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Some types of forces

Elastic Forces

Springs exert forces as they are being compressed or extended.
They have a natural length, at which they remain if there are no
external forces acting.

Hooke’s Law gives
#»

F spring = −k #»x

where k is a constant. #»x is the amount of displacement of one end
of a spring from its natural length. (The amount of compression or
extension.

1Figure from CCRMA Stanford Univ.



Elasticity

The force that the spring exerts to restore itself to its original
length is proportional to how much it is compressed or stretched.

This is called Hooke’s Law:

#»

F = −k #»x

where x is the distance that the spring is stretched or compressed
by and k is a constant that depends on the spring itself. (The
“spring constant”).

If a very large force is put on the spring eventually it will break: it
will not return to its original shape. The elastic limit is the
maximum distance the spring can be stretched so that it still
returns to its original shape.



Spring example

If a 2 kg painting is hung from a spring, the spring stretches 10
cm. What if instead a 4 kg painting is hung from the spring? How
far will it stretch?

(A) 10 cm

(B) 20 cm

(C) 30 cm

(D) None of the above.



Spring example

If a 2 kg painting is hung from a spring, the spring stretches 10
cm. What if instead a 4 kg painting is hung from the spring? How
far will it stretch?

(A) 10 cm

(B) 20 cm ←
(C) 30 cm

(D) None of the above.



Spring example

If a 2 kg painting is hung from a spring, the spring stretches 10
cm. What if instead a 4 kg painting is hung from the spring? How
far will it stretch?

We don’t know the spring constant, but we can work it out from
the information about the first 2 kg painting. The force on the
spring is just the weight of the painting.

k =
Fg
x

=
(2 kg)g

0.1 m
= 196.2 N/m

x =
F

k
=

(4 kg)g

(196.2 N/m)
= 0.2 m

If you put on twice the force, you stretch the spring twice as far!
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Spring example

If a 2 kg painting is hung from a spring, the spring stretches 10 cm.

Now suppose a 6 kg painting is hung from the same spring. How
far does it stretch?
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If a 2 kg painting is hung from a spring, the spring stretches 10 cm.

Now suppose a 6 kg painting is hung from the same spring. How
far does it stretch?

(A) 10 cm

(B) 20 cm

(C) 30 cm

(D) None of the above.



Spring example

If a 2 kg painting is hung from a spring, the spring stretches 10 cm.

Now suppose a 6 kg painting is hung from the same spring. How
far does it stretch?

(A) 10 cm

(B) 20 cm

(C) 30 cm ←
(D) None of the above.



Spring-Friction Example
A backpack full of books weighing 52.0 N rests on a table in a
physics laboratory classroom. A spring with a force constant of
150 N/m is attached to the backpack and pulled horizontally, as
shown. (a) If the spring is pulled until it stretches 2.00 cm and the
pack remains at rest, what is the force of friction exerted on the
backpack by the table? (b) Does your answer to part (a) change if
the mass of the backpack is doubled? Explain.

PROBLEMS 171

▲ FIGURE 6–22 Problems 19 and 20

fs

F

5. • In Problem 4, what is the frictional force exerted on the book
when you push on it with a force of 0.75 N?

6. •• IP A tie of uniform width is laid out on a table, with a fraction
of its length hanging over the edge. Initially, the tie is at rest. (a) If
the fraction hanging from the table is increased, the tie eventu-
ally slides to the ground. Explain. (b) What is the coefficient of
static friction between the tie and the table if the tie begins to
slide when one-fourth of its length hangs over the edge?

7. •• To move a large crate across a rough floor, you push on it
with a force F at an angle of 21° below the horizontal, as
shown in Figure 6–21. Find the force necessary to start the
crate moving, given that the mass of the crate is 32 kg and the
coefficient of static friction between the crate and the floor
is 0.57.

horizontal surface. The block now encounters a rough patch
with a coefficient of kinetic friction given by The
rough patch extends for a distance after which
the surface is again frictionless. (a) What is the acceleration of
the block when it is in the rough patch? (b) What is the final
speed, of the block when it exits the rough patch? (c) Show
that (The significance
of this result will be discussed in Chapter 7.)

14. ••• IP The coefficient of kinetic friction between the tires of
your car and the roadway is (a) If your initial speed is v
and you lock your tires during braking, how far do you skid?
Give your answer in terms of v, and m, the mass of your car.
(b) If you double your speed, what happens to the stopping dis-
tance? (c) What is the stopping distance for a truck with twice
the mass of your car, assuming the same initial speed and coef-
ficient of kinetic friction?

Section 6–2 Strings and Springs
15. • Pulling up on a rope, you lift a 4.25-kg bucket of water from a

well with an acceleration of What is the tension in
the rope?

16. • When a 9.29-kg mass is placed on top of a vertical spring, the
spring compresses 4.11 cm. Find the force constant of the
spring.

17. • A 110-kg box is loaded into the trunk of a car. If the height of
the car’s bumper decreases by 13 cm, what is the force constant
of its rear suspension?

