Introduction to Mechanics Banked Turns
 Non-uniform Circular Motion

Lana Sheridan
De Anza College

Mar 18, 2020

Last time

- more friction examples
- springs
- circular motion

Overview

- circular motion
- banked turns
- non-uniform circular motion and tangential acceleration

Circular motion example

Last lecture we did an example with a car making a turn on a horizontal road surface...

Sketch:

A Banked Turn

Curved roadways are often not flat. The are often banked, that is sloped at an angle to the horizontal.

This is so that a component of the normal force on the car can help provide some or all of the centripetal force.

[^0]
A Banked Turn

A turn has a radius r. What should the angle θ be so that a car traveling at speed v can turn the corner without relying on friction?

A Banked Turn

A turn has a radius r. What should the angle θ be so that a car traveling at speed v can turn the corner without relying on friction?

Hint: consider what the net force vector must be in this case.

A Banked Turn

y-direction (vertical):

$$
\begin{array}{r}
F_{y, \text { net }}=0 \\
N_{y}+W_{y}=0
\end{array}
$$

A Banked Turn

y-direction (vertical):

$$
\begin{aligned}
F_{y, \text { net }} & =0 \\
N_{y}+W_{y} & =0 \\
N \cos \theta-W & =0 \\
N \cos \theta & =W \\
N & =\frac{m g}{\cos \theta}
\end{aligned}
$$

A Banked Turn

x-direction (horizontal):

$$
\begin{aligned}
F_{x, \text { net }} & =m a_{c p} \\
N_{x} & =\frac{m v^{2}}{r}
\end{aligned}
$$

A Banked Turn

> x-direction (horizontal):

$$
\begin{aligned}
F_{x, \text { net }} & =m a_{c p} \\
N_{x} & =\frac{m v^{2}}{r} \\
N \sin \theta & =\frac{m v^{2}}{r} \\
\frac{m g}{\cos \theta} \sin \theta & =\frac{m v^{2}}{r} \\
\tan \theta & =\frac{v^{2}}{r g} \Rightarrow \theta=\tan ^{-1}\left(\frac{v^{2}}{r g}\right)
\end{aligned}
$$

Banked Turn Related Problems

This situation is called a "conical pendulum". But notice, it is actually a banked-turn-style problem in disguise!

The role that was played by the normal force in the banked turn problem is now played by the tension in the string.
${ }^{1}$ See prob 85 , Ch 6.

Uniform Circular Motion

The velocity vector points along a tangent to the circle

For uniform circular motion:

- the radius is constant
- the speed is constant
- the magnitude of the acceleration is constant

Non-uniform Circular Motion

A particle can speed up or slow down while following a circular arc. It it does this it must have a component of its acceleration along the direction of its velocity.

${ }^{1}$ Figure from Walker, "Physics".

Non-uniform Circular Motion

The centripetal acceleration $a_{c p}$ is toward the center of the circle and changes the direction of the velocity.

The tangential acceleration a_{t} is tangent to the circle and causes a change of speed.

Radial and Tangential Accelerations

41. A train slows down as it rounds a sharp horizontal

M turn, going from $90.0 \mathrm{~km} / \mathrm{h}$ to $50.0 \mathrm{~km} / \mathrm{h}$ in the 15.0 s it takes to round the bend. The radius of the curve is 150 m . Compute the acceleration at the moment the train speed reaches $50.0 \mathrm{~km} / \mathrm{h}$. Assume the train continues to slow down at this time at the same rate.

Radial and Tangential Accelerations

41. A train slows down as it rounds a sharp horizontal M turn, going from $90.0 \mathrm{~km} / \mathrm{h}$ to $50.0 \mathrm{~km} / \mathrm{h}$ in the 15.0 s it takes to round the bend. The radius of the curve is 150 m . Compute the acceleration at the moment the train speed reaches $50.0 \mathrm{~km} / \mathrm{h}$. Assume the train continues to slow down at this time at the same rate.

Sketch:

${ }^{1}$ Page 93, Serway \& Jewett.

Radial and Tangential Accelerations

41. A train slows down as it rounds a sharp horizontal

M turn, going from $90.0 \mathrm{~km} / \mathrm{h}$ to $50.0 \mathrm{~km} / \mathrm{h}$ in the 15.0 s it takes to round the bend. The radius of the curve is 150 m . Compute the acceleration at the moment the train speed reaches $50.0 \mathrm{~km} / \mathrm{h}$. Assume the train continues to slow down at this time at the same rate.
${ }^{1}$ Page 93, Serway \& Jewett.

