Introduction to Mechanics Projectiles
 Launched Horizontally Launched at an Angle

Lana Sheridan
De Anza College

Feb 12, 2020

Last time

- relative motion problem
- motion in 2D with constant acceleration
- projectile motion
- projectiles launched horizontally

Overview

- projectiles launched horizontally
- projectiles launched at an angle

Another Horizontal Launch Example

A steel ball is fired horizontally at $8.0 \mathrm{~m} / \mathrm{s}$ from from a 1.0 m -high table top.

Show that a 20 cm tall coffee can placed on the floor 3.2 m from the base of the table will catch the ball.

Question

A mountain climber leaps horizontally across a crevasse of width w. The opposite side of the crevasse is lower by a distance h. Imagine that the climber jumps with the minimum speed necessary to reach the far side.

If the height h is increased, but the width w remains the same, does the minimum speed needed to cross the crevasse

(A) increase,
(B) decrease, or
(C) stay the same?

Question

A mountain climber leaps horizontally across a crevasse of width w. The opposite side of the crevasse is lower by a distance h. Imagine that the climber jumps with the minimum speed necessary to reach the far side.

If the height h is increased, but the width w remains the same, does the minimum speed needed to cross the crevasse

(A) increase,
(B) decrease, or \leftarrow
(C) stay the same?

Principle Equations of Projectile Motion

(Notice, these are just special cases of the kinematics equations!)

$$
\begin{aligned}
& \Delta x=v_{0 x} t \\
& \Delta y=v_{0 y} t-\frac{1}{2} g t^{2}
\end{aligned}
$$

$$
\begin{aligned}
& v_{x}=v_{0 x} \\
& v_{y}=v_{0 y}-g t
\end{aligned}
$$

$$
\begin{aligned}
& v_{x}^{2}=v_{0 x}^{2} \\
& v_{y}^{2}=v_{0 y}^{2}-2 g(\Delta y)
\end{aligned}
$$

Projectiles Launched at an Angle

$$
v_{0 x}=v_{0} \cos \theta \quad v_{0 y}=v_{0} \sin \theta
$$

Projectile's Trajectory

The object would move in a straight line, but the force of gravity causes it to fall as it moves to the right.

$$
\Delta \boldsymbol{r}=\mathbf{r}_{f}-0=\mathbf{v}_{i} t+\frac{1}{2} \mathbf{a} t^{2}
$$

${ }^{1}$ Figure from Serway \& Jewett, 9th ed.

Jumping Dolphin, Ex 4-6, pg 94

A trained dolphin leaps from the water with an initial speed of $12.0 \mathrm{~m} / \mathrm{s}$. It jumps directly toward a ball held by the trainer a horizontal distance of 5.50 m away and a vertical distance of 4.10 m above the water.

If the trainer releases the ball the instant the dolphin leaves the water, show that the dolphin and the falling ball meet.

Jumping Dolphin, Ex 4-6, pg 94

Show that the dolphin and the falling ball meet.

Strategy: We need to show that when the dolphin's x-coordinate matches the ball's x-coordinate, their y-coordinates also match.

Jumping Dolphin, Ex 4-6, pg 94

Make an expression for how long it takes the dolphin to cover the horizontal distance to the ball.

$$
d=\Delta x=v_{0, x} t
$$

Rearrange for t :

$$
t=\frac{d}{v_{0} \cos \theta}
$$

When t takes this value, the x-coordinates match. Do the y-coordinates also match?

Jumping Dolphin, Ex 4-6, pg 94

How far does the ball fall in this time?

$$
\Delta y=y_{b}-h=-\frac{1}{2} g t^{2}
$$

So the ball's y-coordinate is:

$$
y_{b}=h-\frac{1}{2} g t^{2}
$$

Jumping Dolphin, Ex 4-6, pg 94

How far does the ball fall in this time?

$$
\Delta y=y_{b}-h=-\frac{1}{2} g t^{2}
$$

So the ball's y-coordinate is:

$$
y_{b}=h-\frac{1}{2} g t^{2}
$$

What is the dolphin's y coordinate?

$$
\Delta y=y_{d}-0=v_{0 y} t-\frac{1}{2} g t^{2}
$$

The dolphin's y-coordinate is:

$$
y_{d}=\left(v_{0} \sin \theta\right) t-\frac{1}{2} g t^{2}
$$

Jumping Dolphin, Ex 4-6, pg 94

$$
\begin{aligned}
y_{b} & \stackrel{?}{=} y_{d} \\
h-\frac{1}{2} g t^{2} & \stackrel{?}{=}\left(v_{0} \sin \theta\right) t-\frac{1}{2} g t^{2}
\end{aligned}
$$

Jumping Dolphin, Ex 4-6, pg 94

$$
\begin{aligned}
y_{b} & \stackrel{?}{=} y_{d} \\
h-\frac{1}{2} g t^{2} & \stackrel{?}{=}\left(v_{0} \sin \theta\right) t-\frac{1}{2} g t^{2} \\
h & \stackrel{?}{=}\left(v_{0} \sin \theta\right)\left(\frac{d}{v_{0} \cos \theta}\right)
\end{aligned}
$$

Jumping Dolphin, Ex 4-6, pg 94

$$
\begin{aligned}
y_{b} & \stackrel{?}{=} y_{d} \\
h-\frac{1}{2} g t^{2} & \stackrel{?}{=}\left(v_{0} \sin \theta\right) t-\frac{1}{2} g t^{2} \\
h & \stackrel{?}{=}\left(v_{0} \sin \theta\right)\left(\frac{d}{v_{0} \cos \theta}\right) \\
h & \stackrel{?}{=} d \tan \theta \\
h & =h \quad \sqrt{=}
\end{aligned}
$$

So,

$$
y_{b}=y_{d} \quad \text { when } \quad x_{b}=x_{d}
$$

Yes, the dolphin will be able to catch the ball.

Summary

- projectiles launched at an angle

Quiz Thursday

Homework

- relative motion worksheet (answer on scantron and hand in, due Thurs)

Walker Physics:

- Ch 4, onward from page 100. Problems: 31, 33

