Introduction to Mechanics Unit Conversion

Lana Sheridan
De Anza College

Jan 8, 2020

Last time

- physics vocabulary
- definitions of base units
- dimensional analysis

Dimensional Analysis Question

Which of the following equations are dimensionally correct?
(1) $v_{f}=v_{i}+a x$
(2) $y=(2 m) \cos (k x)$, where $k=2 m^{-1}$.

A (1) only
B (2) only
C both
D neither
${ }^{1}$ Serway \& Jewett, Page 16, \# 9.

Dimensional Analysis Question

Which of the following equations are dimensionally correct?
(1) $v_{f}=v_{i}+a x$
(2) $y=(2 m) \cos (k x)$, where $k=2 m^{-1}$.

A (1) only
B (2) only \leftarrow
C both
D neither
${ }^{1}$ Serway \& Jewett, Page 16, \# 9.

Warm Up Question: Dimensional Analysis Question

(1) Units of $v_{f}=v_{i}+a x$:

$$
\begin{aligned}
{\left[\mathrm{ms}^{-1}\right] } & =\left[\mathrm{ms}^{-1}\right]+\left[\mathrm{ms}^{-2}\right] \times[\mathrm{m}] \\
{\left[\mathrm{ms}^{-1}\right] } & =\left[\mathrm{ms}^{-1}\right]+\left[\mathrm{m}^{2} \mathrm{~s}^{-2}\right]
\end{aligned}
$$

No. (1) is not dimensionally correct.

Warm Up Question: Dimensional Analysis Question

(2) Units of $y=(2 m) \cos (k x)$

$$
\begin{aligned}
{[\mathrm{m}] } & =[\mathrm{m}] \times \cos \left(\left[\mathrm{m}^{-1}\right] \times[\mathrm{m}]\right) \\
{[\mathrm{m}] } & =[\mathrm{m}]
\end{aligned}
$$

Yes. (2) is dimensionally correct.

Overview

- symbols for scaling units
- measurement uncertainty and significant figures
- precision and trueness
- scientific notation
- unit conversions (non-SI units)

Scale of Units

Scale of Units

You need to know for this course:

Scale	Prefix	Symbol
10^{3}	kilo-	k
10^{0}	-	-
10^{-1}	deci-	d
10^{-2}	centi-	c
10^{-3}	milli-	m

Unit Scaling Examples

What is 8 cm in meters?

Unit Scaling Examples

What is 8 cm in meters?

$$
(8 \mathrm{~cm}) \times\left(\frac{1 \mathrm{~m}}{100 \mathrm{~cm}}\right)=0.08 \mathrm{~m} .
$$

Unit Scaling Examples

What is 8 cm in meters?

$$
(8 \mathrm{~cm}) \times\left(\frac{1 \mathrm{~m}}{100 \mathrm{~cm}}\right)=0.08 \mathrm{~m} .
$$

What is $508 \mu \mathrm{~s}$ in seconds?

Unit Scaling Examples

What is 8 cm in meters?

$$
(8 \mathrm{~cm}) \times\left(\frac{1 \mathrm{~m}}{100 \mathrm{~cm}}\right)=0.08 \mathrm{~m} .
$$

What is $508 \mu \mathrm{~s}$ in seconds?

$$
(508 \mu \mathrm{~s}) \times\left(\frac{1 \mathrm{~s}}{1,000,000 \mu \mathrm{~s}}\right)=0.000508 \mathrm{~s}
$$

Unit Scaling Examples

What is 8 cm in meters?

$$
(8 \mathrm{~cm}) \times\left(\frac{1 \mathrm{~m}}{100 \mathrm{~cm}}\right)=0.08 \mathrm{~m} .
$$

What is $508 \mu \mathrm{~s}$ in seconds?

$$
(508 \mu \mathrm{~s}) \times\left(\frac{1 \mathrm{~s}}{1,000,000 \mu \mathrm{~s}}\right)=0.000508 \mathrm{~s}
$$

What is $3 \mathrm{~g} / \mathrm{cm}^{3}$ in $\mathrm{kg} / \mathrm{m}^{3}$?

Unit Scaling Examples

What is 8 cm in meters?

$$
(8 \mathrm{~cm}) \times\left(\frac{1 \mathrm{~m}}{100 \mathrm{~cm}}\right)=0.08 \mathrm{~m} .
$$

What is $508 \mu \mathrm{~s}$ in seconds?

$$
(508 \mu \mathrm{~s}) \times\left(\frac{1 \mathrm{~s}}{1,000,000 \mu \mathrm{~s}}\right)=0.000508 \mathrm{~s}
$$

What is $3 \mathrm{~g} / \mathrm{cm}^{3}$ in $\mathrm{kg} / \mathrm{m}^{3}$?

$$
\left(3 \mathrm{~g} / \mathrm{cm}^{3}\right) \times\left(\frac{1 \mathrm{~kg}}{1000 \mathrm{~g}}\right) \times\left(\frac{100 \mathrm{~cm}}{1 \mathrm{~m}}\right)^{3}=3000 \mathrm{~kg} / \mathrm{m}^{3} .
$$

Measurements: Precision and Trueness

Ideally, a measurement should be both precise and true.

```
Precision
A measurement is precise if it yields very similar results when repeated.
```


Trueness (previously called Accuracy)

A measurement is true if it its result is very close to the actual value.

Measurements: Precision and Trueness

${ }^{1}$ Edited, from diagram created by Pekaje, based on PNG version by Anthony Cutler, Wikipedia.

Significant Figures

Significant Figures

The number of digits in a value that are meaningful for representing the precision of a measurement.

Summary

- symbols for scaling units
- measurement uncertainty and significant figures
- precision and trueness

Quiz *Tuesday*, in class.
Homework

- unit conversion worksheet, due *Tuesday*, Jan 13. - don't start this until tomorrow, unless you are very confident

Walker Physics: (this \neg will not be collected)

- Ch 1, onward from page 14 . Problem: 50 (changed!)

