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Last time

• more friction examples

• springs

• circular motion



Overview

• circular motion

• acceleration

• force and circular motion

• motion in a vertical circle



Uniform Circular Motion Acceleration

162 CHAPTER 6 APPLICATIONS OF NEWTON’S LAWS

T T

x

y

O

r

1
Pv1

v2

2

r

!!

!
!

▲ FIGURE 6–13 A particle moving in a
circular path centered on the origin
The speed of the particle is constant, but
its velocity is constantly changing.

6–5 Circular Motion
According to Newton’s second law, if no force acts on an object, it will move with
constant speed in a constant direction. A force is required to change the speed, the
direction, or both. For example, if you drive a car with constant speed on a circular
track, the direction of the car’s motion changes continuously. A force must act on
the car to cause this change in direction. We would like to know two things about
a force that causes circular motion: what is its direction, and what is its magnitude?

First, let’s consider the direction of the force. Imagine swinging a ball tied to a
string in a circle about your head, as shown in Figure 6–12. As you swing the ball,
you feel a tension in the string pulling outward. Of course, on the other end of the
string, where it attaches to the ball, the tension pulls inward, toward the center of
the circle. Thus, the force the ball experiences is a force that is always directed to-
ward the center of the circle. In summary,

To make an object move in a circle with constant speed, a force must act on it
that is directed toward the center of the circle.

Since the ball is acted on by a force toward the center of the circle, it follows
that it must be accelerating toward the center of the circle. This might seem odd at
first: How can a ball that moves with constant speed have an acceleration? The
answer is that acceleration is produced whenever the speed or direction of the
velocity changes—and in circular motion, the direction changes continuously.
The resulting center-directed acceleration is called centripetal acceleration
(centripetal is from the Latin for “center seeking”).

Let’s calculate the magnitude of the centripetal acceleration, for an object
moving with a constant speed v in a circle of radius r. Figure 6–13 shows the
circular path of an object, with the center of the circle at the origin. To calculate
the acceleration at the top of the circle, at point P, we first calculate the average
acceleration from point 1 to point 2:

6–10

The instantaneous acceleration at P is the limit of as points 1 and 2 move closer
to P.

Referring to Figure 6–13, we see that is at an angle above the horizontal,
and is at an angle below the horizontal. Both and have a magnitude v.
Therefore, we can write the two velocities in vector form as follows:

Substituting these results into gives

6–11

Note that points in the negative y direction—which, at point P, is toward the
center of the circle.

To complete the calculation, we need the time it takes the object to go from
point 1 to point 2. Since the object’s speed is v, and the distance from point 1 to
point 2 is where is measured in radians (see Appendix A, page A-2 for
a discussion of radians and degrees), we find

6–12

Combining this result for with the previous result for gives

6–13

To find at point P, we let points 1 and 2 approach P, which means letting go to
zero. Table 6–2 shows that as goes to zero the ratio goes to 1:
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TABLE 6–2

for Values of Approaching Zero

radians

1.00 0.841
0.500 0.959
0.250 0.990
0.125 0.997
0.0625 0.999

sin U
U
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u
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u

▲ FIGURE 6–12 Swinging a ball in a circle
The tension in the string pulls outward
on the person’s hand and pulls inward
on the ball.
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 4.4 Analysis Model: Particle In Uniform Circular Motion 91

▸ 4.5 c o n t i n u e d

By eliminating the time t between these equations and using differentiation to maximize d in terms of u, we arrive 
(after several steps; see Problem 88) at the following equation for the angle u that gives the maximum value of d :

u 5 458 2
f

2

For the slope angle in Figure 4.14, f 5 35.0°; this equation results in an optimal launch angle of u 5 27.5°. For a slope 
angle of f 5 0°, which represents a horizontal plane, this equation gives an optimal launch angle of u 5 45°, as we 
would expect (see Figure 4.10).

 

Pitfall Prevention 4.4
Acceleration of a Particle  
in Uniform Circular Motion  
Remember that acceleration in 
physics is defined as a change 
in the velocity, not a change in 
the speed (contrary to the every-
day interpretation). In circular 
motion, the velocity vector is 
always changing in direction, so 
there is indeed an acceleration.

