Introduction to Mechanics The Atwood Machine

Lana Sheridan
De Anza College

March 9, 2020

Last time

- objects accelerated together
- introduced the Atwood machine

Overview

- the Atwood machine, and variants
- introduce friction

Pulleys and the Atwood Machine

The Atwood Machine can be used to make careful determinations of g, as well as explore the behavior of forces and accelerations.

${ }^{1}$ http://en.wikipedia.org/wiki/Atwood_machine

Pulleys and the Atwood Machine

We can consider the motion for each mass separately. mass 1, y-direction:

$$
\begin{align*}
F_{\text {net }, 1 y} & =m_{1} a_{y} \\
T-m_{1} g & =m_{1} a \tag{1}
\end{align*}
$$

mass 2, y^{\prime}-direction:

$$
\begin{align*}
F_{\text {net }, 2 y^{\prime}} & =m_{2} a_{y^{\prime}} \\
m_{2} g-T & =m_{2} a \tag{2}
\end{align*}
$$

Pulleys and the Atwood Machine

We can consider the motion for each mass separately. mass 1, y-direction:

$$
\begin{align*}
F_{\mathrm{net}, 1 y} & =m_{1} a_{y} \\
T-m_{1} g & =m_{1} a \tag{1}
\end{align*}
$$

mass 2, y^{\prime}-direction:

$$
\begin{align*}
F_{\text {net }, 2 y^{\prime}} & =m_{2} a_{y^{\prime}} \\
m_{2} g-T & =m_{2} a \tag{2}
\end{align*}
$$

Be careful about the signs! Both masses must accelerate together - one up, one down.

Two equations, two unknowns. Solve as you like!

Pulleys and the Atwood Machine

$$
\begin{align*}
& T-m_{1} g=m_{1} a \tag{1}\\
& m_{2} g-T=m_{2} a \tag{2}
\end{align*}
$$

Take eq (1) + eq (2):

$$
\begin{aligned}
m_{2} g-m_{1} g & =m_{1} a+m_{2} a \\
a & =\frac{\left(m_{2}-m_{1}\right) g}{m_{1}+m_{2}}
\end{aligned}
$$

Pulleys and the Atwood Machine

$$
\begin{align*}
& T-m_{1} g=m_{1} a \tag{1}\\
& m_{2} g-T=m_{2} a \tag{2}
\end{align*}
$$

Take eq (1) + eq (2):

$$
\begin{aligned}
m_{2} g-m_{1} g & =m_{1} a+m_{2} a \\
a & =\frac{\left(m_{2}-m_{1}\right) g}{m_{1}+m_{2}}
\end{aligned}
$$

Putting a into either eq (1) or eq (2):

$$
T=\frac{2 m_{1} m_{2} g}{m_{1}+m_{2}}
$$

Pulley with an Incline

Let's change up our Atwood machine apparatus so that one of the masses is on a slanted surface with no friction. Assume $m_{2} \sin \theta>m_{1}$, so the blocks slide as shown.

Try to solve this one yourself! $\quad a=?, T=$?

Pulley with an Incline

We can still consider each object separately:

Acceleration? Tension?

Pulley with an Incline

We must have $a_{y}=a_{x^{\prime}}=a$.

Pulley with an Incline

We must have $a_{y}=a_{x^{\prime}}=a$.

Object 1:

 y-direction:

$$
\begin{align*}
F_{\text {net,y }} & =m_{1} a_{y} \\
T-m_{1} g & =m_{1} a \tag{3}
\end{align*}
$$

Pulley with an Incline

We must have $a_{y}=a_{x^{\prime}}=a$.

Object 1:

$\underline{x-d i r e c t i o n: ~ n o ~ f o r c e s ~} \mathrm{w} /$ components in $x \Rightarrow F_{\text {net }, x}=0, a_{x}=0$. y-direction:

$$
\begin{align*}
F_{\text {net,y }} & =m_{1} a_{y} \\
T-m_{1} g & =m_{1} a \tag{3}
\end{align*}
$$

Object 2:
x^{\prime}-direction:

$$
\begin{align*}
F_{\text {net }, x^{\prime}} & =m_{2} a_{x^{\prime}} \\
m_{2} g \sin \theta-T & =m_{2} a \tag{4}
\end{align*}
$$

y^{\prime}-direction: $a_{y^{\prime}}=0$.

Pulley with an Incline

Summary

- the Atwood machine, and variants
- introduce friction (?)

Homework

Walker Physics:

- Ch 6, Problems: 43, 45, 47 (Atwood-type)
- Ch 6, onwards from page 177. Questions: 3, 15; Problems: 1, 3, 7, 11, 13, 15, 87 (friction)

