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Last time

• objects accelerated together

• the introduced the Atwood machine



Overview

• Atwood machine variant

• friction (kinetic and static)

• solving problems with friction



Pulley with an Incline

Let’s change up our Atwood machine apparatus so that one of the
masses is on a slanted surface with no friction. Assume
m2 sin θ > m1, so the blocks slide as shown.

Try to solve this one yourself! a = ?, T = ?
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Example 5.10   Acceleration of Two Objects Connected by a Cord 

A ball of mass m1 and a block of mass m2 are attached by a lightweight cord 
that passes over a frictionless pulley of negligible mass as in Figure 5.15a. 
The block lies on a frictionless incline of angle u. Find the magnitude of 
the acceleration of the two objects and the tension in the cord.

Conceptualize Imagine the objects in Figure 5.15 in motion. If m2 moves 
down the incline, then m1 moves upward. Because the objects are con-
nected by a cord (which we assume does not stretch), their accelerations 
have the same magnitude. Notice the normal coordinate axes in Figure 
5.15b for the ball and the “tilted” axes for the block in Figure 5.15c.

Categorize We can identify forces on each of the two objects and we are 
looking for an acceleration, so we categorize the objects as particles under a 
net force. For the block, this model is only valid for the x9 direction. In the y9 
direction, we apply the particle in equilibrium model because the block does 
not accelerate in that direction.

Analyze Consider the free-body diagrams shown in Figures 5.15b and 
5.15c.
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Figure 5.15 (Example 5.10) (a) Two objects 
connected by a lightweight cord strung over a 
frictionless pulley. (b) The free-body diagram 
for the ball. (c) The free-body diagram for the 
block. (The incline is frictionless.)

Apply Newton’s second law in the y direction to the ball, 
choosing the upward direction as positive:

(1)   o Fy 5 T 2 m1g  5 m1ay 5 m1a

For the ball to accelerate upward, it is necessary that T . m1g. In Equation (1), we replaced ay with a because the accel-
eration has only a y component.
 For the block, we have chosen the x9 axis along the incline as in Figure 5.15c. For consistency with our choice for the 
ball, we choose the positive x9 direction to be down the incline.

Apply the particle under a net force model to the block 
in the x9 direction and the particle in equilibrium model 
in the y9 direction:

(2)   o Fx9 5 m2g sin u 2 T 5 m2ax9 5 m2a

(3)   o Fy9 5 n 2 m2g cos u 5 0

Solve Equation (1) for T : (4)   T 5 m1(g 1 a)

Substitute this expression for T into Equation (2): m2g sin u 2 m1(g 1 a) 5 m2a

Solve for a: (5)   a 5 am2 sin u 2 m1

m1 1 m2
bg

Substitute this expression for a into Equation (4) to  
find T :

(6)   T 5 am1m2 1sin u 1 1 2
m1 1 m2

bg

Finalize The block accelerates down the incline only if m2 sin u . m1. If m1 . m2 sin u, the acceleration is up the 
incline for the block and downward for the ball. Also notice that the result for the acceleration, Equation (5), can be 
interpreted as the magnitude of the net external force acting on the ball–block system divided by the total mass of the 
system; this result is consistent with Newton’s second law.

What happens in this situation if u 5 90°?WHAT IF ?
continued

In Equation (2), we replaced ax9 with a because the two objects have accelerations of equal magnitude a.



Pulley with an Incline
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Apply Newton’s second law in the y direction to the ball, 
choosing the upward direction as positive:
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For the ball to accelerate upward, it is necessary that T . m1g. In Equation (1), we replaced ay with a because the accel-
eration has only a y component.
 For the block, we have chosen the x9 axis along the incline as in Figure 5.15c. For consistency with our choice for the 
ball, we choose the positive x9 direction to be down the incline.
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Substitute this expression for a into Equation (4) to  
find T :

(6)   T 5 am1m2 1sin u 1 1 2
m1 1 m2

bg

Finalize The block accelerates down the incline only if m2 sin u . m1. If m1 . m2 sin u, the acceleration is up the 
incline for the block and downward for the ball. Also notice that the result for the acceleration, Equation (5), can be 
interpreted as the magnitude of the net external force acting on the ball–block system divided by the total mass of the 
system; this result is consistent with Newton’s second law.

What happens in this situation if u 5 90°?WHAT IF ?
continued

In Equation (2), we replaced ax9 with a because the two objects have accelerations of equal magnitude a.

