~m} / \mathrm{s}$
Asked for: t
${ }^{1}$ Leduc, "Cracking the AP Physics B Exam" Princeton Review.

Example 1

How long would it take a car, starting from rest and accelerating uniformly in a straight line at $5.00 \mathrm{~m} / \mathrm{s}^{2}$, to cover a distance of 200.0 m? ${ }^{1}$

Draw a sketch.
Hypothesis: Less than 10 s .
Given: $a=5 \mathrm{~m} / \mathrm{s}^{2}, \Delta x=200 \mathrm{~m}, v_{0}=0 \mathrm{~m} / \mathrm{s}$
Asked for: t
Strategy: use

$$
\overrightarrow{\Delta x}=\overrightarrow{\mathbf{v}}_{0} t+\frac{1}{2} \overrightarrow{\mathbf{a}} t^{2}
$$

${ }^{1}$ Leduc, "Cracking the AP Physics B Exam" Princeton Review.

Example 1

How long would it take a car, starting from rest and accelerating uniformly in a straight line at $5.00 \mathrm{~m} / \mathrm{s}^{2}$, to cover a distance of $200.0 \mathrm{~m}^{1}$

$$
\begin{aligned}
\overrightarrow{\Delta \boldsymbol{x}} & =\overrightarrow{\mathbf{v}}_{0} t+\frac{1}{2} \overrightarrow{\mathbf{a}} t^{2} \\
(\Delta x) \boldsymbol{\mathfrak { i }} & =\left(0+\frac{1}{2} a t^{2}\right) \mathbf{f}^{\boldsymbol{i}} \\
t^{2} & =\frac{2 \Delta x}{a} \\
t & =\sqrt{\frac{2 \Delta x}{a}} \\
t & =\sqrt{\frac{2(200 \mathrm{~m})}{5 \mathrm{~m} / \mathrm{s}^{2}}} \\
t & =8.94 \mathrm{~s}
\end{aligned}
$$

${ }^{1}$ Leduc, "Cracking the AP Physics B Exam" Princeton Review.

Example 1

How long would it take a car, starting from rest and accelerating uniformly in a straight line at $5.00 \mathrm{~m} / \mathrm{s}^{2}$, to cover a distance of $200.0 \mathrm{~m}^{1}$

$$
\begin{aligned}
\overrightarrow{\Delta \boldsymbol{x}} & =\overrightarrow{\mathbf{v}}_{0} t+\frac{1}{2} \overrightarrow{\mathbf{a}} t^{2} \\
(\Delta x) \mathbf{i}^{\boldsymbol{i}} & =\left(0+\frac{1}{2} a t^{2}\right) \mathbf{f}^{\mathbf{i}} \\
t^{2} & =\frac{2 \Delta x}{a} \\
t & =\sqrt{\frac{2 \Delta x}{a}} \\
t & =\sqrt{\frac{2(200 \mathrm{~m})}{5 \mathrm{~m} / \mathrm{s}^{2}}} \\
t & =8.94 \mathrm{~s}
\end{aligned}
$$

A little less than 10 s , as expected.
${ }^{1}$ Leduc, "Cracking the AP Physics B Exam" Princeton Review.

Example 2 (Ch 2 \#44)

When you see a traffic light turn red, you apply the brakes until you come to a stop. If your initial speed was $12 \mathrm{~m} / \mathrm{s}$, and you were heading due west, what was your average velocity during braking? Assume constant deceleration.

Example 2 (Ch 2 \#44)

When you see a traffic light turn red, you apply the brakes until you come to a stop. If your initial speed was $12 \mathrm{~m} / \mathrm{s}$, and you were heading due west, what was your average velocity during braking? Assume constant deceleration.

Draw a sketch.

Example 2 (Ch 2 \#44)

When you see a traffic light turn red, you apply the brakes until you come to a stop. If your initial speed was $12 \mathrm{~m} / \mathrm{s}$, and you were heading due west, what was your average velocity during braking? Assume constant deceleration.

Draw a sketch.
Hypothesis?
Given: $v_{0}=12 \mathrm{~m} / \mathrm{s}, v=0 \mathrm{~m} / \mathrm{s}$
Asked for: $\overrightarrow{\mathbf{v}}_{\text {avg }}$
${ }^{1}$ Walker, "Physics", pg 50.

Example 2 (Ch 2 \#44)

When you see a traffic light turn red, you apply the brakes until you come to a stop. If your initial speed was $12 \mathrm{~m} / \mathrm{s}$, and you were heading due west, what was your average velocity during braking? Assume constant deceleration.

Draw a sketch.
Hypothesis?
Given: $v_{0}=12 \mathrm{~m} / \mathrm{s}, v=0 \mathrm{~m} / \mathrm{s}$
Asked for: $\overrightarrow{\mathbf{v}}_{\text {avg }}$
Strategy: use

$$
\overrightarrow{\mathbf{v}}_{\mathrm{avg}}=\frac{\overrightarrow{\mathbf{v}}_{0}+\overrightarrow{\mathbf{v}}}{2}
$$

${ }^{1}$ Walker, "Physics", pg 50.