4.4   Analysis Model: Particle  
in Uniform Circular Motion

Figure 4.15a shows a car moving in a circular path; we describe this motion by call-
ing it circular motion. If the car is moving on this path with constant speed v, we 
call it uniform circular motion. Because it occurs so often, this type of motion is 
recognized as an analysis model called the particle in uniform circular motion. We 
discuss this model in this section.
 It is often surprising to students to find that even though an object moves at a 
constant speed in a circular path, it still has an acceleration. To see why, consider the 
defining equation for acceleration, aS 5 d vS/dt (Eq. 4.5). Notice that the accelera-
tion depends on the change in the velocity. Because velocity is a vector quantity, an 
acceleration can occur in two ways as mentioned in Section 4.1: by a change in the 
magnitude of the velocity and by a change in the direction of the velocity. The latter 
situation occurs for an object moving with constant speed in a circular path. The 
constant-magnitude velocity vector is always tangent to the path of the object and 
perpendicular to the radius of the circular path. Therefore, the direction of the 
velocity vector is always changing.
 Let us first argue that the acceleration vector in uniform circular motion is 
always perpendicular to the path and always points toward the center of the circle. 
If that were not true, there would be a component of the acceleration parallel to 
the path and therefore parallel to the velocity vector. Such an acceleration compo-
nent would lead to a change in the speed of the particle along the path. This situa-
tion, however, is inconsistent with our setup of the situation: the particle moves with 
constant speed along the path. Therefore, for uniform circular motion, the accelera-
tion vector can only have a component perpendicular to the path, which is toward 
the center of the circle.
 Let us now find the magnitude of the acceleration of the particle. Consider the 
diagram of the position and velocity vectors in Figure 4.15b. The figure also shows 
the vector representing the change in position D rS for an arbitrary time interval. 
The particle follows a circular path of radius r, part of which is shown by the dashed 

Figure 4.15 (a) A car moving along a circular path at con-
stant speed experiences uniform circular motion. (b) As a 
particle moves along a portion of a circular path from ! to 
", its velocity vector changes from vSi to vSf . (c) The construc-
tion for determining the direction of the change in velocity 
DvS, which is toward the center of the circle for small DrS.
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The net force is directed towards the center of the circle, just as
the change in velocity (it’s acceleration!) is directed towards the
center.



Uniform Circular Motion Acceleration

How large is the acceleration of the object?

It should depend on:

• the speed of the object - in this case, a higher the speed
means a larger acceleration

• the radius of the path - the tighter the turn, the smaller the
radius, the larger the acceleration



Uniform Circular Motion Acceleration
For points 1 and 2, the x-component of the velocity is the same,
but the y -component changes sign.
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▲ FIGURE 6–13 A particle moving in a
circular path centered on the origin
The speed of the particle is constant, but
its velocity is constantly changing.

6–5 Circular Motion
According to Newton’s second law, if no force acts on an object, it will move with
constant speed in a constant direction. A force is required to change the speed, the
direction, or both. For example, if you drive a car with constant speed on a circular
track, the direction of the car’s motion changes continuously. A force must act on
the car to cause this change in direction. We would like to know two things about
a force that causes circular motion: what is its direction, and what is its magnitude?

First, let’s consider the direction of the force. Imagine swinging a ball tied to a
string in a circle about your head, as shown in Figure 6–12. As you swing the ball,
you feel a tension in the string pulling outward. Of course, on the other end of the
string, where it attaches to the ball, the tension pulls inward, toward the center of
the circle. Thus, the force the ball experiences is a force that is always directed to-
ward the center of the circle. In summary,

To make an object move in a circle with constant speed, a force must act on it
that is directed toward the center of the circle.

Since the ball is acted on by a force toward the center of the circle, it follows
that it must be accelerating toward the center of the circle. This might seem odd at
first: How can a ball that moves with constant speed have an acceleration? The
answer is that acceleration is produced whenever the speed or direction of the
velocity changes—and in circular motion, the direction changes continuously.
The resulting center-directed acceleration is called centripetal acceleration
(centripetal is from the Latin for “center seeking”).

Let’s calculate the magnitude of the centripetal acceleration, for an object
moving with a constant speed v in a circle of radius r. Figure 6–13 shows the
circular path of an object, with the center of the circle at the origin. To calculate
the acceleration at the top of the circle, at point P, we first calculate the average
acceleration from point 1 to point 2:

6–10

The instantaneous acceleration at P is the limit of as points 1 and 2 move closer
to P.

Referring to Figure 6–13, we see that is at an angle above the horizontal,
and is at an angle below the horizontal. Both and have a magnitude v.
Therefore, we can write the two velocities in vector form as follows:

Substituting these results into gives

6–11

Note that points in the negative y direction—which, at point P, is toward the
center of the circle.

To complete the calculation, we need the time it takes the object to go from
point 1 to point 2. Since the object’s speed is v, and the distance from point 1 to
point 2 is where is measured in radians (see Appendix A, page A-2 for
a discussion of radians and degrees), we find

6–12

Combining this result for with the previous result for gives

6–13

To find at point P, we let points 1 and 2 approach P, which means letting go to
zero. Table 6–2 shows that as goes to zero the ratio goes to 1:
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for Values of Approaching Zero
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1.00 0.841
0.500 0.959
0.250 0.990
0.125 0.997
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▲ FIGURE 6–12 Swinging a ball in a circle
The tension in the string pulls outward
on the person’s hand and pulls inward
on the ball.
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Uniform Circular Motion Acceleration
How much time does it take to go from 1 to 2? Depends on the
speed of the particle...
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▲ FIGURE 6–13 A particle moving in a
circular path centered on the origin
The speed of the particle is constant, but
its velocity is constantly changing.