We can still consider each object separately:
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Apply Newton’s second law in the y direction to the ball, 
choosing the upward direction as positive:

(1)   o Fy 5 T 2 m1g  5 m1ay 5 m1a

For the ball to accelerate upward, it is necessary that T . m1g. In Equation (1), we replaced ay with a because the accel-
eration has only a y component.
 For the block, we have chosen the x9 axis along the incline as in Figure 5.15c. For consistency with our choice for the 
ball, we choose the positive x9 direction to be down the incline.
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(2)   o Fx9 5 m2g sin u 2 T 5 m2ax9 5 m2a

(3)   o Fy9 5 n 2 m2g cos u 5 0

Solve Equation (1) for T : (4)   T 5 m1(g 1 a)
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Substitute this expression for a into Equation (4) to  
find T :

(6)   T 5 am1m2 1sin u 1 1 2
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Finalize The block accelerates down the incline only if m2 sin u . m1. If m1 . m2 sin u, the acceleration is up the 
incline for the block and downward for the ball. Also notice that the result for the acceleration, Equation (5), can be 
interpreted as the magnitude of the net external force acting on the ball–block system divided by the total mass of the 
system; this result is consistent with Newton’s second law.

What happens in this situation if u 5 90°?WHAT IF ?
continued

In Equation (2), we replaced ax9 with a because the two objects have accelerations of equal magnitude a.

Acceleration? Tension?



Pulley with an Incline

We must have ay = ax ′ = a.

Object 1:
x-direction: no forces w/ components in x ⇒ Fnet,x = 0, ax = 0.
y -direction:

Fnet,y = m1ay

T −m1g = m1a (1)

Object 2:
x ′-direction:

Fnet,x ′ = m2ax ′

m2g sin θ− T = m2a (2)

y ′-direction: ay ′ = 0.
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Pulley with an Incline

T −m1g = m1a (1)

m2g sin θ− T = m2a (2)

Add eq (1) and (2):

m2g sin θ−m1g = (m1 +m2)a

a =
(m2 sin θ−m1)g

m1 +m2

Putting a into (1):

m1
(m2 sin θ−m1)g

m1 +m2
= T −m1g

T =
m1m2(sin θ+ 1)g

m1 +m2

Does this agree with what we had for the Atwood machine when
θ = 90◦?
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Pulley with an Incline
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Question

You push on a heavy crate and moves it across the floor. However,
even as you push it does not accelerate and if you stop pushing,
the box stops moving. Why?



Some Types of Forces: Friction

Friction is a resistive force that occurs when two surfaces are in
contact.

Friction opposes the motion of one surface relative the other.

Tiny defects in the surfaces of the floor and the crate catch on one
another as the crate is pushed.

(Air resistance is another resistive force.)

1Figure from boundless.com
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Friction

There are actually two types of friction:

• kinetic (moving)

• static (stationary)

Kinetic Friction
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Motion

kinetic friction ∝ normal force

fk = µkN

µk is the coefficient of kinetic
friction



Some types of forces

Kinetic Friction

The kinetic friction force always acts to oppose motion of the
surfaces relative to each other. That means the kinetic friction,
#»

f k , always points opposite to the velocity vector.



Friction

Static Friction
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max. static friction ∝ normal force

fs 6 µsN

µs is the coefficient of static friction



Friction

130 Chapter 5 The Laws of Motion

Answer If u 5 90°, the inclined plane becomes vertical and there is no interaction between its surface and m2. There-
fore, this problem becomes the Atwood machine of Example 5.9. Letting u S 90° in Equations (5) and (6) causes 
them to reduce to Equations (3) and (4) of Example 5.9!

What if m1 5 0?

Answer If m1 5 0, then m2 is simply sliding down an inclined plane without interacting with m1 through the string. 
Therefore, this problem becomes the sliding car problem in Example 5.6. Letting m1 S 0 in Equation (5) causes it to 
reduce to Equation (3) of Example 5.6!

WHAT IF ?

5.8 Forces of Friction
When an object is in motion either on a surface or in a viscous medium such as air 
or water, there is resistance to the motion because the object interacts with its sur-
roundings. We call such resistance a force of friction. Forces of friction are very 
important in our everyday lives. They allow us to walk or run and are necessary for 
the motion of wheeled vehicles.
 Imagine that you are working in your garden and have filled a trash can with 
yard clippings. You then try to drag the trash can across the surface of your concrete 
patio as in Figure 5.16a. This surface is real, not an idealized, frictionless surface.  
If we apply an external horizontal force F

S
 to the trash can, acting to the right, 

the trash can remains stationary when F
S

 is small. The force on the trash can that 
counteracts F

S
 and keeps it from moving acts toward the left and is called the  
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For small applied 
forces, the magnitude 
of the force of static 
friction equals the 
magnitude of the 
applied force.

