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Last time

• some vector operations

• vector addition



Overview

• introduction to motion in 2 dimensions

• constant velocity in 2 dimensions

• relative motion
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Motion in 2 Dimensions

So far we have looked at motion in 1 dimension only, motion along
a straight line.

However, motion on a plane (2 dimensions), or through space (3
dimensions) obeys the same equations.

We will now focus on 2 dimensional motion.



Motion in 2 directions

Imagine an air hockey puck moving with horizontally constant
velocity:

 4.2 Two-Dimensional Motion with Constant Acceleration 81

dimensional) motion. Second, the direction of the velocity vector may change with 
time even if its magnitude (speed) remains constant as in two-dimensional motion 
along a curved path. Finally, both the magnitude and the direction of the velocity 
vector may change simultaneously.

Q uick Quiz 4.1  Consider the following controls in an automobile in motion: gas 
pedal, brake, steering wheel. What are the controls in this list that cause an 
acceleration of the car? (a) all three controls (b) the gas pedal and the brake 
(c) only the brake (d) only the gas pedal (e) only the steering wheel

4.2  Two-Dimensional Motion  
with Constant Acceleration

In Section 2.5, we investigated one-dimensional motion of a particle under con-
stant acceleration and developed the particle under constant acceleration model. 
Let us now consider two-dimensional motion during which the acceleration of a 
particle remains constant in both magnitude and direction. As we shall see, this 
approach is useful for analyzing some common types of motion.
 Before embarking on this investigation, we need to emphasize an important 
point regarding two-dimensional motion. Imagine an air hockey puck moving in 
a straight line along a perfectly level, friction-free surface of an air hockey table. 
Figure 4.4a shows a motion diagram from an overhead point of view of this puck. 
Recall that in Section 2.4 we related the acceleration of an object to a force on the 
object. Because there are no forces on the puck in the horizontal plane, it moves 
with constant velocity in the x direction. Now suppose you blow a puff of air on 
the puck as it passes your position, with the force from your puff of air exactly in 
the y direction. Because the force from this puff of air has no component in the x 
direction, it causes no acceleration in the x direction. It only causes a momentary 
acceleration in the y direction, causing the puck to have a constant y component 
of velocity once the force from the puff of air is removed. After your puff of air on 
the puck, its velocity component in the x direction is unchanged as shown in Figure 
4.4b. The generalization of this simple experiment is that motion in two dimen-
sions can be modeled as two independent motions in each of the two perpendicular 
directions associated with the x and y axes. That is, any influence in the y direc-
tion does not affect the motion in the x direction and vice versa.
 The position vector for a particle moving in the xy plane can be written

 rS 5 x î 1 y ĵ (4.6)

where x, y, and rS change with time as the particle moves while the unit vectors î 
and ĵ remain constant. If the position vector is known, the velocity of the particle 
can be obtained from Equations 4.3 and 4.6, which give

 vS 5
d rS

dt
5

dx
dt

 î 1
dy
dt

 ĵ 5 vx î 1 vy ĵ (4.7)

The horizontal red vectors, 
representing the x 
component of the velocity, 
are the same length in 
both parts of the figure, 
which demonstrates that 
motion in two dimensions 
can be modeled as two 
independent motions in 
perpendicular directions.

x

y

x

y

a

b

Figure 4.4  (a) A puck moves 
across a horizontal air hockey 
table at constant velocity in the x 
direction. (b) After a puff of air 
in the y direction is applied to the 
puck, the puck has gained a y com-
ponent of velocity, but the x com-
ponent is unaffected by the force 
in the perpendicular direction.

If it experiences a momentary upward (in the diagram)
acceleration, it will have a component of velocity upwards. The
horizontal motion remains unchanged!

1Figure from Serway & Jewett, 9th ed.



Direction and Motion

When we say something is moving, we mean that it is moving
relative to something else.

In order to describe measurements of

• where something is

• how fast it is moving

we must have reference frames.

In 2 dimensions we need to choose a pair of perpendicular
directions to be our x and y axes.



Motion in 2 directions: Components of velocity

Motion in perpendicular directions can be analyzed separately.