6–5 Circular Motion
According to Newton’s second law, if no force acts on an object, it will move with
constant speed in a constant direction. A force is required to change the speed, the
direction, or both. For example, if you drive a car with constant speed on a circular
track, the direction of the car’s motion changes continuously. A force must act on
the car to cause this change in direction. We would like to know two things about
a force that causes circular motion: what is its direction, and what is its magnitude?

First, let’s consider the direction of the force. Imagine swinging a ball tied to a
string in a circle about your head, as shown in Figure 6–12. As you swing the ball,
you feel a tension in the string pulling outward. Of course, on the other end of the
string, where it attaches to the ball, the tension pulls inward, toward the center of
the circle. Thus, the force the ball experiences is a force that is always directed to-
ward the center of the circle. In summary,

To make an object move in a circle with constant speed, a force must act on it
that is directed toward the center of the circle.

Since the ball is acted on by a force toward the center of the circle, it follows
that it must be accelerating toward the center of the circle. This might seem odd at
first: How can a ball that moves with constant speed have an acceleration? The
answer is that acceleration is produced whenever the speed or direction of the
velocity changes—and in circular motion, the direction changes continuously.
The resulting center-directed acceleration is called centripetal acceleration
(centripetal is from the Latin for “center seeking”).

Let’s calculate the magnitude of the centripetal acceleration, for an object
moving with a constant speed v in a circle of radius r. Figure 6–13 shows the
circular path of an object, with the center of the circle at the origin. To calculate
the acceleration at the top of the circle, at point P, we first calculate the average
acceleration from point 1 to point 2:
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The instantaneous acceleration at P is the limit of as points 1 and 2 move closer
to P.

Referring to Figure 6–13, we see that is at an angle above the horizontal,
and is at an angle below the horizontal. Both and have a magnitude v.
Therefore, we can write the two velocities in vector form as follows:

Substituting these results into gives

6–11

Note that points in the negative y direction—which, at point P, is toward the
center of the circle.

To complete the calculation, we need the time it takes the object to go from
point 1 to point 2. Since the object’s speed is v, and the distance from point 1 to
point 2 is where is measured in radians (see Appendix A, page A-2 for
a discussion of radians and degrees), we find

6–12

Combining this result for with the previous result for gives
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To find at point P, we let points 1 and 2 approach P, which means letting go to
zero. Table 6–2 shows that as goes to zero the ratio goes to 1:
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∆t =
s

v
=

2rθ

v



Uniform Circular Motion Acceleration

All together:

#»a avg =
−2v sin θ

(2rθ)/v
ĵ =

−v2

r

(
sin θ

θ

)
ĵ

This is the average acceleration over time ∆t. Could we figure out
the instantaneous velocity?

For shorter and shorter windows of time θ→ 0.

As θ→ 0, sin θ→ θ, so
(
sinθ
θ

)
→ 1.

#»a =
−v2

r
ĵ



Uniform Circular Motion Acceleration
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Uniform Circular Motion Acceleration
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Uniform Circular Motion Acceleration

The direction of this acceleration is also always changing.

The easiest way to describe how it points using vectors is to make
a vector defined to point out from the origin through the object.

This is the radial direction.

We can always write:

#»a =
−v2

r
r̂

where the minus sign means that the acceleration points in
towards the center of the circle, rather than outward.



Circular Motion

Centripetal acceleration

The acceleration of an object that follows a circular arc of radius,
r , at constant speed v . Its magnitude is

acp =
v2

r

 4.4 Analysis Model: Particle In Uniform Circular Motion 93

continued

Combining this equation with Equation 4.15, we find a relationship between angular 
speed and the translational speed with which the particle travels in the circular path:

 v 5 2pa v
2pr

b 5
v
r  S      v 5 rv (4.17)

Equation 4.17 demonstrates that, for a fixed angular speed, the translational speed 
becomes larger as the radial position becomes larger. Therefore, for example, if a 
merry-go-round rotates at a fixed angular speed v, a rider at an outer position at 
large r will be traveling through space faster than a rider at an inner position at 
smaller r. We will investigate Equations 4.16 and 4.17 more deeply in Chapter 10.
 We can express the centripetal acceleration of a particle in uniform circular 
motion in terms of angular speed by combining Equations 4.14 and 4.17:

ac 5
1rv 22

r
 ac 5 rv2 (4.18)

Equations 4.14–4.18 are to be used when the particle in uniform circular motion 
model is identified as appropriate for a given situation.

Q uick Quiz 4.4  A particle moves in a circular path of radius r with speed v. It then 
increases its speed to 2v while traveling along the same circular path. (i) The cen-
tripetal acceleration of the particle has changed by what factor? Choose one:  
(a) 0.25 (b) 0.5 (c) 2 (d) 4 (e) impossible to determine (ii) From the same choices,  
by what factor has the period of the particle changed?