When the magnitude of 
the applied force 
exceeds the magnitude 
of the maximum force of 
static friction, the trash 
can breaks free and 
accelerates to the right.

Figure 5.16 (a) and (b) When 
pulling on a trash can, the direc-
tion of the force of friction f

S
 

between the can and a rough sur-
face is opposite the direction of 
the applied force F

S
. (c) A graph of 

friction force versus applied force. 
Notice that fs,max . fk.

 

▸ 5.10 c o n t i n u e d



Friction Example 1

For waxed wood on wet snow, µs = 0.14 and µk = 0.1. You pull
horizontally on a sled of mass 10 kg that is at rest initially. You
exert a force of 5 N on the sled. What is the magnitude of the
static frictional force that acts on the sled?

13.7 N > 5 N, so the sled will remain at rest.

If the sled is at rest and remains at rest, it does not accelerate.
#»

Fnet = m���
0

#»a .

Fnet,x = 0 = 5 N − fs

fs = 5 N (directed opposite to the pulling force)
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Friction Example 2

For waxed wood on wet snow, µs = 0.14 and µk = 0.1. You pull
horizontally on a sled of mass 10 kg that is at rest initially. How
much force do you need to apply to get the sled moving? If you
continue to apply that force, what will the magnitude of sled’s
acceleration be once it is moving?

Sketch.

Hypothesis: 13.7 N, should be the max static friction force we just
worked out; 1 m/s2

To get the sled moving Fapp > fs,max

fs,max = µsN

= (0.14)(10 kg)g

= 13.7 N



Friction Example 2

For waxed wood on wet snow, µs = 0.14 and µk = 0.1. You pull
horizontally on a sled of mass 10 kg that is at rest initially. How
much force do you need to apply to get the sled moving? If you
continue to apply that force, what will the magnitude of sled’s
acceleration be once it is moving?

Sketch.

Hypothesis: 13.7 N, should be the max static friction force we just
worked out; 1 m/s2

To get the sled moving Fapp > fs,max

fs,max = µsN

= (0.14)(10 kg)g

= 13.7 N



Friction Example 2

For waxed wood on wet snow, µs = 0.14 and µk = 0.1. You pull
horizontally on a sled of mass 10 kg that is at rest initially. How
much force do you need to apply to get the sled moving? If you
continue to apply that force, what will the magnitude of sled’s
acceleration be once it is moving?

Sketch.

Hypothesis: 13.7 N, should be the max static friction force we just
worked out; 1 m/s2

To get the sled moving Fapp > fs,max

fs,max = µsN

= (0.14)(10 kg)g

= 13.7 N



Friction Example 2
For waxed wood on wet snow, µs = 0.14 and µk = 0.1. You pull
on a sled of mass 10 kg that is at rest initially. How much force do
you need to apply to get the sled moving? If you continue to apply
that force, what will the magnitude of sled’s acceleration be once
it is moving?

Fnet,x = max

Fapp − Fkf = 13.72 − µkn

= 13.7 − (0.1)(10 kg)g

= 3.92 N

a =
F

m
=

3.92 N

10 kg
= 0.39 ms−2

Reasonable?: Yes for the force. The acceleration was a bit less
than my guess, but same order of magnitude.
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that force, what will the magnitude of sled’s acceleration be once
it is moving?

Fnet,x = max

Fapp − Fkf = 13.72 − µkn

= 13.7 − (0.1)(10 kg)g

= 3.92 N

a =
F

m
=

3.92 N

10 kg
= 0.39 ms−2

Reasonable?: Yes for the force. The acceleration was a bit less
than my guess, but same order of magnitude.



Friction Example 6-2

A trained sea lion slides from rest with constant acceleration down
a 3.0-m-long ramp into a pool of water. If the ramp is inclined at
an angle of 23◦ above the horizontal and the coefficient of kinetic
friction between the sea lion and the ramp is 0.26, how long does
it take for the sea lion to make a splash in the pool?

Sketch:
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In the next Example we consider a system that is inclined at an angle relative
to the horizontal. As a result, the normal force responsible for the kinetic friction
is less than the weight of the object. To be very clear about how we handle the
force vectors in such a case, we begin by resolving each vector into its x and y
components.

u
PROBLEM-SOLVING NOTE

Choice of Coordinate System: 
Incline

On an incline, align one axis (x) parallel to
the surface, and the other axis (y) perpen-
dicular to the surface. That way the motion
is in the x direction. Since no motion occurs
in the y direction, we know that ay = 0.

