

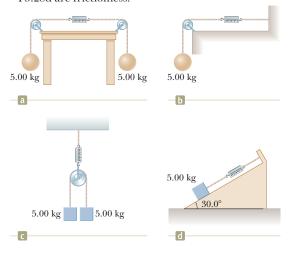
Introduction to Mechanics Applying Newton's Laws Pulleys Objects Moving Together

Lana Sheridan

De Anza College

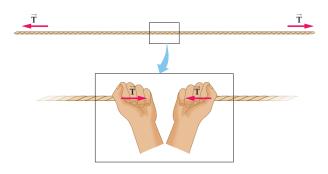
Mar 5, 2020

Last time


- static equilibrium
- tension and statics
- elevators again
- pulleys

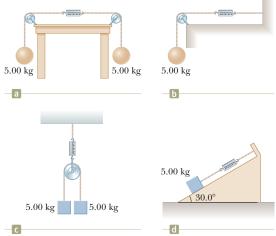
Overview

- objects accelerated together
- introducing the Atwood machine

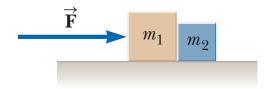

Tension and Force Meters

28. The systems shown in Figure P5.28 are in equilibrium.
W If the spring scales are calibrated in newtons, what do they read? Ignore the masses of the pulleys and strings and assume the pulleys and the incline in Figure P5.28d are frictionless.

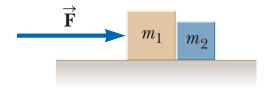
Tension Reminder


The force exerted by a rope or chain to suspend or pull an object with mass.

¹Figure from Walker, "Physics".

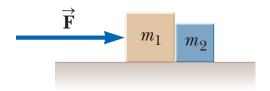

Tension and Force Meters

28. The systems shown in Figure P5.28 are in equilibrium.
W If the spring scales are calibrated in newtons, what do they read? Ignore the masses of the pulleys and strings and assume the pulleys and the incline in Figure P5.28d are frictionless.



Answers: a) 49 N, b) 49 N, c) 98 N, d) 24.5 N

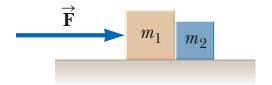
Consider a force $\overrightarrow{\mathbf{F}}$ that acts on two objects, masses m_1 and m_2 , free to slide on a frictionless surface:



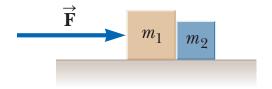
Question. What is the acceleration of object m_2 ?

We could imagine that the two blocks are one large block of mass $(m_1 + m_2)$. This works because the two blocks will move together.

Question. What is the acceleration of object m_2 ?


We could imagine that the two blocks are one large block of mass $(m_1 + m_2)$. This works because the two blocks will move together.

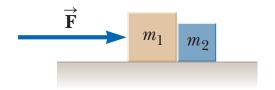
$$\vec{\mathbf{F}}_{\text{net}} = \vec{\mathbf{F}} + \vec{\mathbf{n}} + (m_1 + m_2)\vec{\mathbf{g}} = \vec{\mathbf{F}} = (m_1 + m_2)\vec{\mathbf{a}}$$


Then

$$\vec{\mathbf{a}} = \frac{\vec{\mathbf{F}}}{m_1 + m_2}$$

Question. What is the net force on object m_2 ?

Question. What is the net force on object m_2 ?



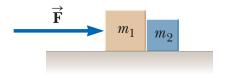
It is not $\overrightarrow{\mathbf{F}}$!

We can use Newton's second law again, but now our system will only be block 2.

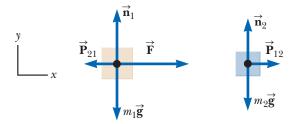
$$\overrightarrow{\mathbf{F}}_{\mathsf{net},2} = m_2 \overrightarrow{\mathbf{a}}$$

Question. What is the net force on object m_2 ?

It is not $\overrightarrow{\mathbf{F}}$!

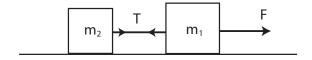

We can use Newton's second law again, but now our system will only be block 2.

$$\vec{\mathbf{F}}_{\text{net},2} = m_2 \vec{\mathbf{a}}$$

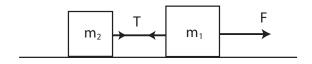

Using our expression for \vec{a} :

$$\overrightarrow{\mathbf{F}}_{\text{net},2} = \frac{m_2 \overrightarrow{\mathbf{F}}}{m_1 + m_2}$$

Main Idea: if objects are pushed or pulled together, then they must all accelerate at the same rate.



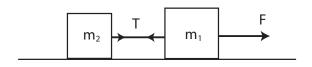
But if m_1 and m_2 are not equal, that means that the individual net forces on each must be different:


Separate Objects Pulled Along

Consider two blocks tied together and pulled along a frictionless surface.

Separate Objects Pulled Along

Consider two blocks tied together and pulled along a frictionless surface.



This is actually the same problem we solved a minute ago!

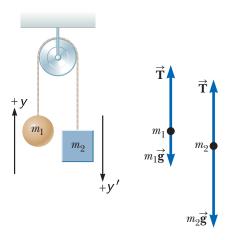
The accelerations of the two blocks are the same.

Separate Objects Pulled Along

Consider two blocks tied together and pulled along a frictionless surface.

This is actually the same problem we solved a minute ago!

The accelerations of the two blocks are the same.


Imagining them as a single block gives the acceleration straight away:

$$\vec{\mathbf{a}} = \frac{\vec{\mathbf{F}}}{m_1 + m_2}$$

What is the tension in the rope connecting the blocks?

Pulleys and the Atwood Machine

The Atwood Machine can be used to make careful determinations of g, as well as explore the behavior of forces and accelerations.

¹http://en.wikipedia.org/wiki/Atwood_machine

Summary

- objects accelerated together
- introducing the Atwood machine

Homework

Walker Physics:

- Ch 5, onwards from page 138. Problems: 21 (blocks moving together)
- Ch 6, Problems: 49 (blocks pulled along)