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Last time

• types of forces: normal force

• elevators and acceleration



Overview

• types of forces: normal force

• inclines

• tension



Elevator Problem

When you lift a bowling ball with a force of 82 N, the ball
accelerates upward with an acceleration a. If you lift with a force
of 92 N, the ball’s acceleration is 2a. Find (a) the weight of the
bowling ball, and (b) the acceleration a.



The Normal Force

The normal force supports an object that sits on a surface, but its
magnitude is different in different circumstances.

In general, one needs to work out what it will be in each problem.

Some cases where the normal force is different than the weight of
an object are:

• there are other forces with components perpendicular to the
surface.

• the object is in an accelerating elevator.

• the object sits on an incline.
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Object on an Incline
Problems with an object placed on an incline often require us to
find the net force on the object or its acceleration.

Consider a car on a frictionless driveway.1 (Or free to roll, with
frictionless, massless wheels.)

124 Chapter 5 The Laws of Motion

Example 5.6   The Runaway Car 

A car of mass m is on an icy driveway inclined 
at an angle u as in Figure 5.11a.

(A) Find the acceleration of the car, assuming 
the driveway is frictionless.

Conceptualize  Use Figure 5.11a to conceptu-
alize the situation. From everyday experience, 
we know that a car on an icy incline will accel-
erate down the incline. (The same thing hap-
pens to a car on a hill with its brakes not set.)

Categorize We categorize the car as a particle 
under a net force because it accelerates. Further-
more, this example belongs to a very common category of problems in which an object moves under the influence of 
gravity on an inclined plane.

Analyze Figure 5.11b shows the free-body diagram for the car. The only forces acting on the car are the normal force 
nS exerted by the inclined plane, which acts perpendicular to the plane, and the gravitational force F

S
g 5 mgS, which 

acts vertically downward. For problems involving inclined planes, it is convenient to choose the coordinate axes with x 
along the incline and y perpendicular to it as in Figure 5.11b. With these axes, we represent the gravitational force by 
a component of magnitude mg sin u along the positive x axis and one of magnitude mg cos u along the negative y axis. 
Our choice of axes results in the car being modeled as a particle under a net force in the x direction and a particle in 
equilibrium in the y direction.

AM

S O L U T I O N

Apply these models to the car: (1)   o Fx 5 mg sin u 5 max

(2)   o Fy 5 n 2 mg cos u 5 0 

Solve Equation (1) for ax: (3)   ax 5   g sin u

Finalize Note that the acceleration component ax is independent of the mass of the car! It depends only on the angle 
of inclination and on g.
 From Equation (2), we conclude that the component of F

S
g perpendicular to the incline is balanced by the normal 

force; that is, n 5 mg cos u. This situation is a case in which the normal force is not equal in magnitude to the weight of 
the object (as discussed in Pitfall Prevention 5.6 on page 119).
 It is possible, although inconvenient, to solve the problem with “standard” horizontal and vertical axes. You may 
want to try it, just for practice.

(B) Suppose the car is released from rest at the top of the incline and the distance from the car’s front bumper to 
the bottom of the incline is d. How long does it take the front bumper to reach the bottom of the hill, and what is the 
car’s speed as it arrives there?

train, each coupler is accelerating less mass behind it. The last coupler has to accelerate only the last car, and so it is 
under the least tension.
 When the brakes are applied, the force again decreases from front to back. The coupler connecting the locomotive 
to the first car must apply a large force to slow down the rest of the cars, but the final coupler must apply a force large 
enough to slow down only the last car.

 

▸ 5.5 c o n t i n u e d
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Figure 5.11  (Example 5.6) (a) A car on a frictionless incline. (b) The free-
body diagram for the car. The black dot represents the position of the center 
of mass of the car. We will learn about center of mass in Chapter 9.

1Figures from Serway & Jewett
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The forces acting on the car: weight and normal force.

In this case, it is useful to pick a coordinate system that is rotated:
the x axis points along slope, the y axis perpendicular to the slope.



Object on an Incline

124 Chapter 5 The Laws of Motion

Example 5.6   The Runaway Car 

A car of mass m is on an icy driveway inclined 
at an angle u as in Figure 5.11a.

(A) Find the acceleration of the car, assuming 
the driveway is frictionless.

Conceptualize  Use Figure 5.11a to conceptu-
alize the situation. From everyday experience, 
we know that a car on an icy incline will accel-
erate down the incline. (The same thing hap-
pens to a car on a hill with its brakes not set.)

Categorize We categorize the car as a particle 
under a net force because it accelerates. Further-
more, this example belongs to a very common category of problems in which an object moves under the influence of 
gravity on an inclined plane.

