

Introduction to Mechanics Vector Properties and Operations Vector Addition

Lana Sheridan

De Anza College

Feb 4, 2020

Last time

- expressing vectors
- trigonometry

Overview

- some vector operations
- vector addition

Vectors Properties and Operations: Addition

To add vectors, break each vector into components and sum each component independently.

A hiker begins a trip by first walking 25.0 km southeast from her car. She stops and sets up her tent for the night. On the second day, she walks 40.0 km in a direction 60.0° north of east, at which point she discovers a forest ranger's tower. What is the magnitude and direction of the hiker's resultant displacement \vec{R} for the trip?

A hiker begins a trip by first walking 25.0 km southeast from her car. She stops and sets up her tent for the night. On the second day, she walks 40.0 km in a direction 60.0° north of east, at which point she discovers a forest ranger's tower. What is the magnitude and direction of the hiker's resultant displacement \vec{R} for the trip?

⁰Based on S&J Example 3.5, pg 69.

A hiker begins a trip by first walking 25.0 km southeast from her car. She stops and sets up her tent for the night. On the second day, she walks 40.0 km in a direction 60.0° north of east, at which point she discovers a forest ranger's tower. What is the magnitude and direction of the hiker's resultant displacement \vec{R} for the trip?

$$A_x = A \cos(-45.0^\circ) = 17.7 \text{ km}$$

 $A_y = A \sin(-45.0^\circ) = -17.7 \text{ km}$

$$B_x = B \cos(60.0^\circ) = 20.0 \text{ km}$$

 $A_y = A \sin(60.0^\circ) = 34.6 \text{ km}$

⁰Based on S&J Example 3.5, pg 69.

A hiker begins a trip by first walking 25.0 km southeast from her car. She stops and sets up her tent for the night. On the second day, she walks 40.0 km in a direction 60.0° north of east, at which point she discovers a forest ranger's tower. What is the magnitude and direction of the hiker's resultant displacement \vec{R} for the trip?

$$A_x = A \cos(-45.0^\circ) = 17.7 \text{ km}$$

 $A_y = A \sin(-45.0^\circ) = -17.7 \text{ km}$

$$B_x = B \cos(60.0^\circ) = 20.0 \text{ km}$$

 $A_y = A \sin(60.0^\circ) = 34.6 \text{ km}$

$$\vec{\mathbf{R}} = (A_x + B_x)\hat{\mathbf{i}} + (A_y + B_y)\hat{\mathbf{j}}$$

= (17.7 + 20) $\hat{\mathbf{i}} + (-17.7 + 34.6)\hat{\mathbf{j}}$ km
= 37.7 $\hat{\mathbf{i}}$ + 17.0 $\hat{\mathbf{j}}$ km
= 41.3 km at 24.2° north of east

⁰Based on S&J Example 3.5, pg 69.

Vectors Properties and Operations Properties of Addition Draw $\vec{\mathbf{B}}$. then add \vec{A} . $\vec{\mathbf{A}}$ • $\vec{A} + \vec{B} = \vec{B} + \vec{A}$ (commutative) A BXA AX $\vec{\mathbf{B}}$ B $\vec{\mathbf{A}}$ Draw $\vec{\mathbf{A}}$. then add \vec{B} . • $(\vec{A} + \vec{B}) + \vec{C} = \vec{A} + (\vec{B} + \vec{C})$ (associative) Add $\vec{\mathbf{B}}$ and $\vec{\mathbf{C}}$: Add $\vec{\mathbf{A}}$ and $\vec{\mathbf{B}}$: then add the then add \vec{C} to result to $\vec{\mathbf{A}}$. the result. AX BX $\vec{\mathbf{C}}$ (b× A)×C Ĉ $\vec{B} + \vec{C}$ $\vec{A} + \vec{B}$

À

 $\overrightarrow{\mathbf{A}}$

Thinking about Vectors

What can you say about two vectors that add together to equal zero?

Thinking about Vectors

What can you say about two vectors that add together to equal zero?

When can a nonzero vector have a zero horizontal component?

Vectors Properties and Operations

Negation If $\vec{u} = -\vec{v}$ then \vec{u} has the same magnitude as \vec{v} but points in

the opposite direction.

 $\vec{\mathbf{A}} - \vec{\mathbf{B}} = \vec{\mathbf{A}} + (-\vec{\mathbf{B}})$

Vectors Properties and Operations

There are several different multiplicative operations on vectors.

For right now, we will only talk about how to multiply a vector by a scalar.

Vectors Properties and Operations

There are several different multiplicative operations on vectors.

For right now, we will only talk about how to multiply a vector by a scalar.

Multiplication by a scalar

Suppose we want to multiply a scalar, like the number 5, by the vector:

$$\vec{\mathbf{v}} = 2\hat{\mathbf{i}} + 1\hat{\mathbf{j}}$$

The result is:

$$5\vec{\mathbf{v}} = (5 \times 2)\,\mathbf{\hat{i}} + (5 \times 1)\,\mathbf{\hat{j}} = 10\,\mathbf{\hat{i}} + 5\,\mathbf{\hat{j}}$$

Each component is multiplied by the scalar. The direction of the vector doesn't change, but its magnitude increases by a factor of 5.

Adding Vectors Graphically

We will draw the vectors to scale on graph paper.

- 1 Pick a scale so the vectors fit on the paper (eg. 1 cm = 2 km).
- Draw axes.
- 3 Starting at the origin, use the protractor to find the angle of the first vector (A) from the x-direction, then using the ruler, draw its length to scale and in the proper direction.
- **4** From the end of the first vector, draw the second vector (\vec{B}) to the same scale and in the proper direction. The angle of \vec{B} is measured from the *x*-direction.

Adding Vectors Graphically

- **5** The resultant vector $\vec{\mathbf{R}} = \vec{\mathbf{A}} + \vec{\mathbf{B}}$ is the vector drawn from the tail of vector $\vec{\mathbf{A}}$ to the tip of vector $\vec{\mathbf{B}}$.
- 6 Measure the length of the vector R on your graph paper with your ruler. Find the magnitude of the resultant vector R from your chosen scale. Measure its direction (relative to the x-direction) with a protractor.

Vector Assignment

For this problem, first add the vectors **graphically** (pencil and graph paper, using your ruler and protractor) to find the magnitude and direction of the resultant vector, \vec{R} .

Then **calculate** the magnitude and direction of the resultant vector by the finding and adding the components of each vector. Check that your answers agree.

A car travels 20.0 km at 60.0° north of west, then 35.0 km at 45.0° north of east. Find the resultant displacement of the car.

Summary

- vector operations
- vector addition
- Quiz Thursday.

Homework

• finish off the Vector Assignment, to turn in Thursday

Walker Physics:

• Ch 3, onward from page 76. Questions: 7, 8, 9. Problems: 1, 17, 25, 77