Introduction to Mechanics
 Relative Motion and Projectiles

Lana Sheridan
De Anza College

Feb 20, 2020

Last time

- trajectory equation
- another projectile example

Overview

- relative motion and projectiles

Relative Motion And Projectile Motion

Observer on the skateboard sees the ball fall straight down.

Another observer on the sidewalk sees the ball as a horizontally launched projectile.

Relative Motion And Projectile Motion

\#73, page 108
To decide who pays for lunch, a passenger on a moving train tosses a coin straight upward with an initial speed of $4.38 \mathrm{~m} / \mathrm{s}$ and catches it again when it returns to its initial level. From the point of view of the passenger, then, the coin's initial velocity is $(4.38 \mathrm{~m} / \mathrm{s}) \hat{\mathbf{y}}$. The train's velocity relative to the ground is $(12.1 \mathrm{~m} / \mathrm{s}) \hat{\mathbf{x}}$.
(a) What is the minimum speed of the coin relative to the ground during its flight? At what point in the coin's flight does this minimum speed occur? Explain.

Relative Motion And Projectile Motion

\#73, page 108
To decide who pays for lunch, a passenger on a moving train tosses a coin straight upward with an initial speed of $4.38 \mathrm{~m} / \mathrm{s}$ and catches it again when it returns to its initial level. From the point of view of the passenger, then, the coin's initial velocity is $(4.38 \mathrm{~m} / \mathrm{s}) \hat{\mathbf{y}}$. The train's velocity relative to the ground is $(12.1 \mathrm{~m} / \mathrm{s}) \hat{\mathbf{x}}$.
(a) What is the minimum speed of the coin relative to the ground during its flight? At what point in the coin's flight does this minimum speed occur? Explain.
$12.1 \mathrm{~m} / \mathrm{s}$, At the top of its path, where the y-component of velocity is zero.

Relative Motion And Projectile Motion

\#73, page 108
To decide who pays for lunch, a passenger on a moving train tosses a coin straight upward with an initial speed of $4.38 \mathrm{~m} / \mathrm{s}$ and catches it again when it returns to its initial level. From the point of view of the passenger, then, the coin's initial velocity is $(4.38 \mathrm{~m} / \mathrm{s}) \hat{\mathbf{y}}$. The train's velocity relative to the ground is $(12.1 \mathrm{~m} / \mathrm{s}) \hat{\mathbf{x}}$.
(b) Find the initial speed and direction of the coin as seen by an observer on the ground.

Relative Motion And Projectile Motion

\#73, page 108
To decide who pays for lunch, a passenger on a moving train tosses a coin straight upward with an initial speed of $4.38 \mathrm{~m} / \mathrm{s}$ and catches it again when it returns to its initial level. From the point of view of the passenger, then, the coin's initial velocity is $(4.38 \mathrm{~m} / \mathrm{s}) \hat{\mathbf{y}}$. The train's velocity relative to the ground is $(12.1 \mathrm{~m} / \mathrm{s}) \hat{\mathbf{x}}$.
(b) Find the initial speed and direction of the coin as seen by an observer on the ground.

$$
v_{0}=\sqrt{v_{0 x}^{2}+v_{0, y}^{2}} \quad \theta=\tan ^{-1}\left(\frac{v_{0 y}}{v_{0 x}}\right)
$$

Relative Motion And Projectile Motion

\#73, page 108
To decide who pays for lunch, a passenger on a moving train tosses a coin straight upward with an initial speed of $4.38 \mathrm{~m} / \mathrm{s}$ and catches it again when it returns to its initial level. From the point of view of the passenger, then, the coin's initial velocity is $(4.38 \mathrm{~m} / \mathrm{s}) \hat{\mathbf{y}}$. The train's velocity relative to the ground is $(12.1 \mathrm{~m} / \mathrm{s}) \hat{\mathbf{x}}$.
(b) Find the initial speed and direction of the coin as seen by an observer on the ground.

$$
v_{0}=\sqrt{v_{0 x}^{2}+v_{0, y}^{2}} \quad \theta=\tan ^{-1}\left(\frac{v_{0 y}}{v_{0 x}}\right)
$$