Analyze Figure 5.11b shows the free-body diagram for the car. The only forces acting on the car are the normal force 
nS exerted by the inclined plane, which acts perpendicular to the plane, and the gravitational force F

S
g 5 mgS, which 

acts vertically downward. For problems involving inclined planes, it is convenient to choose the coordinate axes with x 
along the incline and y perpendicular to it as in Figure 5.11b. With these axes, we represent the gravitational force by 
a component of magnitude mg sin u along the positive x axis and one of magnitude mg cos u along the negative y axis. 
Our choice of axes results in the car being modeled as a particle under a net force in the x direction and a particle in 
equilibrium in the y direction.

AM

S O L U T I O N

Apply these models to the car: (1)   o Fx 5 mg sin u 5 max

(2)   o Fy 5 n 2 mg cos u 5 0 

Solve Equation (1) for ax: (3)   ax 5   g sin u

Finalize Note that the acceleration component ax is independent of the mass of the car! It depends only on the angle 
of inclination and on g.
 From Equation (2), we conclude that the component of F

S
g perpendicular to the incline is balanced by the normal 

force; that is, n 5 mg cos u. This situation is a case in which the normal force is not equal in magnitude to the weight of 
the object (as discussed in Pitfall Prevention 5.6 on page 119).
 It is possible, although inconvenient, to solve the problem with “standard” horizontal and vertical axes. You may 
want to try it, just for practice.

(B) Suppose the car is released from rest at the top of the incline and the distance from the car’s front bumper to 
the bottom of the incline is d. How long does it take the front bumper to reach the bottom of the hill, and what is the 
car’s speed as it arrives there?

train, each coupler is accelerating less mass behind it. The last coupler has to accelerate only the last car, and so it is 
under the least tension.
 When the brakes are applied, the force again decreases from front to back. The coupler connecting the locomotive 
to the first car must apply a large force to slow down the rest of the cars, but the final coupler must apply a force large 
enough to slow down only the last car.

 

▸ 5.5 c o n t i n u e d

a b

y

xx u
u

mg cos u

mg sin u

g = m gS 

nS

F
S
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The forces acting on the car: weight and normal force.

Imagine the car starts from rest. If it were to accelerate off the
surface, the normal force would go to zero immediately. The car
also cannot sink (accelerate) into the surface. ⇒ ay = 0.
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So, the forces in the (tilted) y -direction cancel:

Fnet,y = m��>
0

ay

n −mg cos θ = 0

Rearranging:
n = mg cos θ

If θ > 0 the normal force will be less than the weight, mg .
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In the (tilted) x-direction:

Fnet,x = max

��mg sin θ = ��max

⇒ #»

Fnet = (mg sin θ)̂i

⇒ #»a = (g sin θ)̂i



Incline Example
A 65-kg skier speeds down a trail, as shown. The surface is
smooth and inclined at an angle of 22◦ with the horizontal.
(a) Find the direction and magnitude of the net force acting on the
skier.
(b) Does the net force exerted on the skier increase, decrease, or
stay the same as the slope becomes steeper? Explain.

PROBLEMS 137

18. •• IP Two boxes sit side-by-side on a smooth horizontal sur-
face. The lighter box has a mass of 5.2 kg, the heavier box has
a mass of 7.4 kg. (a) Find the contact force between these boxes
when a horizontal force of 5.0 N is applied to the light box.
(b) If the 5.0-N force is applied to the heavy box instead, is
the contact force between the boxes the same as, greater than,
or less than the contact force in part (a)? Explain. (c) Verify
your answer to part (b) by calculating the contact force in this
case.

Section 5–5 The Vector Nature of Forces
19. • A farm tractor tows a 3900-kg trailer up a 16° incline with a

steady speed of 3.0 m/s. What force does the tractor exert on
the trailer? (Ignore friction.)

20. • A surfer “hangs ten,” and accelerates down the sloping face of
a wave. If the surfer’s acceleration is and friction can
be ignored, what is the angle at which the face of the wave is in-
clined above the horizontal?

21. • A shopper pushes a 7.5-kg shopping cart up a 13° incline, as
shown in Figure 5–24. Find the magnitude of the horizontal
force, needed to give the cart an acceleration of 1.41 m/s2.F

!
,

3.25 m/s2

24. •• IP Before practicing his routine on the rings, a 67-kg gymnast
stands motionless, with one hand grasping each ring and his
feet touching the ground. Both arms slope upward at an angle of
24° above the horizontal. (a) If the force exerted by the rings on
each arm has a magnitude of 290 N, and is directed along the
length of the arm, what is the magnitude of the force exerted by
the floor on his feet? (b) If the angle his arms make with the hor-
izontal is greater that 24°, and everything else remains the same,
is the force exerted by the floor on his feet greater than, less than,
or the same as the value found in part (a)? Explain.