Example 2 (Ch 2 \#44)

When you see a traffic light turn red, you apply the brakes until you come to a stop. If your initial speed was $12 \mathrm{~m} / \mathrm{s}$, and you were heading due west, what was your average velocity during braking? Assume constant deceleration.

$$
\overrightarrow{\mathbf{v}}_{\mathrm{avg}}=\frac{\overrightarrow{\mathbf{v}}_{0}+\overrightarrow{\mathbf{v}}}{2}
$$

Example 2 (Ch 2 \#44)

When you see a traffic light turn red, you apply the brakes until you come to a stop. If your initial speed was $12 \mathrm{~m} / \mathrm{s}$, and you were heading due west, what was your average velocity during braking? Assume constant deceleration.

$$
\begin{aligned}
\overrightarrow{\mathbf{v}}_{\text {avg }} & =\frac{\overrightarrow{\mathbf{v}}_{0}+\overrightarrow{\mathbf{v}}}{2} \\
& =\frac{(12+0) \mathrm{m} / \mathrm{s}}{2} \text { West } \\
& =6 \mathrm{~m} / \mathrm{s} \text { West }
\end{aligned}
$$

Example 2 (Ch 2 \#44)

When you see a traffic light turn red, you apply the brakes until you come to a stop. If your initial speed was $12 \mathrm{~m} / \mathrm{s}$, and you were heading due west, what was your average velocity during braking? Assume constant deceleration.

$$
\begin{aligned}
\overrightarrow{\mathbf{v}}_{\mathrm{avg}} & =\frac{\overrightarrow{\mathbf{v}}_{0}+\overrightarrow{\mathbf{v}}}{2} \\
& =\frac{(12+0) \mathrm{m} / \mathrm{s}}{2} \text { West } \\
& =6 \mathrm{~m} / \mathrm{s} \text { West }
\end{aligned}
$$

Analysis: Yup, agreed with hypothesis. With constant acceleration the average velocity is just the average of the initial and final velocities.

[^0]
Example 3

A car driver sees a speed trap ahead, while driving at $30.0 \mathrm{~m} / \mathrm{s}$ ($\sim 67 \mathrm{mph}$). Assume the car brakes with constant deceleration of $2.30 \mathrm{~m} / \mathrm{s}^{2}$. It slows to $20.0 \mathrm{~m} / \mathrm{s}$, what was the time taken to slow?

Example 3

A car driver sees a speed trap ahead, while driving at $30.0 \mathrm{~m} / \mathrm{s}$ ($\sim 67 \mathrm{mph}$). Assume the car brakes with constant deceleration of $2.30 \mathrm{~m} / \mathrm{s}^{2}$. It slows to $20.0 \mathrm{~m} / \mathrm{s}$, what was the time taken to slow?

Sketch:

Example 3

A car driver sees a speed trap ahead, while driving at $30.0 \mathrm{~m} / \mathrm{s}$ ($\sim 67 \mathrm{mph}$). Assume the car brakes with constant deceleration of $2.30 \mathrm{~m} / \mathrm{s}^{2}$. It slows to $20.0 \mathrm{~m} / \mathrm{s}$, what was the time taken to slow?

Sketch:

Hypothesis: He's slowing by $10 \mathrm{~m} / \mathrm{s}$ at about $2 \mathrm{~m} / \mathrm{s}^{2}$, perhaps around $10 \div 2=5 \mathrm{~s}$.

Example 3

A car driver sees a speed trap ahead, while driving at $30.0 \mathrm{~m} / \mathrm{s}$ ($\sim 67 \mathrm{mph}$). Assume the car brakes with constant deceleration of $2.30 \mathrm{~m} / \mathrm{s}^{2}$. It slows to $20.0 \mathrm{~m} / \mathrm{s}$, what was the time taken to slow?

Sketch:

Hypothesis: He's slowing by $10 \mathrm{~m} / \mathrm{s}$ at about $2 \mathrm{~m} / \mathrm{s}^{2}$, perhaps around $10 \div 2=5 \mathrm{~s}$.

Given: $\overrightarrow{\mathbf{v}}_{0}=+30.0 \mathrm{~m} / \mathrm{s} \hat{\mathbf{i}}, \overrightarrow{\mathbf{v}}=+20.0 \mathrm{~m} / \mathrm{s} \hat{\mathbf{i}}, \overrightarrow{\mathbf{a}}=-2.30 \mathrm{~m} / \mathrm{s}^{2} \hat{\mathbf{i}}$ Asked for: t

Example 3

Strategy: Use

$$
v=v_{0}+a t
$$

Example 3

Strategy: Use

$$
v=v_{0}+a t
$$

Rearrange:

$$
\begin{aligned}
t & =\frac{v-v_{0}}{a} \\
& =\frac{20.0 \mathrm{~m} / \mathrm{s}-30.0 \mathrm{~m} / \mathrm{s}}{-2.30 \mathrm{~m} / \mathrm{s}^{2}} \\
& =\underline{4.35 \mathrm{~s}}
\end{aligned}
$$

Reasonable / Agrees with hypothesis: yes, just a bit smaller. That makes sense because the acceleration had magnitude $2.30 \mathrm{~m} / \mathrm{s}^{2}$ rather than $2 \mathrm{~m} / \mathrm{s}^{2}$. It is a reasonable amount of time to need to slow for a speed trap.

Summary

- practice using the kinematics equations

First Test Thursday, Jan 30.

Homework

Walker Physics:

- Ch 2, onward from page 47. Questions: 11; Problems: 43, 47, 55, 57

[^0]: ${ }^{1}$ Walker, "Physics", pg 50.