5 Projectile Motion

A ball’s velocity can be resolved into horizontal and 
vertical components.

5.3 Components of Vectors

A vertical force (gravity) does
not affect horizontal motion.

The horizontal component of
velocity is constant.

1Drawing by Paul Hewitt, via Pearson.



Constant Velocity in 2 Dimensions

Consider a turtle that moves with a constant velocity.

80 CHAPTER 4 TWO-DIMENSIONAL KINEMATICS

x

y

y = d sin θd = v0 t 

x = d cos θ
x = v0x t

y = v0y t

x

y

(a) (b)

θ = 25° θ = 25°
v0y = v0 sin θ

v0x = v0 cos θ

v0
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▲ FIGURE 4–1 Constant velocity
A turtle walks from the origin with a speed of (a) In a time t the turtle moves through a straight-line distance of
thus the x and y displacements are (b) Equivalently, the turtle’s x and y components of velocity are
and hence and y = v0yt.x = v0xtv0y = v0 sin u;

v0x = v0 cos ux = d cos u, y = d sin u.
d = v0t;v0 = 0.26 m/s.

4–1 Motion in Two Dimensions
In this section we develop equations of motion to describe objects moving in two
dimensions. First, we consider motion with constant velocity, determining x and
y as functions of time. Next, we investigate motion with constant acceleration. We
show that the one-dimensional kinematic equations of Chapter 2 can be extended
in a straightforward way to apply to two dimensions.

Constant Velocity
To begin, consider the simple situation shown in Figure 4–1. A turtle starts at the ori-
gin at and moves with a constant speed in a direction 25° above
the x-axis. How far has the turtle moved in the x and y directions after 5.0 seconds?

First, note that the turtle moves in a straight line a distance

as indicated in Figure 4–1(a). From the definitions of sine and cosine given in the
previous chapter, we see that

An alternative way to approach this problem is to treat the x and y motions
separately. First, we determine the speed of the turtle in each direction. Referring
to Figure 4–1(b), we see that the x component of velocity is

and the y component is

Next, we find the distance traveled by the turtle in the x and y directions by mul-
tiplying the speed in each direction by the time:

and

This is in agreement with our previous results. To summarize, we can think of the
turtle’s actual motion as a combination of separate x and y motions.

In general, the turtle might start at a position and at time 
In this case, we have

4–1

and
4–2

as the x and y equations of motion.

y = y0 + v0yt

x = x0 + v0xt

t = 0.y = y0x = x0

y = v0yt = 10.11 m/s215.0 s2 = 0.55 m

x = v0xt = 10.24 m/s215.0 s2 = 1.2 m

v0y = v0 sin 25° = 0.11 m/s

v0x = v0 cos 25° = 0.24 m/s

 y = d sin 25° = 0.55 m
 x = d cos 25° = 1.2 m

d = v0t = 10.26 m/s215.0 s2 = 1.3 m

v0 = 0.26 m/st = 0

WALKMC04_0131536311.QXD  11/16/05  17:57  Page 80

We can find the distance it travels by using the equation d = v0t.

How far it travels in the x-direction: x = d cos θ.

And in the y -direction: y = d sin θ.

1Figure from Walker, “Physics”.
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Or, we can find the distance it travels in the x-direction by
considering what is its rate of change of x-position with time!

v0x =
∆x

∆t
= v0 cos θ ⇒ x = v0x t = (v0 cos θ)t

And in the y -direction:

v0y =
∆y

∆t
= v0 sin θ ⇒ y = v0y t = (v0 sin θ)t

1Figure from Walker, “Physics”.



Axes and Reference Frames

To indicate which way a vector (a force, acceleration, etc.) points,
we need to have another direction that we can compare to.

For example, driving, you can say the direction you are driving
relative to cardinal directions, North, South, East, West.

North-South and West-East can be reference axes.

We could also choose axes “up” and “down”, and parallel to the
horizon.
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Reference Frames

We could agree to choose directions as North (y) and East (x).
However, two different people might pick different origins, O and
O ′, for their axes.

In this case, each person would describe the location of a particle
slightly differently. Can we relate those descriptions?