EXAMPLE 6–2 Making a Big Splash
A trained sea lion slides from rest with constant acceleration down a 3.0-m-long ramp into a pool of water. If the ramp is inclined
at an angle of 23° above the horizontal and the coefficient of kinetic friction between the sea lion and the ramp is 0.26, how long
does it take for the sea lion to make a splash in the pool?

Picture the Problem
As is usual with inclined surfaces, we choose one axis to be parallel to the surface and the other to be perpendicular to it. In our
sketch, the sea lion accelerates in the positive x direction having started from rest, We are free to choose the
initial position of the sea lion to be There is no motion in the y direction, and therefore Finally, we note from the
free-body diagram that and 

Strategy
We can use the kinematic equation relating position to time, to find the time of the sea lion’s slide. It will
be necessary, however, to first determine the acceleration of the sea lion in the x direction, 

To find we apply Newton’s second law to the sea lion. First, we can find N by setting equal to zero (since ).
It is important to start by finding N because we need it to find the force of kinetic friction, Using in the sum of
forces in the x direction, allows us to solve for and, finally, for the time.

Solution

1. We begin by resolving each of the three force vectors 
into x and y components:

2. Set to find N: 
We see that N is less than the weight, mg:

3. Next, set 
Note that the mass cancels in this equation:

4. Solve for the acceleration in the x direction, 

5. Use to find the time when the 
sea lion reaches the bottom. We choose and we
are given that hence we set 
and solve for t:
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In the next Example we consider a system that is inclined at an angle relative
to the horizontal. As a result, the normal force responsible for the kinetic friction
is less than the weight of the object. To be very clear about how we handle the
force vectors in such a case, we begin by resolving each vector into its x and y
components.

u
PROBLEM-SOLVING NOTE

Choice of Coordinate System: 
Incline

On an incline, align one axis (x) parallel to
the surface, and the other axis (y) perpen-
dicular to the surface. That way the motion
is in the x direction. Since no motion occurs
in the y direction, we know that ay = 0.

EXAMPLE 6–2 Making a Big Splash
A trained sea lion slides from rest with constant acceleration down a 3.0-m-long ramp into a pool of water. If the ramp is inclined
at an angle of 23° above the horizontal and the coefficient of kinetic friction between the sea lion and the ramp is 0.26, how long
does it take for the sea lion to make a splash in the pool?

Picture the Problem
As is usual with inclined surfaces, we choose one axis to be parallel to the surface and the other to be perpendicular to it. In our
sketch, the sea lion accelerates in the positive x direction having started from rest, We are free to choose the
initial position of the sea lion to be There is no motion in the y direction, and therefore Finally, we note from the
free-body diagram that and 

Strategy
We can use the kinematic equation relating position to time, to find the time of the sea lion’s slide. It will
be necessary, however, to first determine the acceleration of the sea lion in the x direction, 

To find we apply Newton’s second law to the sea lion. First, we can find N by setting equal to zero (since ).
It is important to start by finding N because we need it to find the force of kinetic friction, Using in the sum of
forces in the x direction, allows us to solve for and, finally, for the time.

Solution

1. We begin by resolving each of the three force vectors 
into x and y components:

2. Set to find N: 
We see that N is less than the weight, mg:

3. Next, set 
Note that the mass cancels in this equation:

4. Solve for the acceleration in the x direction, 

5. Use to find the time when the 
sea lion reaches the bottom. We choose and we
are given that hence we set 
and solve for t:
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Friction Example 6-2

A trained sea lion slides from rest with constant acceleration down
a 3.0-m-long ramp into a pool of water. If the ramp is inclined at
an angle of 23◦ above the horizontal and the coefficient of kinetic
friction between the sea lion and the ramp is 0.26, how long does
it take for the sea lion to make a splash in the pool?

Sketch:
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In the next Example we consider a system that is inclined at an angle relative
to the horizontal. As a result, the normal force responsible for the kinetic friction
is less than the weight of the object. To be very clear about how we handle the
force vectors in such a case, we begin by resolving each vector into its x and y
components.

u
PROBLEM-SOLVING NOTE

Choice of Coordinate System: 
Incline

On an incline, align one axis (x) parallel to
the surface, and the other axis (y) perpen-
dicular to the surface. That way the motion
is in the x direction. Since no motion occurs
in the y direction, we know that ay = 0.