Analysis Model   Particle in Uniform Circular Motion
Imagine a moving object that can be modeled as a particle. If it moves 
in a circular path of radius r at a constant speed v, the magnitude of its 
centripetal acceleration is 

 ac 5
v2

r
 (4.14)

and the period of the particle’s motion is given by 

 T 5
2pr
v

 (4.15)

The angular speed of the particle is

 v 5
2p

T
 (4.16)

Examples: 

of constant length 
-

fectly circular orbit (Chapter 13)
-

form magnetic field (Chapter 29)

nucleus in the Bohr model of the 
hydrogen atom (Chapter 42)

r

vSac
S

Example 4.6   The Centripetal Acceleration of the Earth 

(A) What is the centripetal acceleration of the Earth as it moves in its orbit around the Sun?

Conceptualize Think about a mental image of the Earth in a circular orbit around the Sun. We will model the Earth 
as a particle and approximate the Earth’s orbit as circular (it’s actually slightly elliptical, as we discuss in Chapter 13).

Categorize The Conceptualize step allows us to categorize this problem as one of a particle in uniform circular motion.

Analyze We do not know the orbital speed of the Earth to substitute into Equation 4.14. With the help of Equation 
4.15, however, we can recast Equation 4.14 in terms of the period of the Earth’s orbit, which we know is one year, and 
the radius of the Earth’s orbit around the Sun, which is 1.496 3 1011 m.

AM

S O L U T I O N

Pitfall Prevention 4.5
Centripetal Acceleration  
Is Not Constant We derived the 
magnitude of the centripetal 
acceleration vector and found it to 
be constant for uniform circular 
motion, but the centripetal accelera-
tion vector is not constant. It always 
points toward the center of the 
circle, but it continuously changes 
direction as the object moves 
around the circular path.



Circular Motion

Centripetal acceleration

The acceleration of an object that follows a circular arc of radius,
r , at constant speed v . Its magnitude is

acp =
v2

r



Uniform Circular Motion
The velocity vector points along a tangent to the circle

 4.4 Analysis Model: Particle In Uniform Circular Motion 93

continued

Combining this equation with Equation 4.15, we find a relationship between angular 
speed and the translational speed with which the particle travels in the circular path:

 v 5 2pa v
2pr

b 5
v
r  S      v 5 rv (4.17)

Equation 4.17 demonstrates that, for a fixed angular speed, the translational speed 
becomes larger as the radial position becomes larger. Therefore, for example, if a 
merry-go-round rotates at a fixed angular speed v, a rider at an outer position at 
large r will be traveling through space faster than a rider at an inner position at 
smaller r. We will investigate Equations 4.16 and 4.17 more deeply in Chapter 10.
 We can express the centripetal acceleration of a particle in uniform circular 
motion in terms of angular speed by combining Equations 4.14 and 4.17:

ac 5
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r
 ac 5 rv2 (4.18)

Equations 4.14–4.18 are to be used when the particle in uniform circular motion 
model is identified as appropriate for a given situation.

Q uick Quiz 4.4  A particle moves in a circular path of radius r with speed v. It then 
increases its speed to 2v while traveling along the same circular path. (i) The cen-
tripetal acceleration of the particle has changed by what factor? Choose one:  
(a) 0.25 (b) 0.5 (c) 2 (d) 4 (e) impossible to determine (ii) From the same choices,  
by what factor has the period of the particle changed?

Analysis Model   Particle in Uniform Circular Motion
Imagine a moving object that can be modeled as a particle. If it moves 
in a circular path of radius r at a constant speed v, the magnitude of its 
centripetal acceleration is 
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v2

r
 (4.14)

and the period of the particle’s motion is given by 
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Examples: 
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nucleus in the Bohr model of the 
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Example 4.6   The Centripetal Acceleration of the Earth 

(A) What is the centripetal acceleration of the Earth as it moves in its orbit around the Sun?

Conceptualize Think about a mental image of the Earth in a circular orbit around the Sun. We will model the Earth 
as a particle and approximate the Earth’s orbit as circular (it’s actually slightly elliptical, as we discuss in Chapter 13).

Categorize The Conceptualize step allows us to categorize this problem as one of a particle in uniform circular motion.

Analyze We do not know the orbital speed of the Earth to substitute into Equation 4.14. With the help of Equation 
4.15, however, we can recast Equation 4.14 in terms of the period of the Earth’s orbit, which we know is one year, and 
the radius of the Earth’s orbit around the Sun, which is 1.496 3 1011 m.

AM

S O L U T I O N

Pitfall Prevention 4.5
Centripetal Acceleration  
Is Not Constant We derived the 
magnitude of the centripetal 
acceleration vector and found it to 
be constant for uniform circular 
motion, but the centripetal accelera-
tion vector is not constant. It always 
points toward the center of the 
circle, but it continuously changes 
direction as the object moves 
around the circular path.