18. • A 50.0-kg person takes a nap in a backyard hammock. Both
ropes supporting the hammock are at an angle of 15.0° above
the horizontal. Find the tension in the ropes.

19. • IP A backpack full of books weighing 52.0 N rests on a table in
a physics laboratory classroom. A spring with a force constant
of 150 N/m is attached to the backpack and pulled horizontally,
as indicated in Figure 6–22. (a) If the spring is pulled until it
stretches 2.00 cm and the pack remains at rest, what is the force
of friction exerted on the backpack by the table? (b) Does your
answer to part (a) change if the mass of the backpack is dou-
bled? Explain.

1.80 m/s2.

m,

m.

- Fd = - 1mkmg2d = 1
2 mvf 

2 - 1
2 mvi 

2.
vf,

d = 0.125 m,
mk = 0.260.

F
21°

▲ FIGURE 6–21 Problems 7, 8, and 91

8. •• In Problem 7, find the acceleration of the crate if the applied
force is 330 N and the coefficient of kinetic friction is 0.45.

9. •• IP A 45-kg crate is placed on an inclined ramp. When the
angle the ramp makes with the horizontal is increased to 23°,
the crate begins to slide downward. (a) What is the coefficient
of static friction between the crate and the ramp? (b) At what
angle does the crate begin to slide if its mass is doubled?

10. •• IP A 95-kg sprinter wishes to accelerate from rest to a speed
of 12 m/s in a distance of 20 m. (a) What coefficient of static fric-
tion is required between the sprinter’s shoes and the track? (b)
Explain the strategy used to find the answer to part (a).

11. •• A person places a cup of coffee on the roof of her car while
she dashes back into the house for a forgotten item. When she
returns to the car, she hops in and takes off with the coffee
cup still on the roof. (a) If the coefficient of static friction
between the coffee cup and the roof of the car is 0.24, what is
the maximum acceleration the car can have without causing
the cup to slide? Ignore the effects of air resistance. (b) What
is the smallest amount of time in which the person can accel-
erate the car from rest to 15 m/s and still keep the coffee cup
on the roof?

12. •• IP Force Times Distance I At the local hockey rink, a puck
with a mass of 0.12 kg is given an initial speed of 5.3 m/s. (a) If the
coefficient of kinetic friction between the ice and the puck is 0.11,
what distance d does the puck slide before coming to rest?
(b) If the mass of the puck is doubled, does the frictional force F
exerted on the puck increase, decrease, or stay the same? Explain.
(c) Does the stopping distance of the puck increase, decrease, or
stay the same when its mass is doubled? Explain. (d) For the situ-
ation considered in part (a), show that (The signifi-
cance of this result will be discussed in Chapter 7.)

13. •• Force Times Distance II A block of mass
slides with an initial speed on a smooth,vi = 4.33 m/s

m = 1.95 kg

Fd = 1
2 mv2.

20. • If the 52.0-N backpack in Problem 19 begins to slide when
the spring stretches by 2.50 cm, what is the
coefficient of static friction between the backpack and the
table?

21. •• IP The equilibrium length of a certain spring with a force
constant of is 0.18 m. (a) What is the magnitude
of the force that is required to hold this spring at twice its equi-
librium length? (b) Is the magnitude of the force required to
keep the spring compressed to half its equilibrium length
greater than, less than, or equal to the force found in part (a)?
Explain.

k = 250 N/m

1k = 150 N/m2

WALKMC06_0131536311.QXD  12/6/05  17:28  Page 171

1
1Walker, page 179, #24.



Spring-Friction Example

(a) If the spring is pulled until it stretches 2.00 cm and the pack
remains at rest, what is the force of friction exerted on the
backpack by the table?

Sketch a free-body diagram for the backpack.

Hypothesis:

Will point to the right, units, Newtons. Magnitude
will equal kx , since

#»

Fnet = 0. Much less than the weight, perhaps
about 5 N.
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Spring-Friction Example

(a) If the spring is pulled until it stretches 2.00 cm and the pack
remains at rest, what is the force of friction exerted on the
backpack by the table?

Strategy: use
#»

Fnet = 0, analyze horizontal direction.

Fnet,x = m��>
0

ax

fs − F = 0

fs = F

fs = kx

= (150 N)(0.02 m)

= 3.00 N



Spring-Friction Example

(b) Does your answer to part (a) change if the mass of the
backpack is doubled? Explain.

The solution did not use the mass of the backpack, so no, the
answer will not change if the mass is doubled.

The static friction force is always just big enough to counteract the
applied force on an object (unless the applied force exceeds the
max static friction force).



Spring-Friction Example

(b) Does your answer to part (a) change if the mass of the
backpack is doubled? Explain.

The solution did not use the mass of the backpack, so no, the
answer will not change if the mass is doubled.

The static friction force is always just big enough to counteract the
applied force on an object (unless the applied force exceeds the
max static friction force).