1Image modified from work of Wikipedia user Krea.



Reference Frames
We can relate the descriptions using vector addition!

 4.6  Relative Velocity and Relative Acceleration 97

will be separated by a distance vBAt. We label the position P of the particle relative 
to observer A with the position vector rSP A and that relative to observer B with the 
position vector rSP B, both at time t. From Figure 4.20, we see that the vectors rSP A 
and rSP B are related to each other through the expression

 rSP A 5 rSP B 1 vSBAt (4.22)

 By differentiating Equation 4.22 with respect to time, noting that vSBA is con-
stant, we obtain

d rSP A

dt
5

d rSP B

dt
1 vSBA 

 uSP A 5 uSP B 1 vSBA (4.23)

where uSPA is the velocity of the particle at P measured by observer A and uSP B is its 
velocity measured by B. (We use the symbol uS for particle velocity rather than vS, 
which we have already used for the relative velocity of two reference frames.) Equa-
tions 4.22 and 4.23 are known as Galilean transformation equations. They relate 
the position and velocity of a particle as measured by observers in relative motion. 
Notice the pattern of the subscripts in Equation 4.23. When relative velocities are 
added, the inner subscripts (B) are the same and the outer ones (P, A) match the 
subscripts on the velocity on the left of the equation.
 Although observers in two frames measure different velocities for the particle, 
they measure the same acceleration when vSBA is constant. We can verify that by taking 
the time derivative of Equation 4.23:

d uSP A

dt
5

d uSP B

dt
1

d vSBA

dt

Because vSBA is constant, d vSBA/dt 5 0 . Therefore, we conclude that aSP A 5 aSP B 
because aSP A 5 d uSP A/dt and aSP B 5 d uSP B/dt. That is, the acceleration of the parti-
cle measured by an observer in one frame of reference is the same as that measured 
by any other observer moving with constant velocity relative to the first frame.

WW  Galilean velocity 
transformation

continued

Example 4.8   A Boat Crossing a River

A boat crossing a wide river moves with a speed of  
10.0 km/h relative to the water. The water in the river has a 
uniform speed of 5.00 km/h due east relative to the Earth.

(A) If the boat heads due north, determine the velocity of 
the boat relative to an observer standing on either bank.

Conceptualize Imagine moving in a boat across a river 
while the current pushes you down the river. You will not 
be able to move directly across the river, but will end up 
downstream as suggested in Figure 4.21a.

Categorize Because of the combined velocities of you rela-
tive to the river and the river relative to the Earth, we can 
categorize this problem as one involving relative velocities.

Analyze We know vSbr, the velocity of the boat relative to the river, and vSrE, the velocity of the river relative to the Earth. 
What we must find is vSbE, the velocity of the boat relative to the Earth. The relationship between these three quantities 
is vSbE 5 vSbr 1 vSrE. The terms in the equation must be manipulated as vector quantities; the vectors are shown in Fig-
ure 4.21a. The quantity vSbr is due north; vSrE is due east; and the vector sum of the two, vSbE, is at an angle u as defined 
in Figure 4.21a.
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Figure 4.21 (Example 4.8) (a) A boat aims directly across a 
river and ends up downstream. (b) To move directly across the 
river, the boat must aim upstream.
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Figure 4.20  A particle located 
at P is described by two observers,  
one in the fixed frame of refer-
ence SA and the other in the 
frame SB, which moves to the right 
with a constant velocity vSBA. The 
vector rSPA is the particle’s position 
vector relative to SA, and rSP B is its 
position vector relative to SB.

r

#»rPA = #»rPB + #»rBA

#»rPA is the position of particle P relative to frame A.



Relative Motion

We can use the notion of motion in 2 dimensions to consider how
one object moves relative to something else.

All motion is relative.

Our reference frame tells us what is a fixed position.

An example of a reference might be picking an object, declaring
that it is at rest, and describing the motion of all objects relative
to that.