For uniform circular motion:

• the radius is constant

• the speed is constant

• the magnitude of the acceleration is constant
1Figures from Serway & Jewett.



Uniform Circular Motion and Net Force

If an object moves in a uniform circle, its velocity must always be
changing. ⇒ It is accelerating.

a = acp =
v2

r

What is the net force on the object?

Fnet = macp =
mv2

r



Uniform Circular Motion and Net Force

If an object moves in a uniform circle, its velocity must always be
changing. ⇒ It is accelerating.

a = acp =
v2

r

What is the net force on the object?

Fnet = macp =
mv2

r



Uniform Circular Motion - Now with Force

Centripetal force:

Fnet =
mv2

r

Directed toward the center of the turn.

152 Chapter 6 Circular Motion and Other Applications of Newton’s Laws

 

Example 6.1   The Conical Pendulum 

A small ball of mass m is suspended from a string of length L. The ball revolves 
with constant speed v in a horizontal circle of radius r as shown in Figure 6.3. 
(Because the string sweeps out the surface of a cone, the system is known as a 
conical pendulum.) Find an expression for v in terms of the geometry in Figure 6.3.

Conceptualize Imagine the motion of the ball in Figure 6.3a and convince your-
self that the string sweeps out a cone and that the ball moves in a horizontal circle.

Categorize The ball in Figure 6.3 does not accelerate vertically. Therefore, we 
model it as a particle in equilibrium in the vertical direction. It experiences a cen-
tripetal acceleration in the horizontal direction, so it is modeled as a particle in 
uniform circular motion in this direction.

Analyze Let u represent the angle between the string and the vertical. In the dia-
gram of forces acting on the ball in Figure 6.3b, the force T

S
 exerted by the string on the ball is resolved into a vertical 

component T cos u and a horizontal component T sin u acting toward the center of the circular path.

AM

S O L U T I O N

Apply the particle in equilibrium model in the vertical 
direction:

o Fy 5 T cos u 2 mg 5 0

(1)   T cos u 5 mg

Use Equation 6.1 from the particle in uniform circular 
motion model in the horizontal direction:

(2)   a  Fx 5 T sin u 5 mac 5
mv2

r

Divide Equation (2) by Equation (1) and use  
sin u/cos u 5 tan u:

tan u 5
v2

rg

Solve for v:  v 5 "rg tan u

Incorporate r 5 L sin u from the geometry in Figure 6.3a:  v 5  "Lg sin u tan u

Finalize Notice that the speed is independent of the mass of the ball. Consider what happens when u goes to 908 so 
that the string is horizontal. Because the tangent of 908 is infinite, the speed v is infinite, which tells us the string can-
not possibly be horizontal. If it were, there would be no vertical component of the force T

S
 to balance the gravitational 

force on the ball. That is why we mentioned in regard to Figure 6.1 that the puck’s weight in the figure is supported by 
a frictionless table.

Imagine a moving object that can be mod-
eled as a particle. If it moves in a circular 
path of radius r at a constant speed v, it 
experiences a centripetal acceleration.  
Because the particle is accelerating, there 
must be a net force acting on the particle. 
That force is directed toward the center of 
the circular path and is given by 

 a  F 5 mac 5 m 
v2

r
 (6.1)

Analysis Model   Particle in Uniform Circular Motion (Extension)

Examples

acting on a rock twirled in a circle

traveling around the Sun in a perfectly 
circular orbit (Chapter 13)

particle moving in a uniform magnetic field (Chapter 29)

nucleus in the Bohr model of the hydrogen atom (Chapter 42)

r

! vS

ac
S

F
S

r

L

m

u

u

T sin u

T cos u
T
S

gS mgS 

a b

Figure 6.3 (Example 6.1) (a) A 
conical pendulum. The path of the 
ball is a horizontal circle. (b) The 
forces acting on the ball.

1Figures from Serway & Jewett.



Uniform Circular Motion

Fnet =
mv2

r

As a vector:
#»

Fnet = −
mv2

r
r̂



Centripetal Net Force

Something must provide this force: 6.1 Extending the Particle in Uniform Circular Motion Model 151

The acceleration is called centripetal acceleration because aSc is directed toward 
the center of the circle. Furthermore, aSc is always perpendicular to vS. (If there 
were a component of acceleration parallel to vS, the particle’s speed would be 
changing.)
 Let us now extend the particle in uniform circular motion model from Section 
4.4 by incorporating the concept of force. Consider a puck of mass m that is tied 
to a string of length r and moves at constant speed in a horizontal, circular path 
as illustrated in Figure 6.1. Its weight is supported by a frictionless table, and the 
string is anchored to a peg at the center of the circular path of the puck. Why does 
the puck move in a circle? According to Newton’s first law, the puck would move 
in a straight line if there were no force on it; the string, however, prevents motion 
along a straight line by exerting on the puck a radial force F