Circular motion

Objects that move along an arc of a circle are said to be
undergoing circular motion.

 4.4 Analysis Model: Particle In Uniform Circular Motion 91

▸ 4.5 c o n t i n u e d

By eliminating the time t between these equations and using differentiation to maximize d in terms of u, we arrive 
(after several steps; see Problem 88) at the following equation for the angle u that gives the maximum value of d :

u 5 458 2
f

2

For the slope angle in Figure 4.14, f 5 35.0°; this equation results in an optimal launch angle of u 5 27.5°. For a slope 
angle of f 5 0°, which represents a horizontal plane, this equation gives an optimal launch angle of u 5 45°, as we 
would expect (see Figure 4.10).

 

Pitfall Prevention 4.4
Acceleration of a Particle  
in Uniform Circular Motion  
Remember that acceleration in 
physics is defined as a change 
in the velocity, not a change in 
the speed (contrary to the every-
day interpretation). In circular 
motion, the velocity vector is 
always changing in direction, so 
there is indeed an acceleration.

4.4   Analysis Model: Particle  
in Uniform Circular Motion

Figure 4.15a shows a car moving in a circular path; we describe this motion by call-
ing it circular motion. If the car is moving on this path with constant speed v, we 
call it uniform circular motion. Because it occurs so often, this type of motion is 
recognized as an analysis model called the particle in uniform circular motion. We 
discuss this model in this section.
 It is often surprising to students to find that even though an object moves at a 
constant speed in a circular path, it still has an acceleration. To see why, consider the 
defining equation for acceleration, aS 5 d vS/dt (Eq. 4.5). Notice that the accelera-
tion depends on the change in the velocity. Because velocity is a vector quantity, an 
acceleration can occur in two ways as mentioned in Section 4.1: by a change in the 
magnitude of the velocity and by a change in the direction of the velocity. The latter 
situation occurs for an object moving with constant speed in a circular path. The 
constant-magnitude velocity vector is always tangent to the path of the object and 
perpendicular to the radius of the circular path. Therefore, the direction of the 
velocity vector is always changing.
 Let us first argue that the acceleration vector in uniform circular motion is 
always perpendicular to the path and always points toward the center of the circle. 
If that were not true, there would be a component of the acceleration parallel to 
the path and therefore parallel to the velocity vector. Such an acceleration compo-
nent would lead to a change in the speed of the particle along the path. This situa-
tion, however, is inconsistent with our setup of the situation: the particle moves with 
constant speed along the path. Therefore, for uniform circular motion, the accelera-
tion vector can only have a component perpendicular to the path, which is toward 
the center of the circle.
 Let us now find the magnitude of the acceleration of the particle. Consider the 
diagram of the position and velocity vectors in Figure 4.15b. The figure also shows 
the vector representing the change in position D rS for an arbitrary time interval. 
The particle follows a circular path of radius r, part of which is shown by the dashed 

Figure 4.15 (a) A car moving along a circular path at con-
stant speed experiences uniform circular motion. (b) As a 
particle moves along a portion of a circular path from ! to 
", its velocity vector changes from vSi to vSf . (c) The construc-
tion for determining the direction of the change in velocity 
DvS, which is toward the center of the circle for small DrS.
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▲ FIGURE 6–13 A particle moving in a
circular path centered on the origin
The speed of the particle is constant, but
its velocity is constantly changing.

6–5 Circular Motion
According to Newton’s second law, if no force acts on an object, it will move with
constant speed in a constant direction. A force is required to change the speed, the
direction, or both. For example, if you drive a car with constant speed on a circular
track, the direction of the car’s motion changes continuously. A force must act on
the car to cause this change in direction. We would like to know two things about
a force that causes circular motion: what is its direction, and what is its magnitude?

First, let’s consider the direction of the force. Imagine swinging a ball tied to a
string in a circle about your head, as shown in Figure 6–12. As you swing the ball,
you feel a tension in the string pulling outward. Of course, on the other end of the
string, where it attaches to the ball, the tension pulls inward, toward the center of
the circle. Thus, the force the ball experiences is a force that is always directed to-
ward the center of the circle. In summary,

To make an object move in a circle with constant speed, a force must act on it
that is directed toward the center of the circle.

Since the ball is acted on by a force toward the center of the circle, it follows
that it must be accelerating toward the center of the circle. This might seem odd at
first: How can a ball that moves with constant speed have an acceleration? The
answer is that acceleration is produced whenever the speed or direction of the
velocity changes—and in circular motion, the direction changes continuously.
The resulting center-directed acceleration is called centripetal acceleration
(centripetal is from the Latin for “center seeking”).

Let’s calculate the magnitude of the centripetal acceleration, for an object
moving with a constant speed v in a circle of radius r. Figure 6–13 shows the
circular path of an object, with the center of the circle at the origin. To calculate
the acceleration at the top of the circle, at point P, we first calculate the average
acceleration from point 1 to point 2:

6–10

The instantaneous acceleration at P is the limit of as points 1 and 2 move closer
to P.