25. •• IP A65-kg skier speeds down a trail, as shown inFigure 5–27.
The surface is smooth and inclined at an angle of 22° with the
horizontal. (a) Find the direction and magnitude of the net force
acting on the skier. (b) Does the net force exerted on the skier in-
crease, decrease, or stay the same as the slope becomes steeper?
Explain.

a
F

13°

▲ FIGURE 5–24 Problem 21

22. • Two crewmen pull a raft through a lock, as shown in Fig-
ure 5–25. One crewman pulls with a force of 130 N at an angle
of 34° relative to the forward direction of the raft. The second
crewman, on the opposite side of the lock, pulls at an angle of
45°. With what force should the second crewman pull so that the
net force of the two crewmen is in the forward direction?

130 N

F
45°

34°

▲ FIGURE 5–25 Problem 22

23. •• To give a 19-kg child a ride, two teenagers pull on a 3.7-kg
sled with ropes, as indicated in Figure 5–26. Both teenagers
pull with a force of 55 N at an angle of 35° relative to the for-
ward direction, which is the direction of motion. In addition,
the snow exerts a retarding force on the sled that points oppo-
site to the direction of motion, and has a magnitude of 57 N.
Find the acceleration of the sled and child.

55 N

35°
35°a

55 N

57 N

▲ FIGURE 5–26 Problem 23

26. •• An object acted on by three forces moves with constant ve-
locity. One force acting on the object is in the positive x direction
and has a magnitude of 6.5 N; a second force has a magnitude
of 4.4 N and points in the negative y direction. Find the direc-
tion and magnitude of the third force acting on the object.

27. •• A train is traveling up a 3.9° incline at a speed of 3.15 m/s
when the last car breaks free and begins to coast without fric-
tion. (a) How long does it take for the last car to come to rest
momentarily? (b) How far did the last car travel before mo-
mentarily coming to rest?

22°

▲ FIGURE 5–27 Problems 25 and 38
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Some types of forces

Tension

The force exerted by a rope or chain to suspend or pull an object
with mass.

6–2 Strings and Springs
A common way to exert a force on an object is to pull on it with a string, a rope, a
cable, or a wire. Similarly, you can push or pull on an object if you attach it to a
spring. In this section we discuss the basic features of strings and springs and how
they transmit forces.

150 CHAPTER 6 APPLICATIONS OF NEWTON’S LAWS

T3

T2

T1

T

T

T

T

▲ FIGURE 6–5 Tension in a string
A string, pulled from either end, has a tension, T. If the string were to be cut
at any point, the force required to hold the ends together is T.

T T

▲ FIGURE 6–6 Tension in a heavy rope
Because of the weight of the rope, the
tension is noticeably different at points 1,
2, and 3. As the rope becomes lighter, how-
ever, the difference in tension decreases. In
the limit of a rope of zero mass, the tension
is the same throughout the rope.

Strings and Tension
Imagine picking up a light string and holding it with one end in each hand. If you
pull to the right with your right hand with a force T and to the left with your left
hand with a force T, the string becomes taut. In such a case, we say that there is a
tension T in the string. To be more specific, if your friend were to cut the string at
some point, the tension T is the force pulling the ends apart, as illustrated in
Figure 6–5—that is, T is the force your friend would have to exert with each hand
to hold the cut ends together. Note that at any given point, the tension pulls
equally to the right and to the left.

As an example, consider a rope that is attached to the ceiling at one end, and
to a box with a weight of 105 N at the other end, as shown in Figure 6–6. In addi-
tion, suppose the rope is uniform, and that it has a total weight of 2.00 N. What
is the tension in the rope (i) where it attaches to the box, (ii) at its midpoint, and
(iii) where it attaches to the ceiling?

First, the rope holds the box at rest; thus, the tension where the rope attaches
to the box is simply the weight of the box, At the midpoint of the
rope, the tension supports the weight of the box, plus the weight of half the
rope. Thus, Similarly, at the ceiling the ten-
sion supports the box plus all of the rope, giving a tension of Note
that the tension pulls down on the ceiling but pulls up on the box.

From this discussion, we can see that the tension in the rope changes slightly
from top to bottom because of the mass of the rope. If the rope had less mass, the
difference in tension between its two ends would also be less. In particular, if the
rope’s mass were to be vanishingly small, the difference in tension would vanish
as well. In this text, we will assume that all ropes, strings, wires, and so on are
practically massless—unless specifically stated otherwise—and, hence, that the
tension is the same throughout their length.