S
r that makes it follow 

the circular path. This force is directed along the string toward the center of the 
circle as shown in Figure 6.1.
 If Newton’s second law is applied along the radial direction, the net force caus-
ing the centripetal acceleration can be related to the acceleration as follows:

 a  F 5 mac 5 m 
v2

r  (6.1)

A force causing a centripetal acceleration acts toward the center of the circular 
path and causes a change in the direction of the velocity vector. If that force 
should vanish, the object would no longer move in its circular path; instead, it 
would move along a straight-line path tangent to the circle. This idea is illustrated 
in Figure 6.2 for the puck moving in a circular path at the end of a string in a 
horizontal plane. If the string breaks at some instant, the puck moves along the 
straight-line path that is tangent to the circle at the position of the puck at this 
instant.

Q uick Quiz 6.1 You are riding on a Ferris wheel that is rotating with constant 
speed. The car in which you are riding always maintains its correct upward ori-
entation; it does not invert. (i) What is the direction of the normal force on you 
from the seat when you are at the top of the wheel? (a) upward (b) downward  
(c) impossible to determine (ii) From the same choices, what is the direction of 
the net force on you when you are at the top of the wheel?

�W Force causing centripetal  
acceleration

m

r

r

r

F
S

F 
S

A force F  , directed 
toward the center 
of the circle, keeps 
the puck moving 
in its circular path.

S
r

Figure 6.1 An overhead view of a 
puck moving in a circular path in a 
horizontal plane.

Figure 6.2 The string holding the 
puck in its circular path breaks.

r

When the 
string breaks, 
the puck
moves in the
direction 
tangent
to the circle. 

vS

Pitfall Prevention 6.1
Direction of Travel When  
the String Is Cut Study Figure 
6.2 very carefully. Many students 
(wrongly) think that the puck will 
move radially away from the center 
of the circle when the string is cut. 
The velocity of the puck is tangent 
to the circle. By Newton’s first law, 
the puck continues to move in 
the same direction in which it is 
moving just as the force from the 
string disappears. 

It could be tension in a rope.



Centripetal Net Force

Something must provide this force: 

Example 6.2   How Fast Can It Spin? 

A puck of mass 0.500 kg is attached to the end of a cord 1.50 m long. The puck moves in a horizontal circle as shown in 
Figure 6.1. If the cord can withstand a maximum tension of 50.0 N, what is the maximum speed at which the puck can 
move before the cord breaks? Assume the string remains horizontal during the motion.

Conceptualize It makes sense that the stronger the cord, the faster the puck can move before the cord breaks. Also, we 
expect a more massive puck to break the cord at a lower speed. (Imagine whirling a bowling ball on the cord!)

Categorize Because the puck moves in a circular path, we model it as a particle in uniform circular motion.

AM

S O L U T I O N

Analyze Incorporate the tension and the centripetal acceler-
ation into Newton’s second law as described by Equation 6.1:

T 5 m 
v2

r
 

continued

Solve for v: (1)   v 5 ÅTr
m

  

Example 6.3   What Is the Maximum Speed of the Car? 

A 1 500-kg car moving on a flat, horizontal road negotiates a curve as shown 
in Figure 6.4a. If the radius of the curve is 35.0 m and the coefficient of static 
friction between the tires and dry pavement is 0.523, find the maximum speed 
the car can have and still make the turn successfully.

Conceptualize Imagine that the curved roadway is part of a large circle so 
that the car is moving in a circular path.

Categorize Based on the Conceptualize step of the problem, we model the car 
as a particle in uniform circular motion in the horizontal direction. The car is not 
accelerating vertically, so it is modeled as a particle in equilibrium in the vertical 
direction.

Analyze Figure 6.4b shows the forces on the car. The force that enables the 
car to remain in its circular path is the force of static friction. (It is static 
because no slipping occurs at the point of contact between road and tires. If 
this force of static friction were zero—for example, if the car were on an icy 
road—the car would continue in a straight line and slide off the curved road.) 
The maximum speed vmax the car can have around the curve is the speed at 
which it is on the verge of skidding outward. At this point, the friction force 
has its maximum value fs,max 5 msn.

AM

S O L U T I O N

Find the maximum speed the puck can have, which corre-
sponds to the maximum tension the string can withstand:

vmax 5 ÅTmaxr
m

5 Å 150.0 N 2 11.50 m 2
0.500 kg

5  12.2 m/s

Finalize Equation (1) shows that v increases with T and decreases with larger m, as we expected from our conceptual-
ization of the problem.

Suppose the puck moves in a circle of larger radius at the same speed v. Is the cord more likely or less 
likely to break?