Referring to Figure 6–13, we see that is at an angle above the horizontal,
and is at an angle below the horizontal. Both and have a magnitude v.
Therefore, we can write the two velocities in vector form as follows:

Substituting these results into gives

6–11

Note that points in the negative y direction—which, at point P, is toward the
center of the circle.

To complete the calculation, we need the time it takes the object to go from
point 1 to point 2. Since the object’s speed is v, and the distance from point 1 to
point 2 is where is measured in radians (see Appendix A, page A-2 for
a discussion of radians and degrees), we find

6–12

Combining this result for with the previous result for gives

6–13

To find at point P, we let points 1 and 2 approach P, which means letting go to
zero. Table 6–2 shows that as goes to zero the ratio goes to 1:

sin u
u

  
 as  u : 0 

" 1

1sin u2>u1u: 02u

ua
!

a
!
av = -2v sin u12ru>v2  yN = -  

v2

r
 a sin u
u
byN

a
!
av¢t

¢t = d
v

= 2ru
v

ud = r12u2 ¢t,

a
!
av

a
!
av =

v
!
2 - v

!
1

¢t
= -2v sin u

¢t
 yN

a
!
av

 v
!
2 = 1v cos u2xN + 1-v sin u2yN v
!
1 = 1v cos u2xN + 1v sin u2yN

v
!
2v

!
1uv

!
2

uv
!
1

a
!
av

a
!
av = ¢v

!

¢t
=

v
!
2 - v

!
1

¢t

acp,

TABLE 6–2

for Values of Approaching Zero

radians

1.00 0.841
0.500 0.959
0.250 0.990
0.125 0.997
0.0625 0.999

sin U
U

U,

u
sin u
u

▲ FIGURE 6–12 Swinging a ball in a circle
The tension in the string pulls outward
on the person’s hand and pulls inward
on the ball.
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It is possible that such an object moves with constant speed. But
does it move with constant velocity?

1Left Figure: from Serway & Jewett, 9th ed. Right Figure: from Walker.



Circular motion

Does it move with constant velocity? No!
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6–5 Circular Motion
According to Newton’s second law, if no force acts on an object, it will move with
constant speed in a constant direction. A force is required to change the speed, the
direction, or both. For example, if you drive a car with constant speed on a circular
track, the direction of the car’s motion changes continuously. A force must act on
the car to cause this change in direction. We would like to know two things about
a force that causes circular motion: what is its direction, and what is its magnitude?

First, let’s consider the direction of the force. Imagine swinging a ball tied to a
string in a circle about your head, as shown in Figure 6–12. As you swing the ball,
you feel a tension in the string pulling outward. Of course, on the other end of the
string, where it attaches to the ball, the tension pulls inward, toward the center of
the circle. Thus, the force the ball experiences is a force that is always directed to-
ward the center of the circle. In summary,

To make an object move in a circle with constant speed, a force must act on it
that is directed toward the center of the circle.

Since the ball is acted on by a force toward the center of the circle, it follows
that it must be accelerating toward the center of the circle. This might seem odd at
first: How can a ball that moves with constant speed have an acceleration? The
answer is that acceleration is produced whenever the speed or direction of the
velocity changes—and in circular motion, the direction changes continuously.
The resulting center-directed acceleration is called centripetal acceleration
(centripetal is from the Latin for “center seeking”).

Let’s calculate the magnitude of the centripetal acceleration, for an object
moving with a constant speed v in a circle of radius r. Figure 6–13 shows the
circular path of an object, with the center of the circle at the origin. To calculate
the acceleration at the top of the circle, at point P, we first calculate the average
acceleration from point 1 to point 2:

6–10

The instantaneous acceleration at P is the limit of as points 1 and 2 move closer
to P.

Referring to Figure 6–13, we see that is at an angle above the horizontal,
and is at an angle below the horizontal. Both and have a magnitude v.
Therefore, we can write the two velocities in vector form as follows:

Substituting these results into gives

6–11

Note that points in the negative y direction—which, at point P, is toward the
center of the circle.

To complete the calculation, we need the time it takes the object to go from
point 1 to point 2. Since the object’s speed is v, and the distance from point 1 to
point 2 is where is measured in radians (see Appendix A, page A-2 for
a discussion of radians and degrees), we find

6–12

Combining this result for with the previous result for gives
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To find at point P, we let points 1 and 2 approach P, which means letting go to
zero. Table 6–2 shows that as goes to zero the ratio goes to 1:
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▲ FIGURE 6–12 Swinging a ball in a circle
The tension in the string pulls outward
on the person’s hand and pulls inward
on the ball.
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The direction of the object’s velocity is changing.



Circular motion

Newton’s first law tells us that an object in motion will continue
with a constant velocity unless acted upon by a net force.

What does that tell us about an object moving in a circle?

It must be experiencing a non-zero net force.



