Introduction to Mechanics
 Vectors in 2 Dimensions Trigonometery Vector Addition

Lana Sheridan
De Anza College

Feb 3, 2020

Last time

- freely falling objects
- class activity: measure your reaction time

Overview

- vectors in 2 dimensions
- some trigonometry review
- vector addition

Reminder: Vectors and Scalars

scalar

A scalar quantity indicates an amount. It is represented by a real number. (Assuming it is a physical quantity.)

vector

A vector quantity indicates both an amount (magnitude) and a direction. It is represented by a real number for each possible direction, or a real number and (an) angle(s).

In the lecture notes vectors are represented using bold variables with over-arrows.

How can we write vectors? - with angles Bearing angles

Example, a plane flies at a bearing of 70°

Generic reference angles

A baseball is thrown at $10 \mathrm{~m} \mathrm{~s}^{-1}$ at 30° above the horizontal.

How can we write vectors? - as a list

A vector in the x, y-plane could be written

$$
(2,1) \text { or }\left(\begin{array}{ll}
2 & 1
\end{array}\right) \text { or }\binom{2}{1}
$$

(In some textbooks it is written $\langle 2,1\rangle$, but there are reasons not to write it this way.)

How can we write vectors? - as a list

A vector in the x, y-plane could be written

$$
(2,1) \text { or }\left(\begin{array}{ll}
2 & 1
\end{array}\right) \text { or }\binom{2}{1}
$$

(In some textbooks it is written $\langle 2,1\rangle$, but there are reasons not to write it this way.)

When drawn in the x, y-plane it looks like:

Vector Components

${ }^{1}$ Walker, 4th ed, page 59.

Vector Components

A vector in the x, y-plane could be written

$$
(2,1) \text { or }\left(\begin{array}{ll}
2 & 1
\end{array}\right) \text { or }\binom{2}{1}
$$

We say that 2 is the x-component of the vector $(2,1)$ and 1 is the y-component.

Each component direction is perpendicular to the others: $x \perp y$.

Components

Consider the 2 dimensional vector $\overrightarrow{\mathbf{A}}$.
Since the two vectors add together by attaching the head of one to the tail of the other, which is the same as adding the components, we can always write a vector in the x, y-plane as the sum of two component vectors.

$$
\begin{aligned}
\overrightarrow{\mathbf{A}} & =\overrightarrow{\mathbf{A}}_{x}+\overrightarrow{\mathbf{A}}_{y} \\
(2,1) & =(2,0)+(0,1)
\end{aligned}
$$

Representing Vectors: Unit Vectors

We can write a vector in the x, y-plane as the sum of two component vectors.

To indicate the components we can use unit vectors.

Representing Vectors: Unit Vectors

We can write a vector in the x, y-plane as the sum of two component vectors.

To indicate the components we can use unit vectors.
In two dimensions, a pair of perpendicular unit vectors are usually denoted $\hat{\mathbf{i}}$ and $\hat{\mathbf{j}}$ (or sometimes $\hat{\mathbf{x}}, \hat{\mathbf{y}}$).

A 2 dimensional vector can be written as $\overrightarrow{\mathbf{A}}=(2,1)=2 \hat{\mathbf{i}}+\hat{\mathbf{j}}$.

Components

Vector $\overrightarrow{\mathbf{A}}$ is the sum of a piece along x and a piece along y : $\overrightarrow{\mathbf{A}}=A_{x} \hat{\mathbf{i}}+A_{y} \hat{\mathbf{j}}$.
A_{x} is the i-component (or x-component) of $\overrightarrow{\mathbf{A}}$ and A_{y} is the j-component (or y-component) of $\overrightarrow{\mathbf{A}}$.

Components

Vector $\overrightarrow{\mathbf{A}}$ is the sum of a piece along x and a piece along y : $\overrightarrow{\mathbf{A}}=A_{x} \hat{\mathbf{i}}+A_{y} \hat{\mathbf{j}}$.
A_{x} is the i-component (or x-component) of $\overrightarrow{\mathbf{A}}$ and A_{y} is the j-component (or y-component) of $\overrightarrow{\mathbf{A}}$.

To find a vector's components requires some simple trigonometry.

Trigonometry

$$
\sin \theta=\frac{A_{y}}{A} ; \quad \cos \theta=\frac{A_{x}}{A} ; \quad \tan \theta=\frac{A_{y}}{A_{x}}
$$

Trigonometry, Ex 3.1

Captain Cyrus Harding wants to find the height of a cliff. He stands with his back to the base of the cliff, then marches straight away from it for $5.00 \times 10^{2} \mathrm{ft}$. At this point he lies on the ground and measures the angle from the horizontal to the top of the cliff. If the angle is 34.0°, (a) how high is the cliff? (b) What is the straight-line distance from Captain Harding to the top of the cliff?

Trigonometry, Ex 3.1

Captain Cyrus Harding wants to find the height of a cliff. He stands with his back to the base of the cliff, then marches straight away from it for $5.00 \times 10^{2} \mathrm{ft}$. At this point he lies on the ground and measures the angle from the horizontal to the top of the cliff. If the angle is 34.0°, (a) how high is the cliff? (b) What is the straight-line distance from Captain Harding to the top of the cliff?

[^0]
Trigonometry, Ex 3.1

(a) how high is the cliff?

${ }^{1}$ Walker, 4th ed, page 60.