EXAMPLE 6–2 Making a Big Splash
A trained sea lion slides from rest with constant acceleration down a 3.0-m-long ramp into a pool of water. If the ramp is inclined
at an angle of 23° above the horizontal and the coefficient of kinetic friction between the sea lion and the ramp is 0.26, how long
does it take for the sea lion to make a splash in the pool?

Picture the Problem
As is usual with inclined surfaces, we choose one axis to be parallel to the surface and the other to be perpendicular to it. In our
sketch, the sea lion accelerates in the positive x direction having started from rest, We are free to choose the
initial position of the sea lion to be There is no motion in the y direction, and therefore Finally, we note from the
free-body diagram that and 

Strategy
We can use the kinematic equation relating position to time, to find the time of the sea lion’s slide. It will
be necessary, however, to first determine the acceleration of the sea lion in the x direction, 

To find we apply Newton’s second law to the sea lion. First, we can find N by setting equal to zero (since ).
It is important to start by finding N because we need it to find the force of kinetic friction, Using in the sum of
forces in the x direction, allows us to solve for and, finally, for the time.

Solution

1. We begin by resolving each of the three force vectors 
into x and y components:

2. Set to find N: 
We see that N is less than the weight, mg:

3. Next, set 
Note that the mass cancels in this equation:

4. Solve for the acceleration in the x direction, 

5. Use to find the time when the 
sea lion reaches the bottom. We choose and we
are given that hence we set 
and solve for t:
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In the next Example we consider a system that is inclined at an angle relative
to the horizontal. As a result, the normal force responsible for the kinetic friction
is less than the weight of the object. To be very clear about how we handle the
force vectors in such a case, we begin by resolving each vector into its x and y
components.

u
PROBLEM-SOLVING NOTE

Choice of Coordinate System: 
Incline

On an incline, align one axis (x) parallel to
the surface, and the other axis (y) perpen-
dicular to the surface. That way the motion
is in the x direction. Since no motion occurs
in the y direction, we know that ay = 0.

EXAMPLE 6–2 Making a Big Splash
A trained sea lion slides from rest with constant acceleration down a 3.0-m-long ramp into a pool of water. If the ramp is inclined
at an angle of 23° above the horizontal and the coefficient of kinetic friction between the sea lion and the ramp is 0.26, how long
does it take for the sea lion to make a splash in the pool?

Picture the Problem
As is usual with inclined surfaces, we choose one axis to be parallel to the surface and the other to be perpendicular to it. In our
sketch, the sea lion accelerates in the positive x direction having started from rest, We are free to choose the
initial position of the sea lion to be There is no motion in the y direction, and therefore Finally, we note from the
free-body diagram that and 

Strategy
We can use the kinematic equation relating position to time, to find the time of the sea lion’s slide. It will
be necessary, however, to first determine the acceleration of the sea lion in the x direction, 

To find we apply Newton’s second law to the sea lion. First, we can find N by setting equal to zero (since ).
It is important to start by finding N because we need it to find the force of kinetic friction, Using in the sum of
forces in the x direction, allows us to solve for and, finally, for the time.

Solution

1. We begin by resolving each of the three force vectors 
into x and y components:

2. Set to find N: 
We see that N is less than the weight, mg:

3. Next, set 
Note that the mass cancels in this equation:

4. Solve for the acceleration in the x direction, 

5. Use to find the time when the 
sea lion reaches the bottom. We choose and we
are given that hence we set 
and solve for t:
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Friction Example 6-2

A trained sea lion slides from rest with constant acceleration down
a 3.0-m-long ramp into a pool of water. If the ramp is inclined at
an angle of 23◦ above the horizontal and the coefficient of kinetic
friction between the sea lion and the ramp is 0.26, how long does
it take for the sea lion to make a splash in the pool?

Sketch:
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In the next Example we consider a system that is inclined at an angle relative
to the horizontal. As a result, the normal force responsible for the kinetic friction
is less than the weight of the object. To be very clear about how we handle the
force vectors in such a case, we begin by resolving each vector into its x and y
components.

u
PROBLEM-SOLVING NOTE

Choice of Coordinate System: 
Incline

On an incline, align one axis (x) parallel to
the surface, and the other axis (y) perpen-
dicular to the surface. That way the motion
is in the x direction. Since no motion occurs
in the y direction, we know that ay = 0.