Two different people could pick different reference objects and end
up with two reference frames moving relative to each other.
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Relative Motion

When comparing two frames (A and B) moving relative to each
other with constant velocity:

#»vPA = #»vPB + #»vBA

where #»vBA is the constant velocity of frame B relative to frame A.
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Relative Motion

Comparing two frames A and B, if

#»vBA is the velocity of frame B relative to frame A, then

#»vAB is the velocity of frame A relative to frame B.

#»vAB = − #»vBA

Swapping the subscripts gives a sign flip.



Intuitive Example for Relative Velocities
5 Projectile Motion

The airplane’s velocity relative to 
the ground depends on the 
airplane’s velocity relative to the 
air and on the wind’s velocity.

5.2 Velocity Vectors

1Figure by Paul Hewitt.



Intuitive Example

Now, imagine an airplane that is flying North at 80 km/h but is
blown off course by a cross wind going East at 60 km/h.

How fast is the airplane moving relative to the ground? In which
direction?

Sketch:

5 Projectile Motion

An 80-km/h airplane flying in a 60-km/h crosswind has a 
resultant speed of 100 km/h relative to the ground.

5.2 Velocity Vectors

Hypothesis: It will travel to the North-East, at a speed greater
than 80 km/h, but less than 80+60 = 140 km/h.

1Figure by Paul Hewitt.
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Intuitive Example

5 Projectile Motion

An 80-km/h airplane flying in a 60-km/h crosswind has a 
resultant speed of 100 km/h relative to the ground.

5.2 Velocity Vectors

Strategy: vector addition! #»vpg = #»vpa +
#»vag

(p - plane, g - ground, a - air, so #»vag is the wind velocity)

In this case, the two vectors are at right-angles. We can use the
Pythagorean theorem.

#»v = 100 km/h at 36.9◦ East of North (or 53.1◦ North of East)
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Relative Motion Example
A boat crossing a wide river moves with a speed of 10.0 km/h
relative to the water. The water in the river has a uniform speed of
5.00 km/h due east relative to the Earth. If the boat heads due
north, determine the velocity of the boat relative to an observer
standing on either bank.1

Sketch:
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will be separated by a distance vBAt. We label the position P of the particle relative 
to observer A with the position vector rSP A and that relative to observer B with the 
position vector rSP B, both at time t. From Figure 4.20, we see that the vectors rSP A 
and rSP B are related to each other through the expression
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which we have already used for the relative velocity of two reference frames.) Equa-
tions 4.22 and 4.23 are known as Galilean transformation equations. They relate 
the position and velocity of a particle as measured by observers in relative motion. 
Notice the pattern of the subscripts in Equation 4.23. When relative velocities are 
added, the inner subscripts (B) are the same and the outer ones (P, A) match the 
subscripts on the velocity on the left of the equation.
 Although observers in two frames measure different velocities for the particle, 
they measure the same acceleration when vSBA is constant. We can verify that by taking 
the time derivative of Equation 4.23:

d uSP A

dt
5

d uSP B

dt
1

d vSBA

dt

Because vSBA is constant, d vSBA/dt 5 0. Therefore, we conclude that aSP A 5 aSP B 
because aSP A 5 d uSP A/dt and aSP B 5 d uSP B/dt. That is, the acceleration of the parti-
cle measured by an observer in one frame of reference is the same as that measured 
by any other observer moving with constant velocity relative to the first frame.

WW  Galilean velocity 
transformation

continued

Example 4.8   A Boat Crossing a River

A boat crossing a wide river moves with a speed of  
10.0 km/h relative to the water. The water in the river has a 
uniform speed of 5.00 km/h due east relative to the Earth.

(A) If the boat heads due north, determine the velocity of 
the boat relative to an observer standing on either bank.

Conceptualize Imagine moving in a boat across a river 
while the current pushes you down the river. You will not 
be able to move directly across the river, but will end up 
downstream as suggested in Figure 4.21a.

Categorize Because of the combined velocities of you rela-
tive to the river and the river relative to the Earth, we can 
categorize this problem as one involving relative velocities.

