

Introduction to Mechanics The Atwood Machine

Lana Sheridan

De Anza College

March 9, 2020

Last time

- objects accelerated together
- introduced the Atwood machine

Overview

- the Atwood machine, and variants
- introduce friction

The Atwood Machine can be used to make careful determinations of g, as well as explore the behavior of forces and accelerations.

 $^{1}http://en.wikipedia.org/wiki/Atwood_machine$

We can consider the motion for each mass separately. mass 1, y-direction:

$$F_{\text{net},1y} = m_1 a_y$$

$$T - m_1 g = m_1 a \qquad (1)$$

mass 2, y'-direction:

$$F_{\text{net},2y'} = m_2 a_{y'}$$

$$m_2 g - T = m_2 a \qquad (2)$$

We can consider the motion for each mass separately. mass 1, y-direction:

$$F_{\text{net},1y} = m_1 a_y$$

$$T - m_1 g = m_1 a \qquad (1)$$

mass 2, y'-direction:

$$F_{\text{net},2y'} = m_2 a_{y'}$$

$$m_2 g - T = m_2 a \qquad (2)$$

Be careful about the signs! Both masses must accelerate together - one up, one down.

Two equations, two unknowns. Solve as you like!

$$T - m_1 g = m_1 a$$
 (1)
 $m_2 g - T = m_2 a$ (2)

Take eq (1) + eq (2):

$$m_2g - m_1g = m_1a + m_2a$$

 $a = \frac{(m_2 - m_1)g}{m_1 + m_2}$

$$T - m_1 g = m_1 a \tag{1}$$

 $m_2g-T=m_2a \tag{2}$

Take eq (1) + eq (2):

$$m_2g - m_1g = m_1a + m_2a$$

 $a = \frac{(m_2 - m_1)g}{m_1 + m_2}$

Putting a into either eq (1) or eq (2):

$$T=\frac{2m_1m_2g}{m_1+m_2}$$

Let's change up our Atwood machine apparatus so that one of the masses is on a slanted surface with no friction. Assume $m_2 \sin \theta > m_1$, so the blocks slide as shown.

Try to solve this one yourself! a = ?, T = ?

We can still consider each object separately:

Acceleration? Tension?

We must have $a_y = a_{x'} = a$.

We must have $a_y = a_{x'} = a$.

Object 1:

<u>x-direction</u>: no forces w/ components in $x \Rightarrow F_{net,x} = 0$, $a_x = 0$. y-direction:

$$F_{\text{net},y} = m_1 a_y$$

$$T - m_1 g = m_1 a \qquad (3)$$

We must have $a_y = a_{x'} = a$.

Object 1:

<u>x-direction</u>: no forces w/ components in $x \Rightarrow F_{net,x} = 0$, $a_x = 0$. y-direction:

$$F_{\text{net},y} = m_1 a_y$$

$$T - m_1 g = m_1 a \qquad (3)$$

Object 2: <u>x'-direction</u>:

$$F_{\text{net},x'} = m_2 a_{x'}$$
$$m_2 g \sin \theta - T = m_2 a \qquad (4)$$

y'-direction: $a_{y'} = 0$.

Summary

- the Atwood machine, and variants
- introduce friction (?)

Homework

Walker Physics:

- Ch 6, Problems: 43, 45, 47 (Atwood-type)
- Ch 6, onwards from page 177. Questions: 3, 15; Problems: 1, 3, 7, 11, 13, 15, 87 (friction)