Uniform Circular Motion

The velocity vector points along a tangent to the circle

 4.4 Analysis Model: Particle In Uniform Circular Motion 93

continued

Combining this equation with Equation 4.15, we find a relationship between angular 
speed and the translational speed with which the particle travels in the circular path:

 v 5 2pa v
2pr

b 5
v
r  S      v 5 rv (4.17)

Equation 4.17 demonstrates that, for a fixed angular speed, the translational speed 
becomes larger as the radial position becomes larger. Therefore, for example, if a 
merry-go-round rotates at a fixed angular speed v, a rider at an outer position at 
large r will be traveling through space faster than a rider at an inner position at 
smaller r. We will investigate Equations 4.16 and 4.17 more deeply in Chapter 10.
 We can express the centripetal acceleration of a particle in uniform circular 
motion in terms of angular speed by combining Equations 4.14 and 4.17:

ac 5
1rv 22

r
 ac 5 rv2 (4.18)

Equations 4.14–4.18 are to be used when the particle in uniform circular motion 
model is identified as appropriate for a given situation.

Q uick Quiz 4.4  A particle moves in a circular path of radius r with speed v. It then 
increases its speed to 2v while traveling along the same circular path. (i) The cen-
tripetal acceleration of the particle has changed by what factor? Choose one:  
(a) 0.25 (b) 0.5 (c) 2 (d) 4 (e) impossible to determine (ii) From the same choices,  
by what factor has the period of the particle changed?

Analysis Model   Particle in Uniform Circular Motion
Imagine a moving object that can be modeled as a particle. If it moves 
in a circular path of radius r at a constant speed v, the magnitude of its 
centripetal acceleration is 

 ac 5
v2

r
 (4.14)

and the period of the particle’s motion is given by 

 T 5
2pr
v

 (4.15)

The angular speed of the particle is

 v 5
2p

T
 (4.16)

Examples: 

of constant length 
-

fectly circular orbit (Chapter 13)
-

form magnetic field (Chapter 29)

nucleus in the Bohr model of the 
hydrogen atom (Chapter 42)

r

vSac
S

Example 4.6   The Centripetal Acceleration of the Earth 

(A) What is the centripetal acceleration of the Earth as it moves in its orbit around the Sun?

Conceptualize Think about a mental image of the Earth in a circular orbit around the Sun. We will model the Earth 
as a particle and approximate the Earth’s orbit as circular (it’s actually slightly elliptical, as we discuss in Chapter 13).

Categorize The Conceptualize step allows us to categorize this problem as one of a particle in uniform circular motion.

Analyze We do not know the orbital speed of the Earth to substitute into Equation 4.14. With the help of Equation 
4.15, however, we can recast Equation 4.14 in terms of the period of the Earth’s orbit, which we know is one year, and 
the radius of the Earth’s orbit around the Sun, which is 1.496 3 1011 m.

AM

S O L U T I O N

Pitfall Prevention 4.5
Centripetal Acceleration  
Is Not Constant We derived the 
magnitude of the centripetal 
acceleration vector and found it to 
be constant for uniform circular 
motion, but the centripetal accelera-
tion vector is not constant. It always 
points toward the center of the 
circle, but it continuously changes 
direction as the object moves 
around the circular path.

For uniform circular motion:

• the radius is constant

• the speed is constant

• the magnitude of the acceleration is constant



Circular Motion
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▲ FIGURE 6–13 A particle moving in a
circular path centered on the origin
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its velocity is constantly changing.

6–5 Circular Motion
According to Newton’s second law, if no force acts on an object, it will move with
constant speed in a constant direction. A force is required to change the speed, the
direction, or both. For example, if you drive a car with constant speed on a circular
track, the direction of the car’s motion changes continuously. A force must act on
the car to cause this change in direction. We would like to know two things about
a force that causes circular motion: what is its direction, and what is its magnitude?

First, let’s consider the direction of the force. Imagine swinging a ball tied to a
string in a circle about your head, as shown in Figure 6–12. As you swing the ball,
you feel a tension in the string pulling outward. Of course, on the other end of the
string, where it attaches to the ball, the tension pulls inward, toward the center of
the circle. Thus, the force the ball experiences is a force that is always directed to-
ward the center of the circle. In summary,

To make an object move in a circle with constant speed, a force must act on it
that is directed toward the center of the circle.

Since the ball is acted on by a force toward the center of the circle, it follows
that it must be accelerating toward the center of the circle. This might seem odd at
first: How can a ball that moves with constant speed have an acceleration? The
answer is that acceleration is produced whenever the speed or direction of the
velocity changes—and in circular motion, the direction changes continuously.
The resulting center-directed acceleration is called centripetal acceleration
(centripetal is from the Latin for “center seeking”).

Let’s calculate the magnitude of the centripetal acceleration, for an object
moving with a constant speed v in a circle of radius r. Figure 6–13 shows the
circular path of an object, with the center of the circle at the origin. To calculate
the acceleration at the top of the circle, at point P, we first calculate the average
acceleration from point 1 to point 2:

6–10

The instantaneous acceleration at P is the limit of as points 1 and 2 move closer
to P.