Analyze We know vSbr, the velocity of the boat relative to the river, and vSrE, the velocity of the river relative to the Earth. 
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Figure 4.20  A particle located 
at P is described by two observers,  
one in the fixed frame of refer-
ence SA and the other in the 
frame SB, which moves to the right 
with a constant velocity vSBA. The 
vector rSPA is the particle’s position 
vector relative to SA, and rSP B is its 
position vector relative to SB.

vbr = 10.0 km/h
vrE = 5.00 km/h

#»vbE = #»vbr +
#»vrE

Simply use vector addition to
find #»vbE .

vbE =
√
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Relative Motion Example
A boat crossing a wide river moves with a speed of 10.0 km/h
relative to the water. The water in the river has a uniform speed of
5.00 km/h due east relative to the Earth. If the boat heads due
north, determine the velocity of the boat relative to an observer
standing on either bank.1

Sketch:
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will be separated by a distance vBAt. We label the position P of the particle relative 
to observer A with the position vector rSP A and that relative to observer B with the 
position vector rSP B, both at time t. From Figure 4.20, we see that the vectors rSP A 
and rSP B are related to each other through the expression

 rSP A 5 rSP B 1 vSBAt (4.22)

 By differentiating Equation 4.22 with respect to time, noting that vSBA is con-
stant, we obtain

d rSP A

dt
5

d rSP B

dt
1 vSBA 

 uSP A 5 uSP B 1 vSBA (4.23)

where uSPA is the velocity of the particle at P measured by observer A and uSP B is its 
velocity measured by B. (We use the symbol uS for particle velocity rather than vS, 
which we have already used for the relative velocity of two reference frames.) Equa-
tions 4.22 and 4.23 are known as Galilean transformation equations. They relate 
the position and velocity of a particle as measured by observers in relative motion. 
Notice the pattern of the subscripts in Equation 4.23. When relative velocities are 
added, the inner subscripts (B) are the same and the outer ones (P, A) match the 
subscripts on the velocity on the left of the equation.
 Although observers in two frames measure different velocities for the particle, 
they measure the same acceleration when vSBA is constant. We can verify that by taking 
the time derivative of Equation 4.23:

d uSP A

dt
5

d uSP B

dt
1

d vSBA

dt

Because vSBA is constant, d vSBA/dt 5 0. Therefore, we conclude that aSP A 5 aSP B 
because aSP A 5 d uSP A/dt and aSP B 5 d uSP B/dt. That is, the acceleration of the parti-
cle measured by an observer in one frame of reference is the same as that measured 
by any other observer moving with constant velocity relative to the first frame.

WW  Galilean velocity 
transformation

continued

Example 4.8   A Boat Crossing a River

A boat crossing a wide river moves with a speed of  
10.0 km/h relative to the water. The water in the river has a 
uniform speed of 5.00 km/h due east relative to the Earth.

(A) If the boat heads due north, determine the velocity of 
the boat relative to an observer standing on either bank.

Conceptualize Imagine moving in a boat across a river 
while the current pushes you down the river. You will not 
be able to move directly across the river, but will end up 
downstream as suggested in Figure 4.21a.

Categorize Because of the combined velocities of you rela-
tive to the river and the river relative to the Earth, we can 
categorize this problem as one involving relative velocities.

Analyze We know vSbr, the velocity of the boat relative to the river, and vSrE, the velocity of the river relative to the Earth. 
What we must find is vSbE, the velocity of the boat relative to the Earth. The relationship between these three quantities 
is vSbE 5 vSbr 1 vSrE. The terms in the equation must be manipulated as vector quantities; the vectors are shown in Fig-
ure 4.21a. The quantity vSbr is due north; vSrE is due east; and the vector sum of the two, vSbE, is at an angle u as defined 
in Figure 4.21a.
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Figure 4.21 (Example 4.8) (a) A boat aims directly across a 
river and ends up downstream. (b) To move directly across the 
river, the boat must aim upstream.
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will be separated by a distance vBAt. We label the position P of the particle relative 
to observer A with the position vector rSP A and that relative to observer B with the 
position vector rSP B, both at time t. From Figure 4.20, we see that the vectors rSP A 
and rSP B are related to each other through the expression

 rSP A 5 rSP B 1 vSBAt (4.22)