$\mathbf{v}_{0}=12.9 \mathrm{~m} / \mathrm{s}$, at 19.9° above the horizontal

Relative Motion And Projectile Motion

\#73, page 108
To decide who pays for lunch, a passenger on a moving train tosses a coin straight upward with an initial speed of $4.38 \mathrm{~m} / \mathrm{s}$ and catches it again when it returns to its initial level. From the point of view of the passenger, then, the coin's initial velocity is $(4.38 \mathrm{~m} / \mathrm{s}) \hat{\mathbf{y}}$. The train's velocity relative to the ground is $(12.1 \mathrm{~m} / \mathrm{s}) \hat{\mathbf{x}}$.
(c) Use the expression for $h=y_{\text {max }}$ to calculate the maximum height of the coin, as seen by an observer on the ground.

Relative Motion And Projectile Motion

\#73, page 108
To decide who pays for lunch, a passenger on a moving train tosses a coin straight upward with an initial speed of $4.38 \mathrm{~m} / \mathrm{s}$ and catches it again when it returns to its initial level. From the point of view of the passenger, then, the coin's initial velocity is $(4.38 \mathrm{~m} / \mathrm{s}) \hat{\mathbf{y}}$. The train's velocity relative to the ground is $(12.1 \mathrm{~m} / \mathrm{s}) \hat{\mathbf{x}}$.
(c) Use the expression for $h=y_{\text {max }}$ to calculate the maximum height of the coin, as seen by an observer on the ground.

$$
h=\frac{v_{0 y}^{2}}{2 g}
$$

Relative Motion And Projectile Motion

\#73, page 108
To decide who pays for lunch, a passenger on a moving train tosses a coin straight upward with an initial speed of $4.38 \mathrm{~m} / \mathrm{s}$ and catches it again when it returns to its initial level. From the point of view of the passenger, then, the coin's initial velocity is $(4.38 \mathrm{~m} / \mathrm{s}) \hat{\mathbf{y}}$. The train's velocity relative to the ground is $(12.1 \mathrm{~m} / \mathrm{s}) \hat{\mathbf{x}}$.
(c) Use the expression for $h=y_{\text {max }}$ to calculate the maximum height of the coin, as seen by an observer on the ground.

$$
h=\frac{v_{0 y}^{2}}{2 g}
$$

$h=0.978 \mathrm{~m}$

Relative Motion And Projectile Motion

\#73, page 108
To decide who pays for lunch, a passenger on a moving train tosses a coin straight upward with an initial speed of $4.38 \mathrm{~m} / \mathrm{s}$ and catches it again when it returns to its initial level. From the point of view of the passenger, then, the coin's initial velocity is $(4.38 \mathrm{~m} / \mathrm{s}) \hat{\mathbf{y}}$. The train's velocity relative to the ground is $(12.1 \mathrm{~m} / \mathrm{s}) \hat{\mathbf{x}}$.
(d) Calculate the maximum height of the coin from the point of view of the passenger, who sees only one-dimensional motion.

Relative Motion And Projectile Motion

\#73, page 108
To decide who pays for lunch, a passenger on a moving train tosses a coin straight upward with an initial speed of $4.38 \mathrm{~m} / \mathrm{s}$ and catches it again when it returns to its initial level. From the point of view of the passenger, then, the coin's initial velocity is $(4.38 \mathrm{~m} / \mathrm{s}) \hat{\mathbf{y}}$. The train's velocity relative to the ground is $(12.1 \mathrm{~m} / \mathrm{s}) \hat{\mathbf{x}}$.
(d) Calculate the maximum height of the coin from the point of view of the passenger, who sees only one-dimensional motion.
$h=0.978 \mathrm{~m}$

Summary

- relative motion and projectiles

Test 2 Monday, Feb 24.

Homework

Walker Physics:

- prev: Ch 4, onward from page 100. Con. Ques: 7, 9; Problems: 1, 40 \& 41, 43, 71, 77, 87, 67 (projectile in disguise)
- Read ahead in Ch 5.