Pulleys are often used to redirect a force exerted by a string, as indicated in
Figure 6–7. In the ideal case, a pulley has no mass, and no friction in its bearings.
Thus, an ideal pulley simply changes the direction of the tension in a string, without
changing its magnitude. If a system contains more than one pulley, however, it is
possible to arrange them in such a way as to “magnify a force,” even if each pul-
ley itself merely redirects the tension in a string. The traction device considered in
the next Example shows one way this can be accomplished in a system that uses
three ideal pulleys.

T3 = 107 N.
T2 = 105 N + 1

212.00 N2 = 106 N.

T1 = 105 N.

▲ FIGURE 6–7 A pulley changes the
direction of a tension
In an ideal string, the tension has the
same magnitude, T, throughout its
length. A pulley can serve to redirect the
string, however, so that the tension acts
in a different direction.
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Problems involving tensions often require solving systems of vector
equations.

1Figure from Walker, “Physics”.



Some types of forces

If a rope is “light” (massless) the tension is the same everywhere
in the rope.

If the rope is has mass the tension can vary alongs the rope.

6–2 Strings and Springs
A common way to exert a force on an object is to pull on it with a string, a rope, a
cable, or a wire. Similarly, you can push or pull on an object if you attach it to a
spring. In this section we discuss the basic features of strings and springs and how
they transmit forces.

150 CHAPTER 6 APPLICATIONS OF NEWTON’S LAWS

T3

T2

T1

T

T

T

T

▲ FIGURE 6–5 Tension in a string
A string, pulled from either end, has a tension, T. If the string were to be cut
at any point, the force required to hold the ends together is T.

T T

▲ FIGURE 6–6 Tension in a heavy rope
Because of the weight of the rope, the
tension is noticeably different at points 1,
2, and 3. As the rope becomes lighter, how-
ever, the difference in tension decreases. In
the limit of a rope of zero mass, the tension
is the same throughout the rope.

Strings and Tension
Imagine picking up a light string and holding it with one end in each hand. If you
pull to the right with your right hand with a force T and to the left with your left
hand with a force T, the string becomes taut. In such a case, we say that there is a
tension T in the string. To be more specific, if your friend were to cut the string at
some point, the tension T is the force pulling the ends apart, as illustrated in
Figure 6–5—that is, T is the force your friend would have to exert with each hand
to hold the cut ends together. Note that at any given point, the tension pulls
equally to the right and to the left.

As an example, consider a rope that is attached to the ceiling at one end, and
to a box with a weight of 105 N at the other end, as shown in Figure 6–6. In addi-
tion, suppose the rope is uniform, and that it has a total weight of 2.00 N. What
is the tension in the rope (i) where it attaches to the box, (ii) at its midpoint, and
(iii) where it attaches to the ceiling?

First, the rope holds the box at rest; thus, the tension where the rope attaches
to the box is simply the weight of the box, At the midpoint of the
rope, the tension supports the weight of the box, plus the weight of half the
rope. Thus, Similarly, at the ceiling the ten-
sion supports the box plus all of the rope, giving a tension of Note
that the tension pulls down on the ceiling but pulls up on the box.

From this discussion, we can see that the tension in the rope changes slightly
from top to bottom because of the mass of the rope. If the rope had less mass, the
difference in tension between its two ends would also be less. In particular, if the
rope’s mass were to be vanishingly small, the difference in tension would vanish
as well. In this text, we will assume that all ropes, strings, wires, and so on are
practically massless—unless specifically stated otherwise—and, hence, that the
tension is the same throughout their length.

Pulleys are often used to redirect a force exerted by a string, as indicated in
Figure 6–7. In the ideal case, a pulley has no mass, and no friction in its bearings.
Thus, an ideal pulley simply changes the direction of the tension in a string, without
changing its magnitude. If a system contains more than one pulley, however, it is
possible to arrange them in such a way as to “magnify a force,” even if each pul-
ley itself merely redirects the tension in a string. The traction device considered in
the next Example shows one way this can be accomplished in a system that uses
three ideal pulleys.

T3 = 107 N.
T2 = 105 N + 1

212.00 N2 = 106 N.

T1 = 105 N.

▲ FIGURE 6–7 A pulley changes the
direction of a tension
In an ideal string, the tension has the
same magnitude, T, throughout its
length. A pulley can serve to redirect the
string, however, so that the tension acts
in a different direction.
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(See also example 5-5 on pg 126 and 6-5 of the textbook.)

1Figure from Walker, “Physics”.



Summary

• the normal force

• normal force: elevators

• normal force: inclines

• tension

Homework
Walker Physics:

• Ch 5, Problems: 25, 27, 45, 49, 51 (inclines)