Referring to Figure 6–13, we see that is at an angle above the horizontal,
and is at an angle below the horizontal. Both and have a magnitude v.
Therefore, we can write the two velocities in vector form as follows:

Substituting these results into gives

6–11

Note that points in the negative y direction—which, at point P, is toward the
center of the circle.

To complete the calculation, we need the time it takes the object to go from
point 1 to point 2. Since the object’s speed is v, and the distance from point 1 to
point 2 is where is measured in radians (see Appendix A, page A-2 for
a discussion of radians and degrees), we find

6–12

Combining this result for with the previous result for gives

6–13

To find at point P, we let points 1 and 2 approach P, which means letting go to
zero. Table 6–2 shows that as goes to zero the ratio goes to 1:
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TABLE 6–2

for Values of Approaching Zero

radians

1.00 0.841
0.500 0.959
0.250 0.990
0.125 0.997
0.0625 0.999

sin U
U

U,

u
sin u
u

▲ FIGURE 6–12 Swinging a ball in a circle
The tension in the string pulls outward
on the person’s hand and pulls inward
on the ball.
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▸ 4.5 c o n t i n u e d

By eliminating the time t between these equations and using differentiation to maximize d in terms of u, we arrive 
(after several steps; see Problem 88) at the following equation for the angle u that gives the maximum value of d :

u 5 458 2
f

2

For the slope angle in Figure 4.14, f 5 35.0°; this equation results in an optimal launch angle of u 5 27.5°. For a slope 
angle of f 5 0°, which represents a horizontal plane, this equation gives an optimal launch angle of u 5 45°, as we 
would expect (see Figure 4.10).

 

Pitfall Prevention 4.4
Acceleration of a Particle  
in Uniform Circular Motion  
Remember that acceleration in 
physics is defined as a change 
in the velocity, not a change in 
the speed (contrary to the every-
day interpretation). In circular 
motion, the velocity vector is 
always changing in direction, so 
there is indeed an acceleration.

4.4   Analysis Model: Particle  
in Uniform Circular Motion

Figure 4.15a shows a car moving in a circular path; we describe this motion by call-
ing it circular motion. If the car is moving on this path with constant speed v, we 
call it uniform circular motion. Because it occurs so often, this type of motion is 
recognized as an analysis model called the particle in uniform circular motion. We 
discuss this model in this section.
 It is often surprising to students to find that even though an object moves at a 
constant speed in a circular path, it still has an acceleration. To see why, consider the 
defining equation for acceleration, aS 5 d vS/dt (Eq. 4.5). Notice that the accelera-
tion depends on the change in the velocity. Because velocity is a vector quantity, an 
acceleration can occur in two ways as mentioned in Section 4.1: by a change in the 
magnitude of the velocity and by a change in the direction of the velocity. The latter 
situation occurs for an object moving with constant speed in a circular path. The 
constant-magnitude velocity vector is always tangent to the path of the object and 
perpendicular to the radius of the circular path. Therefore, the direction of the 
velocity vector is always changing.
 Let us first argue that the acceleration vector in uniform circular motion is 
always perpendicular to the path and always points toward the center of the circle. 
If that were not true, there would be a component of the acceleration parallel to 
the path and therefore parallel to the velocity vector. Such an acceleration compo-
nent would lead to a change in the speed of the particle along the path. This situa-
tion, however, is inconsistent with our setup of the situation: the particle moves with 
constant speed along the path. Therefore, for uniform circular motion, the accelera-
tion vector can only have a component perpendicular to the path, which is toward 
the center of the circle.
 Let us now find the magnitude of the acceleration of the particle. Consider the 
diagram of the position and velocity vectors in Figure 4.15b. The figure also shows 
the vector representing the change in position D rS for an arbitrary time interval. 
The particle follows a circular path of radius r, part of which is shown by the dashed 

Figure 4.15 (a) A car moving along a circular path at con-
stant speed experiences uniform circular motion. (b) As a 
particle moves along a portion of a circular path from ! to 
", its velocity vector changes from vSi to vSf . (c) The construc-
tion for determining the direction of the change in velocity 
DvS, which is toward the center of the circle for small DrS.
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The net force is directed towards the center of the circle, just as
the change in velocity (it’s acceleration!) is directed towards the
center.



Circular Motion

How large is the acceleration of the object?

It should depend on:

• the speed of the object - in this case, a higher the speed
means a larger acceleration

• the radius of the path - the tighter the turn, the smaller the
radius, the larger the acceleration



Circular Motion

How large is the acceleration of the object?

It should depend on:

• the speed of the object - in this case, a higher the speed
means a larger acceleration

• the radius of the path - the tighter the turn, the smaller the
radius, the larger the acceleration



Circular Motion
For points 1 and 2, the x-component of the velocity is the same,
but the y -component changes sign.
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▲ FIGURE 6–13 A particle moving in a
circular path centered on the origin
The speed of the particle is constant, but
its velocity is constantly changing.