 By differentiating Equation 4.22 with respect to time, noting that vSBA is con-
stant, we obtain
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where uSPA is the velocity of the particle at P measured by observer A and uSP B is its 
velocity measured by B. (We use the symbol uS for particle velocity rather than vS, 
which we have already used for the relative velocity of two reference frames.) Equa-
tions 4.22 and 4.23 are known as Galilean transformation equations. They relate 
the position and velocity of a particle as measured by observers in relative motion. 
Notice the pattern of the subscripts in Equation 4.23. When relative velocities are 
added, the inner subscripts (B) are the same and the outer ones (P, A) match the 
subscripts on the velocity on the left of the equation.
 Although observers in two frames measure different velocities for the particle, 
they measure the same acceleration when vSBA is constant. We can verify that by taking 
the time derivative of Equation 4.23:
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Because vSBA is constant, d vSBA/dt 5 0. Therefore, we conclude that aSP A 5 aSP B 
because aSP A 5 d uSP A/dt and aSP B 5 d uSP B/dt. That is, the acceleration of the parti-
cle measured by an observer in one frame of reference is the same as that measured 
by any other observer moving with constant velocity relative to the first frame.
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the boat relative to an observer standing on either bank.

Conceptualize Imagine moving in a boat across a river 
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be able to move directly across the river, but will end up 
downstream as suggested in Figure 4.21a.

Categorize Because of the combined velocities of you rela-
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Figure 4.21 (Example 4.8) (a) A boat aims directly across a 
river and ends up downstream. (b) To move directly across the 
river, the boat must aim upstream.
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will be separated by a distance vBAt. We label the position P of the particle relative 
to observer A with the position vector rSP A and that relative to observer B with the 
position vector rSP B, both at time t. From Figure 4.20, we see that the vectors rSP A 
and rSP B are related to each other through the expression

 rSP A 5 rSP B 1 vSBAt (4.22)

 By differentiating Equation 4.22 with respect to time, noting that vSBA is con-
stant, we obtain
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where uSPA is the velocity of the particle at P measured by observer A and uSP B is its 
velocity measured by B. (We use the symbol uS for particle velocity rather than vS, 
which we have already used for the relative velocity of two reference frames.) Equa-
tions 4.22 and 4.23 are known as Galilean transformation equations. They relate 
the position and velocity of a particle as measured by observers in relative motion. 
Notice the pattern of the subscripts in Equation 4.23. When relative velocities are 
added, the inner subscripts (B) are the same and the outer ones (P, A) match the 
subscripts on the velocity on the left of the equation.
 Although observers in two frames measure different velocities for the particle, 
they measure the same acceleration when vSBA is constant. We can verify that by taking 
the time derivative of Equation 4.23:
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Because vSBA is constant, d vSBA/dt 5 0. Therefore, we conclude that aSP A 5 aSP B 
because aSP A 5 d uSP A/dt and aSP B 5 d uSP B/dt. That is, the acceleration of the parti-
cle measured by an observer in one frame of reference is the same as that measured 
by any other observer moving with constant velocity relative to the first frame.
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(A) If the boat heads due north, determine the velocity of 
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Conceptualize Imagine moving in a boat across a river 
while the current pushes you down the river. You will not 
be able to move directly across the river, but will end up 
downstream as suggested in Figure 4.21a.

Categorize Because of the combined velocities of you rela-
tive to the river and the river relative to the Earth, we can 
categorize this problem as one involving relative velocities.

Analyze We know vSbr, the velocity of the boat relative to the river, and vSrE, the velocity of the river relative to the Earth. 
What we must find is vSbE, the velocity of the boat relative to the Earth. The relationship between these three quantities 
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river and ends up downstream. (b) To move directly across the 
river, the boat must aim upstream.
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vector relative to SA, and rSP B is its 
position vector relative to SB.
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Summary

• motion in 2-dimensions

• motion with constant velocity

• relative motion

Quiz Thursday. (Will NOT be on relative motion.)

Homework

• finish off the Vector Assignment, due tomorrow

Walker Physics:

• Ch 3, onward from page 76. Questions: 7, 8, 9. Problems: 1,
17, 25, 77 (set yesterday)