EXAMPLE 6–2 Making a Big Splash
A trained sea lion slides from rest with constant acceleration down a 3.0-m-long ramp into a pool of water. If the ramp is inclined
at an angle of 23° above the horizontal and the coefficient of kinetic friction between the sea lion and the ramp is 0.26, how long
does it take for the sea lion to make a splash in the pool?

Picture the Problem
As is usual with inclined surfaces, we choose one axis to be parallel to the surface and the other to be perpendicular to it. In our
sketch, the sea lion accelerates in the positive x direction having started from rest, We are free to choose the
initial position of the sea lion to be There is no motion in the y direction, and therefore Finally, we note from the
free-body diagram that and 

Strategy
We can use the kinematic equation relating position to time, to find the time of the sea lion’s slide. It will
be necessary, however, to first determine the acceleration of the sea lion in the x direction, 

To find we apply Newton’s second law to the sea lion. First, we can find N by setting equal to zero (since ).
It is important to start by finding N because we need it to find the force of kinetic friction, Using in the sum of
forces in the x direction, allows us to solve for and, finally, for the time.

Solution

1. We begin by resolving each of the three force vectors 
into x and y components:

2. Set to find N: 
We see that N is less than the weight, mg:

3. Next, set 
Note that the mass cancels in this equation:

4. Solve for the acceleration in the x direction, 

5. Use to find the time when the 
sea lion reaches the bottom. We choose and we
are given that hence we set 
and solve for t:
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In the next Example we consider a system that is inclined at an angle relative
to the horizontal. As a result, the normal force responsible for the kinetic friction
is less than the weight of the object. To be very clear about how we handle the
force vectors in such a case, we begin by resolving each vector into its x and y
components.

u
PROBLEM-SOLVING NOTE

Choice of Coordinate System: 
Incline

On an incline, align one axis (x) parallel to
the surface, and the other axis (y) perpen-
dicular to the surface. That way the motion
is in the x direction. Since no motion occurs
in the y direction, we know that ay = 0.

EXAMPLE 6–2 Making a Big Splash
A trained sea lion slides from rest with constant acceleration down a 3.0-m-long ramp into a pool of water. If the ramp is inclined
at an angle of 23° above the horizontal and the coefficient of kinetic friction between the sea lion and the ramp is 0.26, how long
does it take for the sea lion to make a splash in the pool?

Picture the Problem
As is usual with inclined surfaces, we choose one axis to be parallel to the surface and the other to be perpendicular to it. In our
sketch, the sea lion accelerates in the positive x direction having started from rest, We are free to choose the
initial position of the sea lion to be There is no motion in the y direction, and therefore Finally, we note from the
free-body diagram that and 

Strategy
We can use the kinematic equation relating position to time, to find the time of the sea lion’s slide. It will
be necessary, however, to first determine the acceleration of the sea lion in the x direction, 

To find we apply Newton’s second law to the sea lion. First, we can find N by setting equal to zero (since ).
It is important to start by finding N because we need it to find the force of kinetic friction, Using in the sum of
forces in the x direction, allows us to solve for and, finally, for the time.

Solution

1. We begin by resolving each of the three force vectors 
into x and y components:

2. Set to find N: 
We see that N is less than the weight, mg:

3. Next, set 
Note that the mass cancels in this equation:

4. Solve for the acceleration in the x direction, 

5. Use to find the time when the 
sea lion reaches the bottom. We choose and we
are given that hence we set 
and solve for t:
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Friction Example 6-2
Hypothesis: About 5 seconds.

Strategy: Use Newton’s 2nd law, find acceleration, use kinematics
equation.
y direction:

Fnet,y = N −mg cos θ = 0

N = mg cos θ

x direction:

Fnet,x = mg sin θ− fk = ma

mg sin θ− µkN = ma

mg sin θ− µk(mg cos θ) = ma

a = g(sin θ− µk cos θ)

a = 1.5 m/s2
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Friction Example 6-2
Hypothesis: About 5 seconds.
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Friction Example 6-2

Given: ∆x = 3 m, a = 1.5 m/s2, v0 = 0 m/s.
Asked for: t.

∆x = v0t +
1

2
at2

t = 2.0 s

Reasonable?: Less than half my guess, but 23◦ is a pretty steep
slope, so the answer is plausible.
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Summary

• Atwood machine variant

• friction

• practice with friction

Quiz Monday.

Homework
Walker Physics:

• Ch 6, onwards from page 177. Questions: 3, 15; Problems: 1,
3, 7, 11, 13, 15, 87 (friction)