6–5 Circular Motion
According to Newton’s second law, if no force acts on an object, it will move with
constant speed in a constant direction. A force is required to change the speed, the
direction, or both. For example, if you drive a car with constant speed on a circular
track, the direction of the car’s motion changes continuously. A force must act on
the car to cause this change in direction. We would like to know two things about
a force that causes circular motion: what is its direction, and what is its magnitude?

First, let’s consider the direction of the force. Imagine swinging a ball tied to a
string in a circle about your head, as shown in Figure 6–12. As you swing the ball,
you feel a tension in the string pulling outward. Of course, on the other end of the
string, where it attaches to the ball, the tension pulls inward, toward the center of
the circle. Thus, the force the ball experiences is a force that is always directed to-
ward the center of the circle. In summary,

To make an object move in a circle with constant speed, a force must act on it
that is directed toward the center of the circle.

Since the ball is acted on by a force toward the center of the circle, it follows
that it must be accelerating toward the center of the circle. This might seem odd at
first: How can a ball that moves with constant speed have an acceleration? The
answer is that acceleration is produced whenever the speed or direction of the
velocity changes—and in circular motion, the direction changes continuously.
The resulting center-directed acceleration is called centripetal acceleration
(centripetal is from the Latin for “center seeking”).

Let’s calculate the magnitude of the centripetal acceleration, for an object
moving with a constant speed v in a circle of radius r. Figure 6–13 shows the
circular path of an object, with the center of the circle at the origin. To calculate
the acceleration at the top of the circle, at point P, we first calculate the average
acceleration from point 1 to point 2:

6–10

The instantaneous acceleration at P is the limit of as points 1 and 2 move closer
to P.

Referring to Figure 6–13, we see that is at an angle above the horizontal,
and is at an angle below the horizontal. Both and have a magnitude v.
Therefore, we can write the two velocities in vector form as follows:

Substituting these results into gives

6–11

Note that points in the negative y direction—which, at point P, is toward the
center of the circle.

To complete the calculation, we need the time it takes the object to go from
point 1 to point 2. Since the object’s speed is v, and the distance from point 1 to
point 2 is where is measured in radians (see Appendix A, page A-2 for
a discussion of radians and degrees), we find

6–12

Combining this result for with the previous result for gives

6–13

To find at point P, we let points 1 and 2 approach P, which means letting go to
zero. Table 6–2 shows that as goes to zero the ratio goes to 1:
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for Values of Approaching Zero

radians
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0.500 0.959
0.250 0.990
0.125 0.997
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▲ FIGURE 6–12 Swinging a ball in a circle
The tension in the string pulls outward
on the person’s hand and pulls inward
on the ball.
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Circular Motion
How much time does it take to go from 1 to 2? Depends on the
speed of the particle...
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▲ FIGURE 6–13 A particle moving in a
circular path centered on the origin
The speed of the particle is constant, but
its velocity is constantly changing.

6–5 Circular Motion
According to Newton’s second law, if no force acts on an object, it will move with
constant speed in a constant direction. A force is required to change the speed, the
direction, or both. For example, if you drive a car with constant speed on a circular
track, the direction of the car’s motion changes continuously. A force must act on
the car to cause this change in direction. We would like to know two things about
a force that causes circular motion: what is its direction, and what is its magnitude?

First, let’s consider the direction of the force. Imagine swinging a ball tied to a
string in a circle about your head, as shown in Figure 6–12. As you swing the ball,
you feel a tension in the string pulling outward. Of course, on the other end of the
string, where it attaches to the ball, the tension pulls inward, toward the center of
the circle. Thus, the force the ball experiences is a force that is always directed to-
ward the center of the circle. In summary,

To make an object move in a circle with constant speed, a force must act on it
that is directed toward the center of the circle.

Since the ball is acted on by a force toward the center of the circle, it follows
that it must be accelerating toward the center of the circle. This might seem odd at
first: How can a ball that moves with constant speed have an acceleration? The
answer is that acceleration is produced whenever the speed or direction of the
velocity changes—and in circular motion, the direction changes continuously.
The resulting center-directed acceleration is called centripetal acceleration
(centripetal is from the Latin for “center seeking”).

Let’s calculate the magnitude of the centripetal acceleration, for an object
moving with a constant speed v in a circle of radius r. Figure 6–13 shows the
circular path of an object, with the center of the circle at the origin. To calculate
the acceleration at the top of the circle, at point P, we first calculate the average
acceleration from point 1 to point 2:

6–10

The instantaneous acceleration at P is the limit of as points 1 and 2 move closer
to P.

Referring to Figure 6–13, we see that is at an angle above the horizontal,
and is at an angle below the horizontal. Both and have a magnitude v.
Therefore, we can write the two velocities in vector form as follows:

Substituting these results into gives

6–11

Note that points in the negative y direction—which, at point P, is toward the
center of the circle.