Answer The larger radius means that the change in the direction of the velocity vector will be smaller in a given time 
interval. Therefore, the acceleration is smaller and the required tension in the string is smaller. As a result, the string 
is less likely to break when the puck travels in a circle of larger radius.

WHAT IF ?

nS

fs
S

 

fs
S

 

mgS 

a

b

Figure 6.4 (Example 6.3) (a) The force 
of static friction directed toward the center 
of the curve keeps the car moving in a cir-
cular path. (b) The forces acting on the car.

 6.1 Extending the Particle in Uniform Circular Motion Model 153

It could be friction.



Centripetal Net Force

Consider the example of a string constraining the motion of a puck: 6.1 Extending the Particle in Uniform Circular Motion Model 151

The acceleration is called centripetal acceleration because aSc is directed toward 
the center of the circle. Furthermore, aSc is always perpendicular to vS. (If there 
were a component of acceleration parallel to vS, the particle’s speed would be 
changing.)
 Let us now extend the particle in uniform circular motion model from Section 
4.4 by incorporating the concept of force. Consider a puck of mass m that is tied 
to a string of length r and moves at constant speed in a horizontal, circular path 
as illustrated in Figure 6.1. Its weight is supported by a frictionless table, and the 
string is anchored to a peg at the center of the circular path of the puck. Why does 
the puck move in a circle? According to Newton’s first law, the puck would move 
in a straight line if there were no force on it; the string, however, prevents motion 
along a straight line by exerting on the puck a radial force F

S
r that makes it follow 

the circular path. This force is directed along the string toward the center of the 
circle as shown in Figure 6.1.
 If Newton’s second law is applied along the radial direction, the net force caus-
ing the centripetal acceleration can be related to the acceleration as follows:

 a  F 5 mac 5 m 
v2

r  (6.1)

A force causing a centripetal acceleration acts toward the center of the circular 
path and causes a change in the direction of the velocity vector. If that force 
should vanish, the object would no longer move in its circular path; instead, it 
would move along a straight-line path tangent to the circle. This idea is illustrated 
in Figure 6.2 for the puck moving in a circular path at the end of a string in a 
horizontal plane. If the string breaks at some instant, the puck moves along the 
straight-line path that is tangent to the circle at the position of the puck at this 
instant.

Q uick Quiz 6.1 You are riding on a Ferris wheel that is rotating with constant 
speed. The car in which you are riding always maintains its correct upward ori-
entation; it does not invert. (i) What is the direction of the normal force on you 
from the seat when you are at the top of the wheel? (a) upward (b) downward  
(c) impossible to determine (ii) From the same choices, what is the direction of 
the net force on you when you are at the top of the wheel?

�W Force causing centripetal  
acceleration

m

r

r

r

F
S

F 
S

A force F  , directed 
toward the center 
of the circle, keeps 
the puck moving 
in its circular path.

S
r

Figure 6.1 An overhead view of a 
puck moving in a circular path in a 
horizontal plane.

Figure 6.2 The string holding the 
puck in its circular path breaks.

r

When the 
string breaks, 
the puck
moves in the
direction 
tangent
to the circle. 

vS

Pitfall Prevention 6.1
Direction of Travel When  
the String Is Cut Study Figure 
6.2 very carefully. Many students 
(wrongly) think that the puck will 
move radially away from the center 
of the circle when the string is cut. 
The velocity of the puck is tangent 
to the circle. By Newton’s first law, 
the puck continues to move in 
the same direction in which it is 
moving just as the force from the 
string disappears. 



Centripetal Net Force

Question. What will the puck do if the string breaks?

(A) Fly radially outward.

(B) Continue along the circle.

(C) Move tangentially to the circle.

 6.1 Extending the Particle in Uniform Circular Motion Model 151

The acceleration is called centripetal acceleration because aSc is directed toward 
the center of the circle. Furthermore, aSc is always perpendicular to vS. (If there 
were a component of acceleration parallel to vS, the particle’s speed would be 
changing.)
 Let us now extend the particle in uniform circular motion model from Section 
4.4 by incorporating the concept of force. Consider a puck of mass m that is tied 
to a string of length r and moves at constant speed in a horizontal, circular path 
as illustrated in Figure 6.1. Its weight is supported by a frictionless table, and the 
string is anchored to a peg at the center of the circular path of the puck. Why does 
the puck move in a circle? According to Newton’s first law, the puck would move 
in a straight line if there were no force on it; the string, however, prevents motion 
along a straight line by exerting on the puck a radial force F

S
r that makes it follow 

the circular path. This force is directed along the string toward the center of the 
circle as shown in Figure 6.1.
 If Newton’s second law is applied along the radial direction, the net force caus-
ing the centripetal acceleration can be related to the acceleration as follows:

 a  F 5 mac 5 m 
v2

r  (6.1)

A force causing a centripetal acceleration acts toward the center of the circular 
path and causes a change in the direction of the velocity vector. If that force 
should vanish, the object would no longer move in its circular path; instead, it 
would move along a straight-line path tangent to the circle. This idea is illustrated 
in Figure 6.2 for the puck moving in a circular path at the end of a string in a 
horizontal plane. If the string breaks at some instant, the puck moves along the 
straight-line path that is tangent to the circle at the position of the puck at this 
instant.