Radial and Tangential Accelerations

41. A train slows down as it rounds a sharp horizontal

M turn, going from $90.0 \mathrm{~km} / \mathrm{h}$ to $50.0 \mathrm{~km} / \mathrm{h}$ in the 15.0 s it takes to round the bend. The radius of the curve is 150 m . Compute the acceleration at the moment the train speed reaches $50.0 \mathrm{~km} / \mathrm{h}$. Assume the train continues to slow down at this time at the same rate.

$$
\begin{aligned}
& v_{i}=90.0 \mathrm{~km} / \mathrm{h}=\left(\frac{90.0}{3.6}\right) \mathrm{m} / \mathrm{s}=25.0 \mathrm{~m} / \mathrm{s} \\
& v_{f}=50.0 \mathrm{~km} / \mathrm{h}=\left(\frac{50.0}{3.6}\right) \mathrm{m} / \mathrm{s}=13.9 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

[^1]
Radial and Tangential Accelerations

41. A train slows down as it rounds a sharp horizontal

M turn, going from $90.0 \mathrm{~km} / \mathrm{h}$ to $50.0 \mathrm{~km} / \mathrm{h}$ in the 15.0 s it takes to round the bend. The radius of the curve is 150 m . Compute the acceleration at the moment the train speed reaches $50.0 \mathrm{~km} / \mathrm{h}$. Assume the train continues to slow down at this time at the same rate.

$$
\begin{aligned}
& v_{i}=90.0 \mathrm{~km} / \mathrm{h}=\left(\frac{90.0}{3.6}\right) \mathrm{m} / \mathrm{s}=25.0 \mathrm{~m} / \mathrm{s} \\
& v_{f}=50.0 \mathrm{~km} / \mathrm{h}=\left(\frac{50.0}{3.6}\right) \mathrm{m} / \mathrm{s}=13.9 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

Tangential accel. corresponds to changing speed: $a_{t, \text { avg }}=\frac{\Delta v}{\Delta t}$
Centripetal accel. corresponds to changing direction: $a_{c p}=\frac{v^{2}}{r}$

[^2]
Radial and Tangential Accelerations

41. A train slows down as it rounds a sharp horizontal

M turn, going from $90.0 \mathrm{~km} / \mathrm{h}$ to $50.0 \mathrm{~km} / \mathrm{h}$ in the 15.0 s it takes to round the bend. The radius of the curve is 150 m . Compute the acceleration at the moment the train speed reaches $50.0 \mathrm{~km} / \mathrm{h}$. Assume the train continues to slow down at this time at the same rate.

$$
a_{t}=-0.741 \mathrm{~m} / \mathrm{s}^{2} ; \quad a_{r}=-1.29 \mathrm{~m} / \mathrm{s}^{2} \text { (calling outward positive) }
$$

$$
\overrightarrow{\mathbf{a}}=1.48 \mathrm{~m} / \mathrm{s}^{2} \text { inward at an angle } 29.9^{\circ}
$$

backward from the direction of travel
${ }^{1}$ Page 93, Serway \& Jewett.

Radial and Tangential Accelerations

One end of a cord is fixed and a small $0.500-\mathrm{kg}$ object is attached to the other end, where it swings in a section of a vertical circle of radius 2.00 m as shown. When $\theta=20.0^{\circ}$, the speed of the object is $8.00 \mathrm{~m} / \mathrm{s}$. At this instant, find (a) the tension in the string, (b) the tangential and radial components of acceleration.

${ }^{1}$ Serway \& Jewett, 9th ed., ch 6, prob 18.

Radial and Tangential Accelerations

One end of a cord is fixed and a small $0.500-\mathrm{kg}$ object is attached to the other end, where it swings in a section of a vertical circle of radius 2.00 m as shown. When $\theta=20.0^{\circ}$, the speed of the object is $8.00 \mathrm{~m} / \mathrm{s}$. At this instant, find (a) the tension in the string, (b) the tangential and radial components of acceleration.

$$
\text { (a) } T=20.6 \mathrm{~N} \quad ; \quad \text { (b) } a_{c}=32.0 \mathrm{~m} / \mathrm{s}^{2}, a_{t}=3.35 \mathrm{~m} / \mathrm{s}^{2}
$$

${ }^{1}$ Serway \& Jewett, 9th ed., ch 6, prob 18.

Discuss Quiz and/or Test Problems?

Questions from the quizzes or test?

Summary

- banked turns
- non-uniform circ. motion and tangential acceleration

Canvas Quiz/Survey due Thursday night, not posted yet, will take ~ 5 mins, get credit for it as a quiz!

Final Exam, Thursday, Mar 26, by Canvas \& Zoom, be ready at 9 am .

Homework

- Forces and Motion worksheet (due Thursday, 10am)

Walker Physics:

- Ch 6, onward from page 177. Problems: 85 \& 107 (banked turns)

[^0]: ${ }^{0}$ Photo from Walker, "Physics".

[^1]: ${ }^{1}$ Page 93, Serway \& Jewett.

[^2]: ${ }^{1}$ Page 93, Serway \& Jewett.