To complete the calculation, we need the time it takes the object to go from
point 1 to point 2. Since the object’s speed is v, and the distance from point 1 to
point 2 is where is measured in radians (see Appendix A, page A-2 for
a discussion of radians and degrees), we find

6–12

Combining this result for with the previous result for gives

6–13

To find at point P, we let points 1 and 2 approach P, which means letting go to
zero. Table 6–2 shows that as goes to zero the ratio goes to 1:
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on the person’s hand and pulls inward
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Let s be the distance the particle travels.

∆t =
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Circular Motion

All together:

#»a avg =
−2v sin θ

(2rθ)/v
ĵ =

−v2

r

(
sin θ

θ

)
ĵ

This is the average acceleration over time ∆t. Could we figure out
the instantaneous velocity?

For shorter and shorter windows of time θ→ 0.

As θ→ 0, sin θ→ θ, so
(
sinθ
θ

)
→ 1.

#»a =
−v2

r
ĵ
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Circular Motion

The direction of this acceleration is also always changing.

The easiest way to describe how it points using vectors is to make
a vector defined to point out from the origin through the object.

This is the radial direction.

We can always write:

#»a =
−v2

r
r̂

where the minus sign means that the acceleration points in
towards the center of the circle, rather than outward.



Circular Motion

Centripetal acceleration

The acceleration of an object that follows a circular arc of radius,
r , at constant speed v . Its magnitude is

acp =
v2

r
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continued

Combining this equation with Equation 4.15, we find a relationship between angular 
speed and the translational speed with which the particle travels in the circular path:

 v 5 2pa v
2pr

b 5
v
r  S      v 5 rv (4.17)

Equation 4.17 demonstrates that, for a fixed angular speed, the translational speed 
becomes larger as the radial position becomes larger. Therefore, for example, if a 
merry-go-round rotates at a fixed angular speed v, a rider at an outer position at 
large r will be traveling through space faster than a rider at an inner position at 
smaller r. We will investigate Equations 4.16 and 4.17 more deeply in Chapter 10.
 We can express the centripetal acceleration of a particle in uniform circular 
motion in terms of angular speed by combining Equations 4.14 and 4.17:

ac 5
1rv 22

r
 ac 5 rv2 (4.18)

Equations 4.14–4.18 are to be used when the particle in uniform circular motion 
model is identified as appropriate for a given situation.

Q uick Quiz 4.4  A particle moves in a circular path of radius r with speed v. It then 
increases its speed to 2v while traveling along the same circular path. (i) The cen-
tripetal acceleration of the particle has changed by what factor? Choose one:  
(a) 0.25 (b) 0.5 (c) 2 (d) 4 (e) impossible to determine (ii) From the same choices,  
by what factor has the period of the particle changed?

Analysis Model   Particle in Uniform Circular Motion
Imagine a moving object that can be modeled as a particle. If it moves 
in a circular path of radius r at a constant speed v, the magnitude of its 
centripetal acceleration is 

 ac 5
v2

r
 (4.14)

and the period of the particle’s motion is given by 

 T 5
2pr
v

 (4.15)

The angular speed of the particle is

 v 5
2p

T
 (4.16)

Examples: 

of constant length 
-

fectly circular orbit (Chapter 13)
-

form magnetic field (Chapter 29)

nucleus in the Bohr model of the 
hydrogen atom (Chapter 42)

r

vSac
S

Example 4.6   The Centripetal Acceleration of the Earth 

(A) What is the centripetal acceleration of the Earth as it moves in its orbit around the Sun?

Conceptualize Think about a mental image of the Earth in a circular orbit around the Sun. We will model the Earth 
as a particle and approximate the Earth’s orbit as circular (it’s actually slightly elliptical, as we discuss in Chapter 13).

Categorize The Conceptualize step allows us to categorize this problem as one of a particle in uniform circular motion.

Analyze We do not know the orbital speed of the Earth to substitute into Equation 4.14. With the help of Equation 
4.15, however, we can recast Equation 4.14 in terms of the period of the Earth’s orbit, which we know is one year, and 
the radius of the Earth’s orbit around the Sun, which is 1.496 3 1011 m.

AM

S O L U T I O N

Pitfall Prevention 4.5
Centripetal Acceleration  
Is Not Constant We derived the 
magnitude of the centripetal 
acceleration vector and found it to 
be constant for uniform circular 
motion, but the centripetal accelera-
tion vector is not constant. It always 
points toward the center of the 
circle, but it continuously changes 
direction as the object moves 
around the circular path.



Summary

• springs

• circular motion, centripetal acceleration

Quiz Monday.

Homework

• Forces and Motion worksheet

Walker Physics:

• Ch 6, onward from page 177. Problem: 19, 21, 25, 73, 101
(springs)

• Ch 6, onward from page 177. Problems: 53 (circ motion)