Trigonometry, Ex 3.1

(a) how high is the cliff?

$$
\tan \theta=\frac{r_{y}}{r_{x}}
$$

Multiply both sides by r_{x} :

$$
r_{y}=r_{x} \tan \theta
$$

${ }^{1}$ Walker, 4th ed, page 60.

Trigonometry, Ex 3.1

(a) how high is the cliff?

$$
\tan \theta=\frac{r_{y}}{r_{x}}
$$

Multiply both sides by r_{x} :

$$
r_{y}=r_{x} \tan \theta
$$

Solve:

$$
\begin{aligned}
r_{y} & =(500 \mathrm{ft}) \tan \left(34.0^{\circ}\right) \\
& =\underline{337 \mathrm{ft}} \quad(\text { to } 3 \mathrm{s.f.})
\end{aligned}
$$

${ }^{1}$ Walker, 4th ed, page 60.

Trigonometry, Ex 3.1

(b) What is the straight-line distance from Captain Harding to the top of the cliff?

${ }^{1}$ Walker, 4th ed, page 60.

Trigonometry, Ex 3.1

(b) What is the straight-line distance from Captain Harding to the top of the cliff?

Pythagorean theorem

$$
r=\sqrt{r_{x}^{2}+r_{y}^{2}}
$$

${ }^{1}$ Walker, 4th ed, page 60.

Trigonometry, Ex 3.1

(b) What is the straight-line distance from Captain Harding to the top of the cliff?

Pythagorean theorem

$$
r=\sqrt{r_{x}^{2}+r_{y}^{2}}
$$

Solve:

$$
\begin{aligned}
r & =\sqrt{(500 \mathrm{ft})^{2}+(337 \mathrm{ft})^{2}} \\
& =\underline{603 \mathrm{ft}} \quad(\mathrm{to} 3 \mathrm{~s} . \mathrm{f} .)
\end{aligned}
$$

(Or use $r=\frac{r_{x}}{\cos \theta}$)
${ }^{1}$ Walker, 4th ed, page 60.

Magnitude-and-Angle Notation to Components

Vector $\overrightarrow{\mathbf{A}}$ is the sum of a piece along x and a piece along y : $\overrightarrow{\mathbf{A}}=A_{x} \hat{\mathbf{i}}+A_{y} \hat{\mathbf{j}}$.

Notice that $A_{x}=A \cos \theta$ and $A_{y}=A \sin \theta$.

Components to Magnitude-and-Angle Notation

Notice that $A_{x}=A \cos \theta$ and $A_{y}=A \sin \theta$.

Also notice,

$$
A=|\overrightarrow{\mathbf{A}}|=\sqrt{A_{x}^{2}+A_{y}^{2}}
$$

and

$$
\theta=\tan ^{-1}\left(\frac{A_{y}}{A_{x}}\right)
$$

if the angle is given as shown.

Vectors Properties and Operations Equality

Vectors $\overrightarrow{\mathbf{A}}=\overrightarrow{\mathbf{B}}$ if and only if the magnitudes and directions are the same. (Each component is the same.)

Vectors Properties and Operations Equality

Vectors $\overrightarrow{\mathbf{A}}=\overrightarrow{\mathbf{B}}$ if and only if the magnitudes and directions are the same. (Each component is the same.)

Addition

$\overrightarrow{\mathbf{A}}+\overrightarrow{\mathbf{B}}$

To calculate the addition of vectors, we usually break them into components.

Using Vectors: Example

(This is a simple example of vector addition where the vectors are already in components.)

Andy runs 100 m south then turns west and runs another 50.0 m . All this takes him 15.0 s.

What is his displacement from his starting point?

Using Vectors: Example

(This is a simple example of vector addition where the vectors are already in components.)

Andy runs 100 m south then turns west and runs another 50.0 m . All this takes him 15.0 s .

What is his displacement from his starting point?
answer: displacement: 112 m , in a direction 26.6° west of south.

Vectors Properties and Operations

Doing addition:
To add vectors, break each vector into components and sum each component independently.

Vector Addition Example

A hiker begins a trip by first walking 25.0 km southeast from her car. She stops and sets up her tent for the night. On the second day, she walks 40.0 km in a direction 60.0° north of east, at which point she discovers a forest ranger's tower. What is the magnitude and direction of the hiker's resultant displacement $\overrightarrow{\mathbf{R}}$ for the trip?

[^1]
Vector Addition Example

A hiker begins a trip by first walking 25.0 km southeast from her car. She stops and sets up her tent for the night. On the second day, she walks 40.0 km in a direction 60.0° north of east, at which point she discovers a forest ranger's tower. What is the magnitude and direction of the hiker's resultant displacement $\overrightarrow{\mathbf{R}}$ for the trip?

[^2]
Summary

- vectors in 2 dimensions
- trigonometry review
- vector addition

Next Quiz Thurs.

Homework

- For next lecture, please bring a ruler, a protractor, and 2 sheets of graph paper.

Walker Physics:

- start reading Chapter 3
- Ch 3, onward from page 76. Questions: 2, 4, 11. Problems: $5,7,11,15$

[^0]: ${ }^{1}$ Walker, 4th ed, page 60.

[^1]: ${ }^{0}$ Based on Serway \& Jewett Example 3.5, pg 69.

[^2]: ${ }^{0}$ Based on Serway \& Jewett Example 3.5, pg 69.