Q uick Quiz 6.1 You are riding on a Ferris wheel that is rotating with constant 
speed. The car in which you are riding always maintains its correct upward ori-
entation; it does not invert. (i) What is the direction of the normal force on you 
from the seat when you are at the top of the wheel? (a) upward (b) downward  
(c) impossible to determine (ii) From the same choices, what is the direction of 
the net force on you when you are at the top of the wheel?

�W Force causing centripetal  
acceleration

m

r

r

r

F
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F 
S

A force F  , directed 
toward the center 
of the circle, keeps 
the puck moving 
in its circular path.
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r

Figure 6.1 An overhead view of a 
puck moving in a circular path in a 
horizontal plane.

Figure 6.2 The string holding the 
puck in its circular path breaks.

r

When the 
string breaks, 
the puck
moves in the
direction 
tangent
to the circle. 

vS

Pitfall Prevention 6.1
Direction of Travel When  
the String Is Cut Study Figure 
6.2 very carefully. Many students 
(wrongly) think that the puck will 
move radially away from the center 
of the circle when the string is cut. 
The velocity of the puck is tangent 
to the circle. By Newton’s first law, 
the puck continues to move in 
the same direction in which it is 
moving just as the force from the 
string disappears. 



Centripetal Net Force

Question. What will the puck do if the string breaks?

(A) Fly radially outward.

(B) Continue along the circle.

(C) Move tangentially to the circle. ← 6.1 Extending the Particle in Uniform Circular Motion Model 151

The acceleration is called centripetal acceleration because aSc is directed toward 
the center of the circle. Furthermore, aSc is always perpendicular to vS. (If there 
were a component of acceleration parallel to vS, the particle’s speed would be 
changing.)
 Let us now extend the particle in uniform circular motion model from Section 
4.4 by incorporating the concept of force. Consider a puck of mass m that is tied 
to a string of length r and moves at constant speed in a horizontal, circular path 
as illustrated in Figure 6.1. Its weight is supported by a frictionless table, and the 
string is anchored to a peg at the center of the circular path of the puck. Why does 
the puck move in a circle? According to Newton’s first law, the puck would move 
in a straight line if there were no force on it; the string, however, prevents motion 
along a straight line by exerting on the puck a radial force F

S
r that makes it follow 

the circular path. This force is directed along the string toward the center of the 
circle as shown in Figure 6.1.
 If Newton’s second law is applied along the radial direction, the net force caus-
ing the centripetal acceleration can be related to the acceleration as follows:

 a  F 5 mac 5 m 
v2

r  (6.1)

A force causing a centripetal acceleration acts toward the center of the circular 
path and causes a change in the direction of the velocity vector. If that force 
should vanish, the object would no longer move in its circular path; instead, it 
would move along a straight-line path tangent to the circle. This idea is illustrated 
in Figure 6.2 for the puck moving in a circular path at the end of a string in a 
horizontal plane. If the string breaks at some instant, the puck moves along the 
straight-line path that is tangent to the circle at the position of the puck at this 
instant.

Q uick Quiz 6.1 You are riding on a Ferris wheel that is rotating with constant 
speed. The car in which you are riding always maintains its correct upward ori-
entation; it does not invert. (i) What is the direction of the normal force on you 
from the seat when you are at the top of the wheel? (a) upward (b) downward  
(c) impossible to determine (ii) From the same choices, what is the direction of 
the net force on you when you are at the top of the wheel?

�W Force causing centripetal  
acceleration
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Figure 6.1 An overhead view of a 
puck moving in a circular path in a 
horizontal plane.

Figure 6.2 The string holding the 
puck in its circular path breaks.
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When the 
string breaks, 
the puck
moves in the
direction 
tangent
to the circle. 
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Pitfall Prevention 6.1
Direction of Travel When  
the String Is Cut Study Figure 
6.2 very carefully. Many students 
(wrongly) think that the puck will 
move radially away from the center 
of the circle when the string is cut. 
The velocity of the puck is tangent 
to the circle. By Newton’s first law, 
the puck continues to move in 
the same direction in which it is 
moving just as the force from the 
string disappears. 



Summary

• uniform circular motion acceleration

• forces and circular motion

• motion in a vertical circle

Final Exam, Thursday, Mar 26, by Canvas & Zoom, be ready
at 9am.

Homework

• Quiz 7 (take home quiz, due tomorrow, 1pm)

• Forces and Motion worksheet (due Thurs, 10am)

Walker Physics:

• Ch 6, onward from page 177. Problems: 55, 59, 61, 63, 105,
110 (vertical circle)


