Introduction to Mechanics Circular Motion

Lana Sheridan
De Anza College

Mar 16, 2020

Last time

- more friction examples
- springs
- circular motion

Overview

- circular motion
- acceleration
- force and circular motion
- motion in a vertical circle

Uniform Circular Motion Acceleration

The net force is directed towards the center of the circle, just as the change in velocity (it's acceleration!) is directed towards the center.

Uniform Circular Motion Acceleration

How large is the acceleration of the object?

It should depend on:

- the speed of the object - in this case, a higher the speed means a larger acceleration
- the radius of the path - the tighter the turn, the smaller the radius, the larger the acceleration

Uniform Circular Motion Acceleration

For points 1 and 2 , the x-component of the velocity is the same, but the y-component changes sign.

$$
\overrightarrow{\mathbf{a}}_{\mathrm{avg}}=\frac{\overrightarrow{\mathbf{v}}_{2}-\overrightarrow{\mathbf{v}}_{1}}{\Delta t}=\left(\frac{v_{2, y}-v_{1, y}}{\Delta t}\right) \hat{\mathbf{j}}=\frac{-2 v \sin \theta}{\Delta t} \hat{\mathbf{j}}
$$

Uniform Circular Motion Acceleration

How much time does it take to go from 1 to 2 ? Depends on the speed of the particle...

Let s be the distance the particle travels.

$$
\Delta t=\frac{s}{v}=\frac{2 r \theta}{v}
$$

Uniform Circular Motion Acceleration

All together:

$$
\overrightarrow{\mathbf{a}}_{\mathrm{avg}}=\frac{-2 v \sin \theta}{(2 r \theta) / v} \hat{\mathbf{j}}=\frac{-v^{2}}{r}\left(\frac{\sin \theta}{\theta}\right) \hat{\mathbf{j}}
$$

Uniform Circular Motion Acceleration

All together:

$$
\overrightarrow{\mathbf{a}}_{\mathrm{avg}}=\frac{-2 v \sin \theta}{(2 r \theta) / v} \hat{\mathbf{j}}=\frac{-v^{2}}{r}\left(\frac{\sin \theta}{\theta}\right) \hat{\mathbf{j}}
$$

This is the average acceleration over time Δt. Could we figure out the instantaneous velocity?

Uniform Circular Motion Acceleration

All together:

$$
\overrightarrow{\mathbf{a}}_{\mathrm{avg}}=\frac{-2 v \sin \theta}{(2 r \theta) / v} \hat{\mathbf{j}}=\frac{-v^{2}}{r}\left(\frac{\sin \theta}{\theta}\right) \hat{\mathbf{j}}
$$

This is the average acceleration over time Δt. Could we figure out the instantaneous velocity?

For shorter and shorter windows of time $\theta \rightarrow 0$.
As $\theta \rightarrow 0, \sin \theta \rightarrow \theta$, so $\left(\frac{\sin \theta}{\theta}\right) \rightarrow 1$.

$$
\overrightarrow{\mathbf{a}}=\frac{-v^{2}}{r} \hat{\mathbf{j}}
$$

Uniform Circular Motion Acceleration

The direction of this acceleration is also always changing.
The easiest way to describe how it points using vectors is to make a vector defined to point out from the origin through the object.

This is the radial direction.
We can always write:

$$
\overrightarrow{\mathbf{a}}=\frac{-v^{2}}{r} \hat{\mathbf{r}}
$$

where the minus sign means that the acceleration points in towards the center of the circle, rather than outward.

Circular Motion

Centripetal acceleration
The acceleration of an object that follows a circular arc of radius, r, at constant speed v. Its magnitude is

$$
a_{c p}=\frac{v^{2}}{r}
$$

Circular Motion

Centripetal acceleration

The acceleration of an object that follows a circular arc of radius, r, at constant speed v. Its magnitude is

$$
a_{c p}=\frac{v^{2}}{r}
$$

Uniform Circular Motion

The velocity vector points along a tangent to the circle

For uniform circular motion:

- the radius is constant
- the speed is constant
- the magnitude of the acceleration is constant
${ }^{1}$ Figures from Serway \& Jewett.

Uniform Circular Motion and Net Force

If an object moves in a uniform circle, its velocity must always be changing. $\Rightarrow \mathrm{It}$ is accelerating.

$$
a=a_{c p}=\frac{v^{2}}{r}
$$

What is the net force on the object?

Uniform Circular Motion and Net Force

If an object moves in a uniform circle, its velocity must always be changing. $\Rightarrow \mathrm{It}$ is accelerating.

$$
a=a_{c p}=\frac{v^{2}}{r}
$$

What is the net force on the object?

$$
F_{\mathrm{net}}=m a_{c p}=\frac{m v^{2}}{r}
$$

Uniform Circular Motion - Now with Force

Centripetal force:

$$
F_{\mathrm{net}}=\frac{m v^{2}}{r}
$$

Directed toward the center of the turn.

${ }^{1}$ Figures from Serway \& Jewett.

Uniform Circular Motion

$$
F_{\mathrm{net}}=\frac{m v^{2}}{r}
$$

As a vector:

$$
\overrightarrow{\mathbf{F}}_{\mathrm{net}}=-\frac{m v^{2}}{r} \hat{\mathbf{r}}
$$

Centripetal Net Force

Something must provide this force:

It could be tension in a rope.

Centripetal Net Force

Something must provide this force:

It could be friction.

Centripetal Net Force

Consider the example of a string constraining the motion of a puck:

Centripetal Net Force

Question. What will the puck do if the string breaks?
(A) Fly radially outward.
(B) Continue along the circle.
(C) Move tangentially to the circle.

Centripetal Net Force

Question. What will the puck do if the string breaks?
(A) Fly radially outward.
(B) Continue along the circle.
(C) Move tangentially to the circle. \leftarrow

Summary

- uniform circular motion acceleration
- forces and circular motion
- motion in a vertical circle

Final Exam, Thursday, Mar 26, by Canvas \& Zoom, be ready at 9 am .

Homework

- Quiz 7 (take home quiz, due tomorrow, 1pm)
- Forces and Motion worksheet (due Thurs, 10am)

Walker Physics:

- Ch 6, onward from page 177. Problems: 55, 59, 61, 63, 105, 110 (vertical circle)

